We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate upper bounds for the spectral ratios and gaps for the Steklov eigenvalues of balls with revolution-type metrics. We do not impose conditions on the Ricci curvature or on the convexity of the boundary. We obtain optimal upper bounds for the Steklov spectral ratios in dimensions 3 and higher. In dimension 3, we also obtain optimal upper bounds for the Steklov spectral gaps. By imposing additional constraints on the metric, we obtain upper bounds for the Steklov spectral gaps in dimensions 4 and higher.
We show that if one of various cycle types occurs in the permutation action of a finite group on the cosets of a given subgroup, then every almost conjugate subgroup is conjugate. As a number theoretic application, corresponding decomposition types of primes effect that a number field is determined by the Dedekind zeta function. As a geometric application, coverings of Riemannian manifolds with certain geodesic lifting behaviours must be isometric.
We prove Reilly-type upper bounds for the first nonzero eigenvalue of the Steklov problem associated with the p-Laplace operator on submanifolds of manifolds with sectional curvature bounded from above by a nonnegative constant.
We prove an improvement on Schmidt’s upper bound on the number of number fields of degree n and absolute discriminant less than X for
$6\leq n\leq 94$
. We carry this out by improving and applying a uniform bound on the number of monic integer polynomials, having bounded height and discriminant divisible by a large square, that we proved in a previous work [7].
We give a short proof of the Torelli theorem for
$ALH^*$
gravitational instantons using the authors’ previous construction of mirror special Lagrangian fibrations in del Pezzo surfaces and rational elliptic surfaces together with recent work of Sun-Zhang. In particular, this includes an identification of 10 diffeomorphism types of
$ALH^*_b$
gravitational instantons.
The purpose of this article is to prove a ‘Newton over Hodge’ result for finite characters on curves. Let X be a smooth proper curve over a finite field
$\mathbb {F}_q$
of characteristic
$p\geq 3$
and let
$V \subset X$
be an affine curve. Consider a nontrivial finite character
$\rho :\pi _1^{et}(V) \to \mathbb {C}^{\times }$
. In this article, we prove a lower bound on the Newton polygon of the L-function
$L(\rho ,s)$
. The estimate depends on monodromy invariants of
$\rho $
: the Swan conductor and the local exponents. Under certain nondegeneracy assumptions, this lower bound agrees with the irregular Hodge filtration introduced by Deligne. In particular, our result further demonstrates Deligne’s prediction that the irregular Hodge filtration would force p-adic bounds on L-functions. As a corollary, we obtain estimates on the Newton polygon of a curve with a cyclic action in terms of monodromy invariants.
We show that for any n divisible by 3, almost all order-n Steiner triple systems admit a decomposition of almost all their triples into disjoint perfect matchings (that is, almost all Steiner triple systems are almost resolvable).
Given a smooth compact hypersurface $M$ with boundary $\unicode[STIX]{x1D6F4}=\unicode[STIX]{x2202}M$, we prove the existence of a sequence $M_{j}$ of hypersurfaces with the same boundary as $M$, such that each Steklov eigenvalue $\unicode[STIX]{x1D70E}_{k}(M_{j})$ tends to zero as $j$ tends to infinity. The hypersurfaces $M_{j}$ are obtained from $M$ by a local perturbation near a point of its boundary. Their volumes and diameters are arbitrarily close to those of $M$, while the principal curvatures of the boundary remain unchanged.
We establish a generalization of the Expander Mixing Lemma for arbitrary (finite) simplicial complexes. The original lemma states that concentration of the Laplace spectrum of a graph implies combinatorial expansion (which is also referred to as mixing, or pseudo-randomness). Recently, an analogue of this lemma was proved for simplicial complexes of arbitrary dimension, provided that the skeleton of the complex is complete. More precisely, it was shown that a concentrated spectrum of the simplicial Hodge Laplacian implies a similar type of pseudo-randomness as in graphs. In this paper we remove the assumption of a complete skeleton, showing that simultaneous concentration of the Laplace spectra in all dimensions implies pseudo-randomness in any complex. We discuss various applications and present some open questions.
We prove ${\it\epsilon}$-closeness of hypersurfaces to a sphere in Euclidean space under the assumption that the traceless second fundamental form is ${\it\delta}$-small compared to the mean curvature. We give the explicit dependence of ${\it\delta}$ on ${\it\epsilon}$ within the class of uniformly convex hypersurfaces with bounded volume.
In this paper, we discuss monotonicity formulae of various entropy functionals under various rescaled versions of Ricci flow. As an application, we prove that the lowest eigenvalue of a family of geometric operators $-4\Delta \,+\,kR$ is monotonic along the normalized Ricci flow for all $k\,\ge \,1$ provided the initial manifold has nonpositive total scalar curvature.
For a bounded domain Ω in a complete Riemannian manifold M, we investigate the Dirichlet weighted eigenvalue problem of quadratic polynomial operator Δ2 − aΔ + b of the Laplacian Δ, where a and b are the nonnegative constants. We obtain an inequality for eigenvalues which contains a constant that only depends on the mean curvature of M. It yields an upper bound of the (k + 1)th eigenvalue Λk + 1. As their applications, some inequalities and bounds of eigenvalues on a complete minimal submanifold in a Euclidean space and a unit sphere are obtained.
We investigate some properties of spherical means on the universal covering space of a compact Riemannian manifold. If the fundamental group is amenable then the greatest lower bounds of the spectrum of spherical Laplacians are equal to zero. If the fundamental group is nontransient so are geodesic random walks. We also give an isoperimetric inequality for spherical means.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.