Let
$X$ be an
$n$-dimensional, finite, simply connected
$\text{CW}$ complex and set
$${{\alpha }_{X}}\,=\,\underset{i}{\mathop{\lim \,\sup }}\,\frac{\log \,\text{rank}\,{{\pi }_{i}}\left( X \right)}{i}$$
When
$0<{{\alpha }_{X}}<\infty $, we give upper and lower bounds for
$\sum\nolimits_{i=k+2}^{k+n}{\,\text{rank}}\text{ }{{\pi }_{i}}\left( X \right)$ for
$k$ sufficiently large. We also show for any
$r$ that
$\alpha x$ can be estimated from the integers
$\text{rk }{{\pi }_{i}}\left( X \right),\,i\,\le \,nr$ with an error bound depending explicitly on
$r$.