We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We develop two methods for expressing the global index of the gradient of a 2 variable polynomial function $f$: in terms of the atypical fibres of $f$, and in terms of the clusters of Milnor arcs at infinity. These allow us to derive upper bounds for the global index, in particular refining the one that was found by Durfee in terms of the degree of $f$.
In this paper we provide lower bounds for the dimension of various critical sets, and we point out some differential maps with high dimensional critical sets.
The minimum number of critical points of a small codimension smooth map between two manifolds is computed. Some partial results for the case of higher codimension when the manifolds are spheres are also given.
In this paper, we prove that complete open Riemannian manifolds with non-negative Ricci curvature of dimension greater than or equal to three in which some Caffarelli–Kohn–Nirenberg type inequalities are satisfied are close to the Euclidean space.
In this paper, we present a smooth framework for some aspects of the “geometry of CW complexes”, in the sense of Buoncristiano, Rourke and Sanderson. We then apply these ideas to Morse theory, in order to generalize results of Franks and Iriye-Kono.
More precisely, consider a Morse function $f$ on a closed manifold $M$. We investigate the relations between the attaching maps in a $\text{CW}$ complex determined by $f$, and the moduli spaces of gradient flow lines of $f$, with respect to some Riemannian metric on $M$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.