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By giving some new treatments we can improve a classical result of Walfisz (1963) on
the asymptotic formula of Euler’s function.
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1. Introduction

Let φ(n) be Euler’s totient function. The following asymptotic formula is well known
(and can be found in many books on number theory):

∑
n�x

φ(n) =
3
π2 x2 + O(x log x). (1.1)

In 1963 [7, ch. 4] Walfisz improved the error term of (1.1) to

O(x(log x)2/3(log log x)4/3) (1.2)

by using both Vinogradov’s and van der Corput’s methods of exponential sums.
His method turns out to be rather complicated (occupying 32 pp.; see [7, pp. 114–
145]), for example, he had to use Vinogradov’s method to firstly estimate sums of
the shape (see [7, Hilfssatz 8, p. 136])

∑
p�N

e

(
x

p

)
.

(From now on, e(t) = exp(2πit).) We know that the error term of (1.1) is

−x
∑
d�x

μ(d)
d

ψ

(
x

d

)
+ O(x), ψ(t) = t − [t] − 1/2, (1.3)

where μ(·) is the Möbius function. In this paper we instead use the method of [4]
for treating sums involving μ(·), and we suitably combine van der Corput’s and
Vinogradov’s methods. Thus, we can improve (1.2) as follows.

Theorem 1.1. In (1.1) we have the error term O(x(log x)2/3(log log x)1/3).
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2. Lemmas

Lemma 2.1. Let X1/2(log X)−1 > 2D � D1 > D. Then

S :=
∑

D<n�D1

e

(
X

n

)
� D exp

(
−γ(log D)3

(log X)2

)
.

for some positive constant γ.

Proof. For exp((log X)2/3) < D < X1/24 the required result follows from [7, Satz 1,
p. 47]. For X1/24 < D < X1/2(log X)−1 let n = 23, and we use the exponent pair

(p, q) =
(

1
2n+1 − 2

, 1 − 1
2n+1 − 2

)

of [5] to obtain (using X/D2 � log X to verify the condition of using an exponent
pair in the strict sense of [5])

S �
(

X

D2

)p

Dq � D

(
X

Dn+2

)p

� D1−p.

Finally, for D � exp((log X)2/3) the required estimate holds trivially. Therefore,
lemma 2.1 holds.

Lemma 2.2. Let ψ(t) = t − [t] − 1/2. Then for H > 2 we have

ψ(t) = −
∑

0<|h|�H

e(ht)
2πih

+ O

(
min

(
1,

1
H‖t‖

))
,

min
(

1,
1

H‖t‖

)
=

∑
−∞<h<∞

ahe(ht)

a0 � log H

H
, ah � min

(
log(2H)

H
, Hh−2

)
for h �= 0,

where ‖t‖ = min(1 − {t}, {t}), {t} = t − [t].

Proof. See [4, p. 254]. Actually we need to explain the estimate

ah � log H

H
,

for in [4] Montgomery and Vaughan already mentioned that ah � min(1/|h|, Hh−2)
for h �= 0. In fact, for

Φ(x) = min
(

1,
1

H‖x‖

)

we have (for h �= 0)

ah =
∫ 1

0
Φ(x)e(−hx) dx,

and thus, obviously,

|ah| � a0 = 2H−1(1 + log(1
2H)) � log(2 + H)

H
.
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Thus, by combining with the known bound ah � Hh−2 (this can be obtained by
means of the integration by parts in the integral representation of ah of [4, (18)]),
we see that lemma 2.2 follows.

Lemma 2.3. Let Z > 1, U = Z1/3. Then for any arithmetic function f(n) there
exist real coefficients bu, gu, cu such that |bu| + |gu| + |cu| = O(d(u)); here d(u) is
the divisor function, which is the number of distinct divisors of u, and∑

Z<n�2Z

μ(n)f(n) = S1 + S2,

S1 =
∑
u�U,

Z/u<v�2Z/u

guf(uv), S2 =
∑

u>U, v>U,
Z<uv�2Z

bucvf(uv),

where bu, gu � d(u), cv � d(v) (as usual d(n) is the number of positive divisors
of n).

Proof. A similar formula is derived in [4, p. 251], which actually implies our version,
because we can split the sum as

∑
u�U2,

Z/u<v�2Z/u

guf(uv) =

⎛
⎜⎜⎝

∑
u�U,

Z/u<v�2Z/u

+
∑

U<u�U2,
Z/u<v�2Z/u

⎞
⎟⎟⎠ guf(uv),

and we find that the second part can be included in S2.

Lemma 2.4. For positive numbers Am, Bn, um, vn (1 � m � M , 1 � n � N),
0 < Q1 < Q2, there is a number q ∈ [Q1, Q2] such that∑

1�m�M

Amqum +
∑

1�n�N

Bnq−vn

� (M + N)
( ∑

1�m�M

AmQum
1 +

∑
1�n�N

BnQ−vn
2

+
∑

1�m�M

∑
1�n�N

(Avn
m Bum

n )1/(um+vn)
)

.

Proof. See [3, lemma 6].

3. Proof of theorem 1.1

Note that t ∼ T means that T < t � 2T , and t ≈ T means t/T ∈ [ω, ρ] for some
absolute and positive constants ω and ρ. The meaning of Vinogradov’s symbols �
or � is standard.

Let N = exp(AL2/3(log L)1/3). Here L = log x, A is some sufficiently large con-
stant that will be specified later. In view of (1.3), by using the familiar estimate
(t � 2) ∑

n�t

1
n

= log t + O(1),
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to derive theorem 1.1 we only need to treat

∑
N<d<xN−1

μ(d)
d

ψ

(
x

d

)
.

We split the sum into less than 10 subsums that have ranges of summation as
D < d � D′ (D′ � 2D, N < D < xN−1), and, for each of them, by the partial
summation we only need to establish (for any D1 � 2D) that

S :=
∑

D<d�D1

μ(d)ψ
(

x

d

)
� DL−3. (3.1)

Let H = L5. By lemma 2.2 we have

S = −
∑

1�|h|�H

1
2πih

∑
D<d�D1

μ(d)e
(

hx

d

)
+ O

( ∑
D<d�D1

min
(

1,
1

H‖x/d‖

))
(3.2)

and

∑
D<d�D1

min
(

1,
1

H‖x/d‖

)

� DL−4 + log L
∑

1�|h|�H2

min
(

1
H

,
H

h2

)∣∣∣∣
∑

D<d�D1

e

(
hx

d

)∣∣∣∣. (3.3)

We first treat the contribution of (3.3). If D > x5/12, we use the exponent pair
(1/2,1/2) according to the manner of Heath-Brown [2] to obtain (note that, by
the inclusion of an extra term in the final upper bound, and the use of auxiliary
tools of Titchmarsh [6], Heath-Brown [2] was able to relax the strict conditions of
Phillips [5] regarding the use of exponent pairs; see also [1, (3.3.4)])

∑
D<d�D1

e

(
hx

d

)
�

√
|h|xD−1 + D2(|h|x)−1,

which gives

∑
D<d�D1

min
(

1,
1

H‖x/d‖

)
� DL−4 + log L(

√
HxD−1 + D2x−1) � DL−4.

If D � x5/12, by lemma 2.1 we have (by taking A3γ > 10)

∑
D<d�D1

e

(
hx

d

)
� DL−10,

and thus the above estimate also holds. In the following we estimate the first sum-
mation of the right-hand side of (3.2). We will give the following estimate:

∑
D<d�D1

μ(d)e
(

hx

d

)
� DL−4.
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By lemma 2.3, it suffices to establish both

T1 :=
∑

u∼U, v∼V,
D<uv�D1

bucve

(
hx

uv

)
� DL−10 (3.4)

and

T2 :=
∑

u∼U, v∼V,
D<uv�D1

gu

(
hx

uv

)
� DL−10, (3.5)

where in (3.4) D1/3 � U , V � D2/3, UV ≈ D, and in (3.5) 1 � U � D1/3,
UV ≈ D, and bu, gu � d(u), cv � d(v). Obviously, in the following we can suppose
that h > 0.

(a) Let D > x2/7N . Due to the symmetric positions of u and v, we can suppose
that D1/3 � V � D1/2. Using

∑
n�t

d2(n) � t log3 t

(see [7, Hilfssatz 1, p. 126]), Cauchy’s inequality and Weyl’s inequality (a strict
proof of Weyl’s inequality was given in [2], which we use here), after exchanging
the order of summations, we obtain

T 2
1 � L6D2Q−1 + L3DQ−1

∑
v,q

|cvcv+q|
∣∣∣∣
∑

u

e

(
hx

u

(
1
v

− 1
v + q

))∣∣∣∣, (3.6)

where Q ∈ [10, V L−1] is a parameter to be specified later, and 1 � |q| � Q, v ∼ V ,
(v + q) ∼ V , D < uv, u(v + q) � D1 and u ∼ U . We treat only q > 0. Applying the
exponent pair (1/14,11/14) to the innermost sum of (3.6), we get

∑
u

e

(
hx

u

(
1
v

− 1
v + q

))
�

(
hxq

D2

)1/14

U11/14 + D2(hxq)−1.

For a fixed q we have
∑
v,q

|cvcv+q| �
∑

v

d(v)d(v + q) �
∑

v

(d2(v) + d2(v + q)) � V L3.

Thus, we get from (3.6)

L−6T 2
1 � D2Q−1 + 14

√
hxQD23V 3 + LD3V (hx)−1Q−1. (3.7)

Obviously, (3.7) holds for all Q ∈ [0, V L−1]. Using lemma 2.4 to choose an optimal
parameter Q in this range, we get (using D1/3 � V � D1/2)

L−4T1 �
√

D2V −1 + 30
√

hxD25V 3 +
√

D3(hx)−1 + 30
√

D26V 4

� D( 30
√

hxD−3.5 + D−1/15 +
√

Dx−1),
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and thus (3.4) holds for D > x2/7N . Using directly the exponent pair (1/14, 11/14)
to estimate the innermost sum of (3.5), we get the required bound (3.5) as follows:

T2 �
∑
u∼U

d(u)
((

hx

DV

)1/14

V 11/14 + V D(hx)−1
)

� LD(
14
√

hxD−11/3 + D(hx)−1)

� DL−9;

in the last step we have used U � D1/3 and D > x2/7N .

(b) Let N < D � x2/7N . Here we just use Cauchy’s inequality to obtain (similarly
to (3.6))

T 2
1 � L6D2V −1 + L3U

∑
v1 �=v2

d(v1)d(v2)
∣∣∣∣
∑

u

e

(
hx

u

(
1
v1

− 1
v2

))∣∣∣∣. (3.8)

Here the variables satisfy a similar restriction condition to those of (3.6). Let
X = hx|v1 − v2|(v1v2)−1. It is easy to verify that U < X1/2(log X)−1 follows from
D1/3 � U , V � D2/3 and X � hxV −2 � xV −2. Thus by lemma 2.1 the innermost
sum of (3.8) is

∑
u

e

(
hx

u

(
1
v1

− 1
v2

))
� U exp

(
−γ log3 U

log2 X

)
� U exp

(
−γ1

log3 D

log2 X

)

(for suitable positive constants γ and γ1), and thus we can obtain

T 2
1 � L6D5/3 + L5D2 exp

(
−γ1

log3 U

log2 X

)
,

and (3.4) follows by noting that D > N , and A is large enough such that A3γ1 > 25.
Similarly, we can use lemma 2.1 to bound the innermost sum of T2 and obtain (3.5).

The proof of theorem 1.1 is finished.
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