We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The delta invariant interprets the criterion for the K-(poly)stability of log terminal Fano varieties. In this paper, we determine local delta invariants for all weak del Pezzo surfaces with the anti-canonical degree $\geq 5$.
The well-studied moduli space of complex cubic surfaces has three different, but isomorphic, compact realizations: as a GIT quotient ${\mathcal {M}}^{\operatorname {GIT}}$, as a Baily–Borel compactification of a ball quotient ${(\mathcal {B}_4/\Gamma )^*}$, and as a compactified K-moduli space. From all three perspectives, there is a unique boundary point corresponding to non-stable surfaces. From the GIT point of view, to deal with this point, it is natural to consider the Kirwan blowup ${\mathcal {M}}^{\operatorname {K}}\rightarrow {\mathcal {M}}^{\operatorname {GIT}}$, whereas from the ball quotient point of view, it is natural to consider the toroidal compactification ${\overline {\mathcal {B}_4/\Gamma }}\rightarrow {(\mathcal {B}_4/\Gamma )^*}$. The spaces ${\mathcal {M}}^{\operatorname {K}}$ and ${\overline {\mathcal {B}_4/\Gamma }}$ have the same cohomology, and it is therefore natural to ask whether they are isomorphic. Here, we show that this is in fact not the case. Indeed, we show the more refined statement that ${\mathcal {M}}^{\operatorname {K}}$ and ${\overline {\mathcal {B}_4/\Gamma }}$ are equivalent in the Grothendieck ring, but not K-equivalent. Along the way, we establish a number of results and techniques for dealing with singularities and canonical classes of Kirwan blowups and toroidal compactifications of ball quotients.
This paper is devoted to determine the geometry of a class of smooth projective rational surfaces whose minimal models are the Hirzebruch ones; concretely, they are obtained as the blowup of a Hirzebruch surface at collinear points. Explicit descriptions of their effective monoids are given, and we present a decomposition for every effective class. Such decomposition is used to confirm the effectiveness of some divisor classes when the Riemann–Roch theorem does not give information about their effectiveness. Furthermore, we study the nef divisor classes on such surfaces. We provide an explicit description for their nef monoids, and, moreover, we present a decomposition for every nef class. On the other hand, we prove that these surfaces satisfy the anticanonical orthogonal property. As a consequence, the surfaces are Harbourne–Hirschowitz and their Cox rings are finitely generated. Finally, we prove that the complete linear system associated with any nef divisor is base-point-free; thus, the semi-ample and nef monoids coincide. The base field is assumed to be algebraically closed of arbitrary characteristic.
In order to study integral points of bounded log-anticanonical height on weak del Pezzo surfaces, we classify weak del Pezzo pairs. As a representative example, we consider a quartic del Pezzo surface of singularity type $\mathbf {A}_1+\mathbf {A}_3$ and prove an analogue of Manin’s conjecture for integral points with respect to its singularities and its lines.
We propose two systems of “intrinsic” weights for counting such curves. In both cases the result acquires an exceptionally strong invariance property: it does not depend on the choice of a surface. One of our counts includes all divisor classes of canonical degree 2 and gives in total 30. The other one excludes the class $-2K$, but adds up the results of counting for a pair of real structures that differ by Bertini involution. This count gives 96.
Building on work of Segre and Kollár on cubic hypersurfaces, we construct over imperfect fields of characteristic
$p\geq 3$
particular hypersurfaces of degree p, which show that geometrically rational schemes that are regular and whose rational points are Zariski dense are not necessarily unirational. A likewise behavior holds for certain cubic surfaces in characteristic
$p=2$
.
In this paper, we develop the theory of singular Hermitian metrics on vector bundles. As an application, we give a structure theorem of a projective manifold X with pseudo-effective tangent bundle; X admits a smooth fibration
$X \to Y$
to a flat projective manifold Y such that its general fibre is rationally connected. Moreover, by applying this structure theorem, we classify all the minimal surfaces with pseudo-effective tangent bundle and study general nonminimal surfaces, which provide examples of (possibly singular) positively curved tangent bundles.
In this paper, we show that the cohomology of a general stable bundle on a Hirzebruch surface is determined by the Euler characteristic provided that the first Chern class satisfies necessary intersection conditions. More generally, we compute the Betti numbers of a general stable bundle. We also show that a general stable bundle on a Hirzebruch surface has a special resolution generalizing the Gaeta resolution on the projective plane. As a consequence of these results, we classify Chern characters such that the general stable bundle is globally generated.
Let X be a smooth rational surface. We calculate a differential graded (DG) quiver of a full exceptional collection of line bundles on X obtained by an augmentation from a strong exceptional collection on the minimal model of X. In particular, we calculate canonical DG algebras of smooth toric surfaces.
For each del Pezzo surface $S$ with du Val singularities, we determine whether it admits a $(-K_{S})$-polar cylinder or not. If it allows one, then we present an effective $\mathbb{Q}$-divisor $D$ that is $\mathbb{Q}$-linearly equivalent to $-K_{S}$ and such that the open set $S\setminus \text{Supp}(D)$ is a cylinder. As a corollary, we classify all the del Pezzo surfaces with du Val singularities that admit non-trivial $\mathbb{G}_{a}$-actions on their affine cones defined by their anticanonical divisors.
We prove a global Torelli theorem for pairs $(Y,D)$ where $Y$ is a smooth projective rational surface and $D\in |-K_{Y}|$ is a cycle of rational curves, as conjectured by Friedman in 1984. In addition, we construct natural universal families for such pairs.
The purpose of this paper is twofold. We present first a vanishing theorem for families of linear series with base ideal being a fat points ideal. We then apply this result in order to give a partial proof of a conjecture raised by Bocci, Harbourne and Huneke concerning containment relations between ordinary and symbolic powers of planar point ideals.
In this article, we study the correspondence between the geometry of del Pezzo surfaces ${{s}_{r}}$ and the geometry of the $r$-dimensional Gosset polytopes (${{(r-4)}_{21}}$. We construct Gosset polytopes ${{(r-4)}_{21}}$ in Pic ${{S}_{r}}\,\otimes \,\mathbb{Q}$ whose vertices are lines, and we identify divisor classes in Pic ${{s}_{r}}$ corresponding to $(a-1)$-simplexes $(a\le r)$, $(r-1)$-simplexes and $(r-1)$-crosspolytopes of the polytope ${{(r-4)}_{21}}$. Then we explain how these classes correspond to skew $a$-lines$(a\le r)$, exceptional systems, and rulings, respectively.
As an application, we work on the monoidal transform for lines to study the local geometry of the polytope ${{(r-4)}_{21}}$. And we show that the Gieser transformation and the Bertini transformation induce a symmetry of polytopes ${{3}_{21}}$ and ${{4}_{21}}$, respectively.
In this article we consider exceptional sequences of invertible sheaves on smooth complete rational surfaces. We show that to every such sequence one can associate a smooth complete toric surface in a canonical way. We use this structural result to prove various theorems on exceptional and strongly exceptional sequences of invertible sheaves on rational surfaces. We construct full strongly exceptional sequences for a large class of rational surfaces. For the case of toric surfaces we give a complete classification of full strongly exceptional sequences of invertible sheaves.
In this paper we consider the birational classification of pairs (S, ℒ), with S a rational surface and ℒ a linear system on S. We give a classification theorem for such pairs, and we determine, for each irreducible plane curve B, its Cremona minimal models, that is, those plane curves which are equivalent to B via a Cremona transformation and have minimal degree under this condition.
In this paper we study ruled surfaces which appear as exceptional surface in a succession of blowing-ups. In particular we prove that the $e$-invariant of such a ruled exceptional surface $E$ is strictly positive whenever its intersection with the other exceptional surfaces does not contain a fiber (of $E$). This fact immediately enables us to resolve an open problem concerning an intersection configuration on such a ruled exceptional surface consisting of three nonintersecting sections. In the second part of the paper we apply the non-vanishing of $e$ to the study of the poles of the well-known topological, Hodge and motivic zeta functions.
Classification of real K3 surfaces $X$ with non-symplectic involution $\tau$ is considered. We define a natural notion of degeneration for them. We show that the connected component of moduli of non-degenerate surfaces of this type is defined by the isomorphism class of the action of $\tau$ and the anti-holomorphic involution $\varphi$ in the homology lattice. (There are very few similar results known.) For their classification we apply invariants of integral lattice involutions with conditions that were developed by the first author in 1983. As a particular case, we describe connected components of moduli of real non-singular curves $A \in | -2 K_V|$ for the classical real surfaces: $V = P^2$, hyperboloid, ellipsoid, $F_1$, $F_4$.
As an application, we describe all real polarized K3 surfaces that are deformations of general real K3 double rational scrolls (the surfaces $V$ above). There are very few exceptions. For example, any non-singular real quartic in $P^3$ can be constructed in this way.