We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Unpredictability is a core but understudied dimension of adversities and has been receiving increasing attention recently. The effects of unpredictability on psychopathology and the underlying neural mechanisms, however, remain unclear. It is also unknown how unpredictability interacts with other dimensions of adversities in predicting brain development and psychopathology of youth.
Methods
We applied cluster robust standard errors to examine how unpredictability was associated with the developmental changes in resting-state functional connectivity (rsFC) of large-scale brain networks implicated in psychopathology, as well as the moderating role of deprivation, using data from the Adolescent Brain Cognitive Development (ABCD) study, which included four measurements from baseline (mean ± s.d. age, 119.13 ± 7.51 months; 2815 females) to 3-year follow-up (N = 5885).
Results
After controlling for threat, unpredictability was associated with a smaller increase in rsFC within default mode network (DMN) and a smaller decrease in rsFC between cingulo-opercular network (CON) and DMN. Neighborhood educational deprivation moderated the associations between unpredictability and changes in rsFC within DMN and fronto-parietal network (FPN), as well as between CON and DMN. A smaller decrease in rsFC between CON and DMN mediated the association between unpredictability and externalizing problems. Neighborhood educational deprivation moderated the indirect pathway from unpredictability to externalizing problems via a smaller decrease in CON-DMN rsFC.
Conclusions
Our findings shed light on the neural mechanisms underlying the associations between unpredictability and adolescents' psychopathology and the moderating role of deprivation, highlighting the significance of providing stable environment and abundant educational opportunities to facilitate optimal development.
Several factors shape the neurodevelopmental trajectory. A key area of focus in neurodevelopmental research is to estimate the factors that have maximal influence on the brain and can tip the balance from typical to atypical development.
Methods
Utilizing a dissimilarity maximization algorithm on the dynamic mode decomposition (DMD) of the resting state functional MRI data, we classified subjects from the cVEDA neurodevelopmental cohort (n = 987, aged 6–23 years) into homogeneously patterned DMD (representing typical development in 809 subjects) and heterogeneously patterned DMD (indicative of atypical development in 178 subjects).
Results
Significant DMD differences were primarily identified in the default mode network (DMN) regions across these groups (p < 0.05, Bonferroni corrected). While the groups were comparable in cognitive performance, the atypical group had more frequent exposure to adversities and faced higher abuses (p < 0.05, Bonferroni corrected). Upon evaluating brain-behavior correlations, we found that correlation patterns between adversity and DMN dynamic modes exhibited age-dependent variations for atypical subjects, hinting at differential utilization of the DMN due to chronic adversities.
Conclusion
Adversities (particularly abuse) maximally influence the DMN during neurodevelopment and lead to the failure in the development of a coherent DMN system. While DMN's integrity is preserved in typical development, the age-dependent variability in atypically developing individuals is contrasting. The flexibility of DMN might be a compensatory mechanism to protect an individual in an abusive environment. However, such adaptability might deprive the neural system of the faculties of normal functioning and may incur long-term effects on the psyche.
In this chapter, we delve into the intricate domains of working memory (WM) and executive functions (EFs), two pivotal cognitive processes. We elucidate WM, delineate its subcomponents, and elucidate the tasks employed to evaluate them. The chapter explores the neural foundations of WM and EFs, spotlighting the key brain regions and networks implicated in these cognitive operations. We unravel the developmental trajectory of WM throughout childhood and adolescence, emphasizing the underlying brain changes fueling this progression. A distinction is made between cool EFs, which function in emotionally neutral contexts, and hot EFs, which govern behavior in high-stakes scenarios. We underscore the influence of WM and EFs on academic achievement, especially in educational and problem-solving contexts. The chapter also provides insights into strategies for enhancing academic performance by either minimizing WM and EF demands or refining these cognitive faculties.
Fatigue is a central feature of myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS), but many ME/CFS patients also report comorbid pain symptoms. It remains unclear whether these symptoms are related to similar or dissociable brain networks. This study used resting-state fMRI to disentangle networks associated with fatigue and pain symptoms in ME/CFS patients, and to link changes in those networks to clinical improvements following cognitive behavioral therapy (CBT).
Methods
Relationships between pain and fatigue symptoms and cortico-cortical connectivity were assessed within ME/CFS patients at baseline (N = 72) and after CBT (N = 33) and waiting list (WL, N = 18) and compared to healthy controls (HC, N = 29). The analyses focused on four networks previously associated with pain and/or fatigue, i.e. the fronto-parietal network (FPN), premotor network (PMN), somatomotor network (SMN), and default mode network (DMN).
Results
At baseline, variation in pain and fatigue symptoms related to partially dissociable brain networks. Fatigue was associated with higher SMN-PMN connectivity and lower SMN-DMN connectivity. Pain was associated with lower PMN-DMN connectivity. CBT improved SMN-DMN connectivity, compared to WL. Larger clinical improvements were associated with larger increases in frontal SMN-DMN connectivity. No CBT effects were observed for PMN-DMN or SMN-PMN connectivity.
Conclusions
These results provide insight into the dissociable neural mechanisms underlying fatigue and pain symptoms in ME/CFS and how they are affected by CBT in successfully treated patients. Further investigation of how and in whom behavioral and biomedical treatments affect these networks is warranted to improve and individualize existing or new treatments for ME/CFS.
North Korean defectors (NKDs) have often been exposed to traumatic events. However, there have been few studies of neural alterations in NKDs with post-traumatic stress disorder (PTSD) and complex PTSD (cPTSD).
Aims
To investigate neural alterations in NKDs with PTSD and cPTSD, with a specific focus on alterations in resting-state functional connectivity networks, including the default mode network (DMN).
Method
Resting-state functional connectivity was assessed using brain functional magnetic resonance imaging in three groups of NKDs: without PTSD, with PTSD and with cPTSD. Statistical tests were performed, including region of interest (ROI)-to-ROI and ROI-to-voxel analysis, followed by post hoc correlation analysis.
Results
In the ROI-to-ROI analysis, differences in functional connectivity were found among the components of the DMN, as well as in the thalamus and the basal ganglia. Right hippocampus–left pallidum and right amygdala–left lingual gyrus connectivity differed between groups in the ROI-to-voxel analysis, as did connectivity involving the basal ganglia. The post hoc analysis revealed negative correlations between Coping and Adaptation Processing Scale (CAPS) score and left posterior cingulate cortex–right pallidum connectivity and between CAPS score and right putamen–left angular gyrus connectivity in the control group, which were not observed in other groups.
Conclusions
The results suggest that there are alterations in the functional connectivity of the DMN and the limbic system in NKDs with PTSD and cPTSD, and that these alterations involve the basal ganglia. The lower correlations of CAPS score with right basal ganglia–DMN functional connectivity in patients compared with controls further implies that these connectivities are potential targets for treatment of PTSD and cPTSD.
Rumination is a passive form of negative self-focused cognition that predicts depressive episodes for individuals with bipolar disorder (BD). Individuals with BD also have impaired inhibitory executive control; rumination in BD may therefore reflect executive dysfunction. We investigated the relationship between a neural measure of executive functioning (functional connectivity between the frontoparietal control network [FPCN] and the default mode network [DMN] during an effortful task), behavioural measures of executive functioning (the Behavior Rating Inventory of Executive Function) and rumination (the Ruminative Responses Scale).
Methods:
Fifteen individuals with BD and fifteen healthy controls underwent MRI scans during mental distraction. Using CONN toolbox, between-network FPCN-DMN connectivity values were calculated. We conducted Pearson’s r bivariate correlations between connectivity values, BRIEF and RRS scores.
Results:
RRS scores were positively correlated with BRIEF Behavioral Regulation Index (BRI) scores. In individuals with BD, there was a positive correlation between FPCN-DMN functional connectivity during distraction and BRIEF BRI scores. FPCN-DMN functional connectivity was also positively correlated with RRS ruminative brooding scores. Healthy controls did not show significant correlations between these behavioural and neural measures of executive functioning and rumination.
Conclusion:
For individuals with BD, the greater the tendency to ruminate and the higher the executive dysfunction, the stronger the connectivity between an executive control network and a network involved in rumination during an unrelated cognitive task. This could reflect continual attempts to inhibit ruminative thinking and shift back to the distraction task. Therefore, engagement in rumination may reflect failed inhibitory executive control.
Trait dissociation has not been examined from a structural human brain mapping perspective in healthy adults or children. Non-pathological dissociation shares some features with daydreaming and mind-wandering, but also involves subtle disruptions in affect and autobiographical memory.
Aims
To identify neurostructural biomarkers of trait dissociation in healthy children.
Method
Typically developing 9- to 15-year-olds (n = 180) without psychological or behavioural disorders were enrolled in the Developmental Chronnecto-Genomics (DevCoG) study of healthy brain development and completed psychological assessments of trauma exposure and dissociation, along with a structural T1-weighted magnetic resonance imaging. We conducted univariate ANCOVA generalised linear models for each region of the default mode network examining the effects of trait dissociation, including scanner site, age, gender and trauma as covariates and correcting for multiple comparison.
Results
We found that the precuneus was significantly larger in children with higher levels of trait dissociation but this was not related to trauma exposure. The inferior parietal volume was smaller in children with higher levels of trauma but was not related to dissociation. No other regions of interest, including frontal and limbic structures, were significantly related to trait dissociation even before multiple comparison correction.
Conclusions
Trait dissociation reflects subtle cognitive disruptions worthy of study in healthy people and warrants study as a potential risk factor for psychopathology. This neurostructural study of trait dissociation in healthy children identified the precuneus as an essential brain region to consider in future dissociation research.
Both neuroscientists and literary translators aim to understand how invariance of meaning can arise across different forms. But literary translators must render experiences that are more subtle, more contextual, more entire, than a glimpse of a cat’s tail. Thus, for the neuroscientist who seeks to understand invariances, the goals of literary translation match the highest levels of scientific aspiration. From a neuroscientific perspective, it is fascinating that literary translation is possible at all.
Chapter two reviews work on the decentering mechanism presented in the first edition and which is theorised to be central to religious experience. Decentering is seen as a special case of Bayesian surprise. Neurologically surprize triggers an orienting reaction composed of PGO waves and elements of REM sleep. Belief-updating during decentering includes generation of multiple counterfactual simulations to correct the error signal generated by the surprise event.
Ketamine is a rapidly-acting antidepressant treatment with robust response rates. Previous studies have reported that serial ketamine therapy modulates resting state functional connectivity in several large-scale networks, though it remains unknown whether variations in brain structure, function, and connectivity impact subsequent treatment success. We used a data-driven approach to determine whether pretreatment multimodal neuroimaging measures predict changes along symptom dimensions of depression following serial ketamine infusion.
Methods
Patients with depression (n = 60) received structural, resting state functional, and diffusion MRI scans before treatment. Depressive symptoms were assessed using the 17-item Hamilton Depression Rating Scale (HDRS-17), the Inventory of Depressive Symptomatology (IDS-C), and the Rumination Response Scale (RRS) before and 24 h after patients received four (0.5 mg/kg) infusions of racemic ketamine over 2 weeks. Nineteen unaffected controls were assessed at similar timepoints. Random forest regression models predicted symptom changes using pretreatment multimodal neuroimaging and demographic measures.
Results
Two HDRS-17 subscales, the HDRS-6 and core mood and anhedonia (CMA) symptoms, and the RRS: reflection (RRSR) scale were predicted significantly with 19, 27, and 1% variance explained, respectively. Increased right medial prefrontal cortex/anterior cingulate and posterior insula (PoI) and lower kurtosis of the superior longitudinal fasciculus predicted reduced HDRS-6 and CMA symptoms following treatment. RRSR change was predicted by global connectivity of the left posterior cingulate, left insula, and right superior parietal lobule.
Conclusions
Our findings support that connectivity of the anterior default mode network and PoI may serve as potential biomarkers of antidepressant outcomes for core depressive symptoms.
The two key mechanisms affected by internet gaming disorder (IGD) are cognitive and reward processing. Despite their significance, little is known about neurophysiological features as determined using resting-state electroencephalography (EEG) source functional connectivity (FC).
Methods
We compared resting-state EEG source FC within the default mode network (DMN) and reward/salience network (RSN) between patients with IGD and healthy controls (HCs) to identify neurophysiological markers associated with cognitive and reward processing. A total of 158 young male adults (79 patients with IGD and 79 HCs) were included, and the source FC of the DMN and RSN in five spectral bands (delta, theta, alpha, beta, and gamma) were assessed.
Results
Patients with IGD showed increased theta, alpha, and beta connectivity within the DMN between the orbitofrontal cortex and parietal regions compared with HCs. In terms of RSN, patients with IGD exhibited elevated alpha and beta connectivity between the anterior cingulate gyrus and temporal regions compared with HCs. Furthermore, patients with IGD showed negative correlations between the severity of IGD symptoms and/or weekly gaming time and theta and alpha connectivity within the DMN and theta, alpha, and beta connectivity within the RSN. However, the duration of IGD was not associated with EEG source FC.
Conclusions
Hyper-connectivities within the DMN and RSN may be considered potential state markers associated with symptom severity and gaming time in IGD.
Suicide is the second-leading cause of death in youth. Understanding the neural correlates of suicide ideation (SI) in children is crucial to ongoing efforts to understand and prevent youth suicide. This study characterized key neural networks during rest and emotion task conditions in an epidemiologically informed sample of children who report current, past, or no SI.
Methods
Data are from the adolescent brain cognitive development study, including 8248 children (ages 9–10; mean age = 119.2 months; 49.2% female) recruited from the community. Resting-state functional connectivity (RSFC) and activation to emotional stimuli in the salience (SN) and default mode (DMN) networks were measured through fMRI. Self-reported SI and clinical profiles were gathered. We examined the replicability of our model results through repeated sub-sample reliability analyses.
Results
Children with current SI (2.0%), compared to those without any past SI, showed lower DMN RSFC (B = −0.267, p < 0.001) and lower DMN activation in response to negative as compared to neutral faces (B = −0.204, p = 0.010). These results were robust to the effects of MDD, ADHD, and medication use. Sub-sample analysis further supported the robustness of these results. We did not find support for differences in SN RSFC or in SN activation to positive or negative stimuli for children with or without SI.
Conclusions
Results from a large brain imaging study using robust statistical approaches suggest aberrant DMN functioning in children with current suicide ideation. Findings suggest potential mechanisms that may be targeted in suicide prevention efforts.
Understanding the neurobiological underpinnings of childhood maltreatment is vital given consistent links with poor mental health. Dimensional models of adversity purport that different types of adversity likely have distinct neurobiological consequences. Adolescence is a key developmental period, during which deviations from normative neurodevelopment may have particular relevance for mental health. However, longitudinal work examining links between different forms of maltreatment, neurodevelopment, and mental health is limited.
Methods
In the present study, we explored associations between abuse, neglect, and longitudinal development of within-network functional connectivity of the salience (SN), default mode (DMN), and executive control network in 142 community residing adolescents. Resting-state fMRI data were acquired at age 16 (T1; M = 16.46 years, s.d. = 0.52, 66F) and 19 (T2; mean follow-up period: 2.35 years). Mental health data were also collected at T1 and T2. Childhood maltreatment history was assessed prior to T1.
Results
Abuse and neglect were both found to be associated with increases in within-SN functional connectivity from age 16 to 19. Further, there were sex differences in the association between neglect and changes in within-DMN connectivity. Finally, increases in within-SN connectivity were found to mediate the association between abuse/neglect and lower problematic substance use and higher depressive symptoms at age 19.
Conclusions
Our findings suggest that childhood maltreatment is associated with altered neurodevelopmental trajectories, and that changes in salience processing may be linked with risk and resilience for the development of depression and substance use problems during adolescence, respectively. Further work is needed to understand the distinct neurodevelopmental and mental health outcomes of abuse and neglect.
In the past decade, there has been a growing interest in examining resting-state functional connectivity deficits in subjects with conduct and antisocial personality disorder. Through meta-analyses and literature reviews, extensive work has been done to characterize their abnormalities in brain activation during a wide range of functional magnetic resonance imaging (fMRI) tasks. However, there is currently no meta-analytical evidence regarding neural connectivity patterns during resting-state fMRI. Therefore, we conducted a coordinate-based meta-analysis of resting-state fMRI studies on individuals exhibiting antisocial behaviors. Of the retrieved studies, 18 used a seed-based connectivity approach (513 cases v. 488 controls), 20 employed a non-seed-based approach (453 cases v. 460 controls) and 20 included a correlational analysis between the severity of antisocial behaviors and connectivity patterns (3462 subjects). Meta-analysis on seed-based studies revealed significant connectivity deficits in the amygdala, middle cingulate cortex, ventral posterior cingulate cortex-precuneus, ventromedial and dorsomedial prefrontal cortex, premotor cortex, and superior parietal lobule. Additionally, non-seed-based meta-analysis showed increased connectivity in the ventral posterior cingulate cortex and decreased connectivity in the parietal operculum, calcarine cortex, and cuneus. Finally, we found meta-analytical evidence for negative relationship between the severity of antisocial behaviors and connectivity with the ventromedial prefrontal cortex. Functional characterization and meta-analytical connectivity modeling indicated that these findings overlapped with socio-affective and attentional processes. This further underscores the importance of these functions in the pathophysiology of conduct and antisocial personality disorders.
A few former studies suggested that there are partial overlaps in abnormal brain structure and cognitive function between hypochondriasis (HS) and schizophrenia (SZ). But their differences in brain activity and cognitive function were unclear.
Methods:
Twenty-one HS patients, 23 SZ patients, and 24 healthy controls (HC) underwent resting-state functional magnetic resonance imaging (rs-fMRI) with the regional homogeneity analysis (ReHo), subsequently exploring the relationship between ReHo value and cognitive functions. The support vector machines (SVM) were used on effectiveness evaluation of ReHo for differentiating HS from SZ.
Results:
Compared with HC, HS showed significantly increased ReHo values in right middle temporal gyrus (MTG), left inferior parietal lobe (IPL), and right fusiform gyrus (FG), while SZ showed increased ReHo in left insula, decreased ReHo values in right paracentral lobule. Additionally, HS showed significantly higher ReHo values in FG, MTG, and left paracentral lobule, but lower in insula than SZ. The higher ReHo values in insula were associated with worse performance in MATRICS consensus cognitive battery (MCCB) in HS group. SVM analysis showed a combination of the ReHo values in insula and FG was able to satisfactorily distinguish the HS and SZ patients.
Conclusion:
Our results suggested that the altered default mode network (DMN), of which abnormal spontaneous neural activity occurs in multiple brain regions, might play a key role in the pathogenesis of HS, and the resting-state alterations of insula are closely related to cognitive dysfunction in HS. Furthermore, the combination of the ReHo in FG and insula was a relatively ideal indicator to distinguish HS from SZ.
A dysfunctional default mode network (DMN) has been reported in patients with schizophrenia. However, the stability of the deficits has not been determined across different stages of the disorder.
Methods
We examined the functional connectivity of the DMN subsystems of 125 patients with first-episode schizophrenia (FES) or recurrent schizophrenia (RES), compared to that of 82 healthy controls. We tested the robustness of the findings in an independent cohort of 158 patients and 39 healthy controls. We performed resting-state functional connectivity analysis, and examined the strength of the connections within and between the three subsystems of the DMN (core, dorsal medial prefrontal cortex [dMPFC], and medial temporal lobe [MTL]). We also analyzed the connectivity correlations to symptoms and illness duration.
Results
We found reduced connectivity strength between the core and MTL subsystems in schizophrenia patients compared to controls, with no differences between the FES and RES patient groups; these findings were validated in the second sample. Schizophrenia patients also showed a significant reduction in connectivity within the MTL and between the dMPFC−MTL subsystems, similarly between FES and RES groups. The connectivity strength within the core subsystem was negatively correlated with clinical symptoms in schizophrenia. There was no significant correlation between the DMN subsystem connectivity and illness duration.
Conclusions
DMN subsystem connectivity deficits are present in schizophrenia, and the homochronicity of their appearance indicates the trait-like nature of these alterations. The DMN deficit may be useful for early diagnosis, and MTL dysfunction may be a crucial mechanism underlying schizophrenia.
Since its discovery in 1997, the default mode network (DMN) and its components have been extensively studied in both healthy individuals and psychiatric patients. Several studies have investigated possible DMN alterations in specific mental conditions such as bipolar disorder (BD). In this review, we describe current evidence from resting-state functional magnetic resonance imaging studies with the aim to understand possible changes in the functioning of the DMN in BD. Overall, several types of analyses including seed-based and independent component have been conducted on heterogeneous groups of patients highlighting different results. Despite the differences, findings seem to indicate that BD is associated with alterations in both frontal and posterior DMN structures, mainly in the prefrontal, posterior cingulate and inferior parietal cortices. We conclude this review by suggesting possible future research directions.
The default mode network (DMN) dysfunction has emerged as a consistent biological correlate of multiple psychiatric disorders. Specifically, there is evidence of alterations in DMN cohesiveness in schizophrenia, mood and anxiety disorders. The aim of this study was to synthesize at a fine spatial resolution the intra-network functional connectivity of the DMN in adults diagnosed with schizophrenia, mood and anxiety disorders, capitalizing on powerful meta-analytic tools provided by activation likelihood estimation.
Methods.
Results from 70 whole-brain resting-state functional magnetic resonance imaging articles published during the last 15 years were included comprising observations from 2,789 patients and 3,002 healthy controls.
Results.
Specific regional changes in DMN cohesiveness located in the anteromedial and posteromedial cortex emerged as shared and trans-diagnostic brain phenotypes. Disease-specific dysconnectivity was also identified. Unmedicated patients showed more DMN functional alterations, highlighting the importance of interventions targeting the functional integration of the DMN.
Conclusion.
This study highlights functional alteration in the major hubs of the DMN, suggesting common abnormalities in self-referential mental activity across psychiatric disorders.
This chapter reviews both seminal and recent work on late-life depression (LLD), with an emphasis on the vascular depression subtype of LLD. We first describe the clinical features and symptom presentation of LLD, highlighting executive functioning deficits that are a core feature of the “depression with executive dysfunction” syndrome. We discuss both vascular and nonvascular etiological pathways to depression with executive dysfunction in older adults. We highlight recent findings on the association between vascular disease, altered structural and functional brain network connectivity, and clinical symptoms in LLD. Vascular depression is associated with nonresponse to standard pharmacologic treatment. As such, behavioral interventions offer promising avenues for treatment. Novel behavioral approaches encompass psychotherapy, noninvasive brain stimulation, and cognitive remediation that are targeted toward the specific neural circuitry dysfunctions that underlie both affective and cognitive symptoms in older adults. We review these approaches, as well as psychosocial, exercise, and lifestyle interventions.
This chapter reviews major theories of cognitive aging. Theories such as the sensory deficit hypothesis, speed of processing, and inhibitory deficit hypothesis are based largely on behavioral findings and focus on a single process that is purported to account for a number of cognitive changes with age. Specific to memory, theories focus on age deficits in recollection and binding. Over the past twenty-five years, brain-based models have begun to pervade the literature. These have focused on concepts such as compensation, dedifferentiation, and suppression of the default mode network. The scaffolding theory of aging and cognition integrates many of these concepts into a single comprehensive model, including consideration of enrichment and depletion factors that operate over the life span. We conclude the chapter with some debates, critiques, and consideration of future directions, particularly considering the contributions of cognitive neuroscience methods.