We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider generalised Dirac-Schrödinger operators, consisting of a self-adjoint elliptic first-order differential operator $\mathcal {D}$ with a skew-adjoint ‘potential’ given by a (suitable) family of unbounded operators. The index of such an operator represents the pairing (Kasparov product) of the K-theory class of the potential with the K-homology class of $\mathcal {D}$. Our main result in this paper is a generalisation of the Callias Theorem: the index of the Dirac-Schrödinger operator can be computed on a suitable compact hypersurface. Our theorem simultaneously generalises (and is inspired by) the well-known result that the spectral flow of a path of relatively compact perturbations depends only on the endpoints.
We consider the equivariant Kasparov category associated to an étale groupoid, and by leveraging its triangulated structure we study its localization at the ‘weakly contractible’ objects, extending previous work by R. Meyer and R. Nest. We prove the subcategory of weakly contractible objects is complementary to the localizing subcategory of projective objects, which are defined in terms of ‘compactly induced’ algebras with respect to certain proper subgroupoids related to isotropy. The resulting ‘strong’ Baum–Connes conjecture implies the classical one, and its formulation clarifies several permanence properties and other functorial statements. We present multiple applications, including consequences for the Universal Coefficient Theorem, a generalized ‘going-down’ principle, injectivity results for groupoids that are amenable at infinity, the Baum–Connes conjecture for group bundles, and a result about the invariance of K-groups of twisted groupoid $C^*$-algebras under homotopy of twists.
Given an ample groupoid, we construct a spectral sequence with groupoid homology with integer coefficients on the second sheet, converging to the K-groups of the (reduced) groupoid C
$^*$
-algebra, provided the groupoid has torsion-free stabilizers and satisfies a strong form of the Baum–Connes conjecture. The construction is based on the triangulated category approach to the Baum–Connes conjecture developed by Meyer and Nest. We also present a few applications to topological dynamics and discuss the HK conjecture of Matui.
We construct a Baum–Connes assembly map localised at the unit element of a discrete group $\Gamma$. This morphism, called $\mu _\tau$, is defined in $KK$-theory with coefficients in $\mathbb {R}$ by means of the action of the idempotent $[\tau ]\in KK_{\mathbin {{\mathbb {R}}}}^\Gamma (\mathbb {C},\mathbb {C})$ canonically associated to the group trace of $\Gamma$. We show that the corresponding $\tau$-Baum–Connes conjecture is weaker than the classical version, but still implies the strong Novikov conjecture. The right-hand side of $\mu _\tau$ is functorial with respect to the group $\Gamma$.
Let $G$ be a metrizable compact group, $A$ a separable ${{\text{C}}^{*}}$-algebra, and $\alpha :G\,\to \,\text{Aut}\left( A \right)$ a strongly continuous action. Provided that $\alpha $ satisfies the continuous Rokhlin property, we show that the property of satisfying the $\text{UCT}$ in $E$-theory passes from $A$ to the crossed product ${{\text{C}}^{*}}$-algebra $\mathcal{A}{{\rtimes }_{\alpha }}\,G$ and the fixed point algebra ${{A}^{\alpha }}$. This extends a similar result by Gardella for $KK$-theory in the case of unital ${{\text{C}}^{*}}$-algebras but with a shorter and less technical proof. For circle actions on separable unital ${{\text{C}}^{*}}$-algebras with the continuous Rokhlin property, we establish a connection between the $E$-theory equivalence class of $A$ and that of its fixed point algebra ${{A}^{\alpha }}$.
We develop equivariant KK–theory for locally compact groupoid actions by Morita equivalences on real and complex graded C*-algebras. Functoriality with respect to generalised morphisms and Bott periodicity are discussed. We introduce Stiefel-Whitney classes for real or complex equivariant vector bundles over locally compact groupoids to establish the Thom isomorphism theorem in twisted groupoid K–theory.
We summarise the construction of geometric cycles and their use in describing the Kasparov K-homology of a CW-complex X. When Kasparov K-homology is twisted by a degree three element of the Čech cohomology of X then there is a corresponding construction of twisted geometric cycles for the case where X is a smooth manifold however the method that was employed does not apply in the case of CW-complexes. In this article we propose a new approach to the construction of twisted geometric cycles for CW-complexes motivated by the study of D-branes in string theory.
We define the filtrated $\text{K}$-theory of a ${{\text{C}}^{*}}$-algebra over a finite topological space $X$ and explain how to construct a spectral sequence that computes the bivariant Kasparov theory over $X$ in terms of filtrated $\text{K}$-theory.
For finite spaces with a totally ordered lattice of open subsets, this spectral sequence becomes an exact sequence as in the Universal Coefficient Theorem, with the same consequences for classification.
We also exhibit an example where filtrated $\text{K}$-theory is not yet a complete invariant. We describe two ${{\text{C}}^{*}}$-algebras over a space $X$ with four points that have isomorphic filtrated $\text{K}$-theory without being $\text{KK}\left( X \right)$-equivalent. For this space $X$, we enrich filtrated $\text{K}$-theory by another $\text{K}$-theory functor to a complete invariant up to $\text{KK}\left( X \right)$-equivalence that satisfies a Universal Coefficient Theorem.
Using Poincaré duality, we obtain a formula of Lefschetz type that computes the Lefschetz number of an endomorphism of a separable nuclear ${{C}^{*}}$-algebra satisfying Poincaré duality and the Kunneth theorem. (The Lefschetz number of an endomorphism is the graded trace of the induced map on $\text{K}$-theory tensored with $\mathbb{C}$, as in the classical case.) We then examine endomorphisms of Cuntz–Krieger algebras ${{O}_{A}}$. An endomorphism has an invariant, which is a permutation of an infinite set, and the contracting and expanding behavior of this permutation describes the Lefschetz number of the endomorphism. Using this description, we derive a closed polynomial formula for the Lefschetz number depending on the matrix A and the presentation of the endomorphism.
Vincent Lafforgue's bivariant K-theory for Banach algebras is invariant in the second variable under a rather general notion of Morita equivalence. In particular, the ordinary topological K-theory for Banach algebras is invariant under Morita equivalences.
Let $A$ be a stable, separable, real rank zero ${{C}^{*}}$-algebra, and suppose that $A$ has an AF-skeleton with only finitely many extreme traces. Then the corona algebra $\mathcal{M}\left( A \right)/A$ is purely infinite in the sense of Kirchberg and Rørdam, which implies that $A$ has the corona factorization property.
Recently, J. Roe proved by a direct computation that the Baum–Connes assembly map can be expressed as a boundary map associated to a certain short exact sequence of C*-algebras. In this paper we deduce the same result as a corollary of the author's characterisation of the Baum–Connes assembly map.
Let $A$ and $B$ be C*-algebras, with $A$ separable and $B$$\sigma$-unital and stable. It is shown that there are natural isomorphisms
$$ E(A,B) = KK(SA,Q(B)) = [SA,Q(B) \otimes K], $$
where $SA=C_0(0, 1) \otimes A$, $[\cdot, \cdot]$ denotes the set of homotopy classes of *-homomorphisms, $Q(B) = M(B) / B$ is the generalized Calkin algebra, and $K$ denotes the C*-algebra of compact operators of an infinite-dimensional separable Hilbert space.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.