We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We explore the interplay between $\omega $-categoricity and pseudofiniteness for groups, and we conjecture that $\omega $-categorical pseudofinite groups are finite-by-abelian-by-finite. We show that the conjecture reduces to nilpotent p-groups of class 2, and give a proof that several of the known examples of $\omega $-categorical p-groups satisfy the conjecture. In particular, we show by a direct counting argument that for any odd prime p the ($\omega $-categorical) model companion of the theory of nilpotent class 2 exponent p groups, constructed by Saracino and Wood, is not pseudofinite, and that an $\omega $-categorical group constructed by Baudisch with supersimple rank 1 theory is not pseudofinite. We also survey some scattered literature on $\omega $-categorical groups over 50 years.
We provide a characterization of differentially large fields in arbitrary characteristic and a single derivation in the spirit of Blum axioms for differentially closed fields. In the case of characteristic zero, we use these axioms to characterize differential largeness in terms of being existentially closed in the differential algebraic Laurent series ring, and we prove that any large field of infinite transcendence degree can be expanded to a differentially large field even under certain prescribed constant fields. As an application, we show that the theory of proper dense pairs of models of a complete and model-complete theory of large fields, is a complete theory. As a further consequence of the expansion result we show that there is no real closed and differential field that has a prime model extension in closed ordered differential fields, unless it is itself a closed ordered differential field.
We study the question of $\mathcal {L}_{\mathrm {ring}}$-definability of non-trivial henselian valuation rings. Building on previous work of Jahnke and Koenigsmann, we provide a characterization of henselian fields that admit a non-trivial definable henselian valuation. In particular, we treat the cases where the canonical henselian valuation has positive residue characteristic, using techniques from the model theory and algebra of tame fields.
Let ${\mathbb K}$ be an algebraically bounded structure, and let T be its theory. If T is model complete, then the theory of ${\mathbb K}$ endowed with a derivation, denoted by $T^{\delta }$, has a model completion. Additionally, we prove that if the theory T is stable/NIP then the model completion of $T^{\delta }$ is also stable/NIP. Similar results hold for the theory with several derivations, either commuting or non-commuting.
We give explicit formulas witnessing IP, IP$_{\!n}$, or TP2 in fields with Artin–Schreier extensions. We use them to control p-extensions of mixed characteristic henselian valued fields, allowing us most notably to generalize to the NIP$_{\!n}$ context one way of Anscombe–Jahnke’s classification of NIP henselian valued fields. As a corollary, we obtain that NIP$_{\!n}$ henselian valued fields with NIP residue field are NIP. We also discuss tameness results for NTP2 henselian valued fields.
We generalize two of our previous results on abelian definable groups in p-adically closed fields [12, 13] to the non-abelian case. First, we show that if G is a definable group that is not definably compact, then G has a one-dimensional definable subgroup which is not definably compact. This is a p-adic analogue of the Peterzil–Steinhorn theorem for o-minimal theories [16]. Second, we show that if G is a group definable over the standard model $\mathbb {Q}_p$, then $G^0 = G^{00}$. As an application, definably amenable groups over $\mathbb {Q}_p$ are open subgroups of algebraic groups, up to finite factors. We also prove that $G^0 = G^{00}$ when G is a definable subgroup of a linear algebraic group, over any model.
As a continuation of the work of the third author in [5], we make further observations on the features of Galois cohomology in the general model theoretic context. We make explicit the connection between forms of definable groups and first cohomology sets with coefficients in a suitable automorphism group. We then use a method of twisting cohomology (inspired by Serre’s algebraic twisting) to describe arbitrary fibres in cohomology sequences—yielding a useful “finiteness” result on cohomology sets.
Applied to the special case of differential fields and Kolchin’s constrained cohomology, we complete results from [3] by proving that the first constrained cohomology set of a differential algebraic group over a bounded, differentially large, field is countable.
We construct an existentially undecidable complete discretely valued field of mixed characteristic with existentially decidable residue field and decidable algebraic part, answering a question by Anscombe–Fehm in a strong way. Along the way, we construct an existentially decidable field of positive characteristic with an existentially undecidable finite extension, modifying a construction due to Kesavan Thanagopal.
We introduce and study the model-theoretic notions of absolute connectedness and type-absolute connectedness for groups. We prove that groups of rational points of split semisimple linear groups (that is, Chevalley groups) over arbitrary infinite fields are absolutely connected and characterize connected Lie groups which are type-absolutely connected. We prove that the class of type-absolutely connected group is exactly the class of discretely topologized groups with the trivial Bohr compactification, that is, the class of minimally almost periodic groups.
We study model theory of actions of finite groups on substructures of a stable structure. We give an abstract description of existentially closed actions as above in terms of invariants and PAC structures. We show that if the corresponding PAC property is first order, then the theory of such actions has a model companion. Then, we analyze some particular theories of interest (mostly various theories of fields of positive characteristic) and show that in all the cases considered the PAC property is first order.
We prove that the class of all the rings $\mathbb {Z}/m\mathbb {Z}$ for all $m>1$ is decidable. This gives a positive solution to a problem of Ax asked in his celebrated 1968 paper on the elementary theory of finite fields [1, Problem 5, p. 270]. In our proof, we reduce the problem to the decidability of the ring of adeles $\mathbb {A}_{\mathbb {Q}}$ of $\mathbb {Q}$.
Recall that a group G has finitely satisfiable generics (fsg) or definable f-generics (dfg) if there is a global type p on G and a small model $M_0$ such that every left translate of p is finitely satisfiable in $M_0$ or definable over $M_0$, respectively. We show that any abelian group definable in a p-adically closed field is an extension of a definably compact fsg definable group by a dfg definable group. We discuss an approach which might prove a similar statement for interpretable abelian groups. In the case where G is an abelian group definable in the standard model $\mathbb {Q}_p$, we show that $G^0 = G^{00}$, and that G is an open subgroup of an algebraic group, up to finite factors. This latter result can be seen as a rough classification of abelian definable groups in $\mathbb {Q}_p$.
We study the embedding property in the category of sorted profinite groups. We introduce a notion of the sorted embedding property (SEP), analogous to the embedding property for profinite groups. We show that any sorted profinite group has a universal SEP-cover. Our proof gives an alternative proof for the existence of a universal embedding cover of a profinite group. Also our proof works for any full subcategory of the sorted profinite groups, which is closed under taking finite quotients, fibre products, and inverse limits. We also show that any sorted profinite group having SEP has a sorted complete system whose theory is $\omega $-categorical and $\omega $-stable under the assumption that the set of sorts is countable.
We show that the theory of Galois actions of a torsion Abelian group A is companionable if and only if, for each prime p, the p-primary part of A is either finite or it coincides with the Prüfer p-group. We also provide a model-theoretic description of the model companions we obtain.
Let R be a discrete valuation domain with field of fractions Q and maximal ideal generated by
$\pi $
. Let
$\Lambda $
be an R-order such that
$Q\Lambda $
is a separable Q-algebra. Maranda showed that there exists
$k\in \mathbb {N}$
such that for all
$\Lambda $
-lattices L and M, if
$L/L\pi ^k\simeq M/M\pi ^k$
, then
$L\simeq M$
. Moreover, if R is complete and L is an indecomposable
$\Lambda $
-lattice, then
$L/L\pi ^k$
is also indecomposable. We extend Maranda’s theorem to the class of R-reduced R-torsion-free pure-injective
$\Lambda $
-modules.
As an application of this extension, we show that if
$\Lambda $
is an order over a Dedekind domain R with field of fractions Q such that
$Q\Lambda $
is separable, then the lattice of open subsets of the R-torsion-free part of the right Ziegler spectrum of
$\Lambda $
is isomorphic to the lattice of open subsets of the R-torsion-free part of the left Ziegler spectrum of
$\Lambda $
.
Furthermore, with k as in Maranda’s theorem, we show that if M is R-torsion-free and
$H(M)$
is the pure-injective hull of M, then
$H(M)/H(M)\pi ^k$
is the pure-injective hull of
$M/M\pi ^k$
. We use this result to give a characterization of R-torsion-free pure-injective
$\Lambda $
-modules and describe the pure-injective hulls of certain R-torsion-free
$\Lambda $
-modules.
We study model theory of fields with actions of a fixed finite group scheme. We prove the existence and simplicity of a model companion of the theory of such actions, which generalizes our previous results about truncated iterative Hasse–Schmidt derivations [13] and about Galois actions [14]. As an application of our methods, we obtain a new model complete theory of actions of a finite group on fields of finite imperfection degree.
We introduce and study model-theoretic connected components of rings as an analogue of model-theoretic connected components of definable groups. We develop their basic theory and use them to describe both the definable and classical Bohr compactifications of rings. We then use model-theoretic connected components to explicitly calculate Bohr compactifications of some classical matrix groups, such as the discrete Heisenberg group ${\mathrm {UT}}_3({\mathbb {Z}})$, the continuous Heisenberg group ${\mathrm {UT}}_3({\mathbb {R}})$, and, more generally, groups of upper unitriangular and invertible upper triangular matrices over unital rings.
In [16], Peterzil and Steinhorn proved that if a group G definable in an o-minimal structure is not definably compact, then G contains a definable torsion-free subgroup of dimension 1. We prove here a p-adic analogue of the Peterzil–Steinhorn theorem, in the special case of abelian groups. Let G be an abelian group definable in a p-adically closed field M. If G is not definably compact then there is a definable subgroup H of dimension 1 which is not definably compact. In a future paper we will generalize this to non-abelian G.
We prove some results about the model theory of fields with a derivation of the Frobenius map, especially that the model companion of this theory is axiomatizable by axioms used by Wood in the case of the theory $\operatorname {DCF}_p$ and that it eliminates quantifiers after adding the inverse of the Frobenius map to the language. This strengthens the results from [4]. As a by-product, we get a new geometric axiomatization of this model companion. Along the way we also prove a quantifier elimination result, which holds in a much more general context and we suggest a way of giving “one-dimensional” axiomatizations for model companions of some theories of fields with operators.
Consider an algorithm computing in a differential field with several commuting derivations such that the only operations it performs with the elements of the field are arithmetic operations, differentiation, and zero testing. We show that, if the algorithm is guaranteed to terminate on every input, then there is a computable upper bound for the size of the output of the algorithm in terms of the size of the input. We also generalize this to algorithms working with models of good enough theories (including, for example, difference fields).
We then apply this to differential algebraic geometry to show that there exists a computable uniform upper bound for the number of components of any variety defined by a system of polynomial PDEs. We then use this bound to show the existence of a computable uniform upper bound for the elimination problem in systems of polynomial PDEs with delays.