Let
$A\,\in \,{{M}_{n}}\left( \mathbb{R} \right)$
be an invertible matrix. Consider the semi-direct product
${{\mathbb{R}}^{n}}\rtimes \,\mathbb{Z}$ where the action of
$\mathbb{Z}$ on
${{\mathbb{R}}^{n}}$ is induced by the left multiplication by
$A$. Let
$\left( \alpha ,\,\tau \right)$ be a strongly continuous action of
${{\mathbb{R}}^{n}}\rtimes \,\mathbb{Z}$ on a
${{C}^{*}}$-algebra
$B$ where
$\alpha$ is a strongly continuous action of
${{\mathbb{R}}^{n}}$ and
$\tau$ is an automorphism. The map
$\tau$ induces a map
$\widetilde{\tau }\,\text{on}\,\text{B}\,{{\rtimes }_{\alpha }}\,{{\mathbb{R}}^{n}}$. We show that, at the
$K$-theory level,
$\tau$ commutes with the Connes–Thom map if
$\det \left( A \right)\,>\,0$ and anticommutes if
$\det \left( A \right)\,>\,0$. As an application, we recompute the
$K$-groups of the Cuntz–Li algebra associated with an integer dilation matrix.