1 Introduction
Let
${{\mathbf {U}}(\mathfrak {gl}_n)}$
be the quantized enveloping algebra of
$\mathfrak {gl}_n$
over
$\mathbb Q(v)$
(v an indeterminate) with Chevalley type generators
$E_i$
,
$F_i$
, and
$K_j^{\pm 1}$
for
$1\leqslant i\leqslant n-1$
and
$1\leqslant j\leqslant n$
. Beilinson, Lusztig, and MacPherson (BLM) [Reference Beilinson, Lusztig and MacPherson3] constructed a realization for the quantum group
${{\mathbf {U}}(\mathfrak {gl}_n)}$
via a geometric setting of q-Schur algebras. A presentation of the q-Schur algebra
${\boldsymbol {\mathcal S}}(n,d)$
was given by Doty–Giaquinto [Reference Doty and Giaquinto8]. Du–Parshall [Reference Du and Parshall15] provided an approach to the
$\mathfrak {sl}_n$
type presentation of the q-Schur algebra
${\boldsymbol {\mathcal S}}(n,d)$
using the Beilinson–Lusztig–MacPherson’s construction of
${{\mathbf {U}}(\mathfrak {gl}_n)}$
. The problem of describing the defining relations of a generalized q-Schur algebra as a quotient of a quantized enveloping algebra was investigated by Doty [Reference Doty7], Doty–Giaquinto–Sullivan [Reference Doty, Giaquinto and Sullivan9], [Reference Doty, Giaquinto and Sullivan10].
Infinitesimal Schur algebras are certain important subalgebras of Schur algebras (cf. [Reference Doty, Nakano and Peters11]). The polynomial representations of the group scheme
$G_r T$
of degree d are equivalent to the representation theory of the infinitesimal Schur algebras
. Here,
$G_r$
is the r-th Frobenius kernel of the general linear group G over
, and T is the subscheme of G arising from diagonal elements. A theory of the infinitesimal q-Schur algebra was studied by Cox [Reference Cox4], [Reference Cox5].
Let
${\mathcal Z}=\mathbb Z[v,v^{-1}]$
and
be a commutative ring of characteristic p. Let
be a primitive
$l'$
th root of
$1$
. We will regard
as a
${\mathcal Z}$
-module by specializing v to
$\varepsilon $
. Let
, where
${U_{\mathcal Z}(\mathfrak {gl}_n)}$
is the
${\mathcal Z}$
-subalgebra of
${{\mathbf {U}}(\mathfrak {gl}_n)}$
generated by the elements
$E_i^{(m)}$
,
$F_i^{(m)}$
,
$K_j^{\pm 1}$
, and
$\big [ {K_j;0 \atop t} \big ]$
for
$1\leqslant i\leqslant n-1$
,
$1\leqslant j\leqslant n$
and
$m,t\in \mathbb N$
. For
$r\geqslant 1$
, let
be the
-subalgebra of
generated by the elements
$E_{i}^{(m)}$
,
$F_{i}^{(m)}$
,
$K_{j}^{\pm 1}$
, and
$\big [{K_j;0 \atop t} \big ]$
for
$1 \leqslant i \leqslant n-1$
,
$1 \leqslant j \leqslant n$
,
$t \in \mathbb {N}$
and
$0 \leqslant m,t<l p^{r-1}$
, where
$l=l'$
if
$l'$
is odd, and
$l=l'/2$
otherwise. Furthermore, let
, where
is the zero part of
. Then, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu1.png?pub-status=live)
and . In the case where
$l'=l$
is an odd number, let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu2.png?pub-status=live)
The algebra is the Lusztig’s small quantum group, and
is called Frobenius–Lusztig kernels of
(cf. [Reference Drupieski12], [Reference Lusztig22]). The representation theory of
and
was studied in [Reference Drupieski12].
Jimbo [Reference Jimbo20] proved that there is a natural surjective algebra homomorphism
$\zeta _d$
from
${{\mathbf {U}}(\mathfrak {gl}_n)}$
to the q-Schur algebra
${\boldsymbol {\mathcal S}}(n,d)$
. The map
$\zeta _d:{{\mathbf {U}}(\mathfrak {gl}_n)}\rightarrow {\boldsymbol {\mathcal S}}(n,d)$
induces a surjective algebra homomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu3.png?pub-status=live)
where is the infinitesimal q-Schur algebra over
(cf. [Reference Fu18, Prop. 6.1]). Note that
is a quotient algebra of
in the case where
$l'=l$
is odd. We prove in Theorem 4.10 that
$\ker \zeta _{d,r}$
is generated by the elements
$1-\sum _{\mu \in \Lambda (n,d)} K_{\mu }$
,
$K_{i} K_{\lambda }-\varepsilon ^{\lambda _{i}} K_{\lambda }$
,
$\big [{K_i;0 \atop t}\big ] K_{\lambda }-\big [{{\lambda }_i \atop t}\big ]_{\varepsilon } K_{\lambda }$
for
$1 \leqslant i \leqslant n$
,
$t \in \mathbb {N}$
and
$\lambda \in \Lambda (n,d)$
, where
$\Lambda (n,d)$
is the set of all compositions of d into n parts.
Let
$\dot {{{\mathbf {U}}}}(\mathfrak {gl}_n)$
be the modified quantum group with generators
$E_i1_{\lambda }$
,
$1_{\lambda } F_i$
, and
$1_{\lambda }$
for
$1\leqslant i\leqslant n-1$
and
${\lambda }\in \mathbb Z^{n}$
. The map
$\zeta _d:{{\mathbf {U}}(\mathfrak {gl}_n)}\rightarrow {\boldsymbol {\mathcal S}}(n,d)$
induces a surjective algebra homomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu4.png?pub-status=live)
Let , where
$\dot {{U}}_{\mathcal Z}(\mathfrak {gl}_n)$
is the
${\mathcal Z}$
-subalgebra of
$\dot {{{\mathbf {U}}}}(\mathfrak {gl}_n)$
generated by the elements
$E_i^{(m)}1_{\lambda }$
,
$1_{\lambda } F_i^{(m)}$
for
$1\leqslant i\leqslant n-1$
,
$m\in \mathbb N$
and
${\lambda }\in \mathbb Z^{n}$
. Let
be the
-subalgebra of
generated by the elements
$E_{i}^{(m)}1_{\lambda }$
and
$1_{\lambda } F_{i}^{(m)}$
for
$1 \leqslant i \leqslant n-1$
,
$\lambda \in \mathbb Z^{n}$
and
$0 \leqslant m<l p^{r-1}$
. The map
$\dot {\zeta }_d:\dot {{{\mathbf {U}}}}(\mathfrak {gl}_n)\rightarrow {\boldsymbol {\mathcal S}}(n,d)$
induces a surjective algebra homomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu5.png?pub-status=live)
We prove in Theorem 5.5 that
$\ker \dot {\zeta }_{d,r}$
is generated by the elements
$1_{\lambda }$
for
${\lambda }\not \in \Lambda (n,d)$
.
The organization of the paper is as follows. We recall the BLM construction of the quantum group
${{\mathbf {U}}(\mathfrak {gl}_n)}$
in Section 2. In Section 3, we introduce the infinitesimal q-Schur algebra
. A generating set for the kernel of the epimorphism
is obtained in Section 4. In Section 5, we investigate the kernel of the epimorphism
. In Section 6, we discuss the classical case. In Section 7, we investigate Borel subalgebras of the infinitesimal q-Schur algebra
. As an application, we give a classification of irreducible
-modules over a field of characteristic p in Section 8.
Throughout this paper, let
${\mathcal Z}=\mathbb Z[v,v^{-1}]$
where v is an indeterminate. For
$i\in \mathbb Z$
let
$[i]=\frac {v^i-v^{-i}}{v-v^{-1}}$
. For integers
$N,t$
with
$t\geqslant 0$
, let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu6.png?pub-status=live)
where
$[t]^{!}=[1][2]\cdots [t]$
.
Let be a commutative ring containing a primitive
$l'$
th root
$\varepsilon $
of
$1$
with
$l'\geqslant 1$
. Let
$l\geqslant 1$
be defined by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu7.png?pub-status=live)
Let p be the characteristic of . The commutative ring
will be viewed as a
${\mathcal Z}$
-module by specializing v to
$\varepsilon $
. For
$c\in \mathbb Z$
and
$t\in \mathbb N$
, we will denote the image of
$\big [{c\atop t}\big ]\in {\mathcal Z}$
in
by
$\big [{c\atop t}\big ]_{\varepsilon }$
. For
$\mu \in \mathbb Z^{n}$
and
${\lambda }\in \mathbb N^{n}$
let
$\big [{\mu \atop {\lambda }}\big ]_{\varepsilon }=\big [{\mu _1\atop {\lambda }_1}\big ]_{\varepsilon }\cdots \big [{\mu _n\atop {\lambda }_n}\big ]_{\varepsilon }.$
2 The BLM construction of
$ {{\mathbf {U}}(\mathfrak {gl}_n)} $
Following [Reference Jimbo20], we define the quantized enveloping algebra
${{\mathbf {U}}(\mathfrak {gl}_n)}$
of
$\mathfrak {gl}_n$
to be the
$\mathbb Q(v)$
algebra with generators
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu8.png?pub-status=live)
and relations
$\mathrm{(a)}\ K_{i}K_{j}=K_{j}K_{i},\ K_{i}K_{i}^{-1}=1;$
$\mathrm{(b)}\ K_{i}E_j=v^{\delta _{i,j}-\delta _{i,j+1}} E_jK_{i};$
$\mathrm{(c)}\ K_{i}F_j=v^{\delta _{i,j+1}-\delta _{i,j}} F_jK_{i};$
$\mathrm{(d)}\ E_iE_j=E_jE_i,\ F_iF_j=F_jF_i\ when\ |i-j|>1;$
$\mathrm{(e)}\ E_iF_j-F_jE_i=\delta _{i,j}\frac {\widetilde K_{i} -\widetilde K_{i}^{-1}}{v-v^{-1}},\ where \ \widetilde K_i =K_{i}K_{i+1}^{-1};$
$\mathrm{(f)}\ E_i^2E_j-(v+v^{-1})E_iE_jE_i+E_jE_i^2=0\ when\ |i-j|=1;$
$\mathrm{(g)}\ F_i^2F_j-(v+v^{-1})F_iF_jF_i+F_jF_i^2=0\ when\ |i-j|=1.$
Following [Reference Lusztig22], let
${U_{\mathcal Z}(\mathfrak {gl}_n)}$
be the Lusztig integral form of
${{\mathbf {U}}(\mathfrak {gl}_n)}$
generated by
$E_{i}^{(m)}, F_{i}^{(m)}$
,
$K_{j}^{\pm 1}$
, and
$\big [{K_j;c \atop t}\big ](1 \leqslant i \leqslant n-1,1 \leqslant j \leqslant n, m, t \in \mathbb {N}, c \in \mathbb {Z})$
, where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu9.png?pub-status=live)
with
$[m]^{!}=[1][2] \cdots [m]$
and
$[i]=\frac {v^{i}-v^{-i}}{v-v^{-1}}$
. The following result is given by Lusztig [Reference Lusztig21].
Lemma 2.1. The following formulas hold in
${U_{\mathcal Z}(\mathfrak {gl}_n)}:$
-
(1)
$E_i^{(m)}\big [{K_j;c\atop t}\big ]=\big [{K_j;c+m(-\delta _{i,j}+\delta _{i+1,j})\atop t}\big ] E_i^{(m)};$
-
(2)
$F_i^{(m)}\big [{K_j;c\atop t}\big ]=\big [{K_j;c-m(-\delta _{i,j}+\delta _{i+1,j})\atop t}\big ] F_i^{(m)};$
-
(3) For
$k,l\in \mathbb N$ , we have
$$ \begin{align*}E_i^{(k)}F_i^{(l)}=\sum_{0\leqslant t\leqslant k\atop t\leqslant l}F_i^{(l-t)} \bigg[{\widetilde K_i;2t-k-l\atop t}\bigg]E_i^{(k-t)},\end{align*} $$
where
$\big [ {\widetilde K_i;c \atop t} \big ] = \prod _{s=1}^t \frac {\widetilde K_iv^{c-s+1}-\widetilde K_i^{-1}v^{-c+s-1}}{v^s-v^{-s}}$ .
Let
$\Pi (n)=\{\alpha _i\mid 1\leqslant i\leqslant n-1\}$
, where
$\alpha _i=\boldsymbol {e}_i-\boldsymbol {e}_{i+1}$
with
$\boldsymbol e_i=(0,\ldots ,0,\underset i1,0\cdots ,0)\in \mathbb Z^n.$
We have the following direct sum decomposition:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu11.png?pub-status=live)
where
${{\mathbf {U}}(\mathfrak {gl}_n)}_\nu $
is defined by the conditions
${{\mathbf {U}}(\mathfrak {gl}_n)}_{\nu '}{{\mathbf {U}}(\mathfrak {gl}_n)}_{\nu "}\subseteq {{\mathbf {U}}(\mathfrak {gl}_n)}_{\nu '+\nu "}$
,
$K_j^{\pm 1}\in {{\mathbf {U}}(\mathfrak {gl}_n)}_0$
,
$E_i\in {{\mathbf {U}}(\mathfrak {gl}_n)}_{\alpha _i}$
,
$F_i\in {{\mathbf {U}}(\mathfrak {gl}_n)}_{-\alpha _i}$
for all
$\nu ',\nu "\in \mathbb Z\Pi (n)$
,
$1\leqslant i\leqslant n-1$
and
$1\leqslant j\leqslant n$
.
Following [Reference Lusztig23, 23.1], we introduce the modified quantum group
$\dot {{{\mathbf {U}}}}(\mathfrak {gl}_n)$
associated with
${{\mathbf {U}}(\mathfrak {gl}_n)}$
as follows. Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu12.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu13.png?pub-status=live)
and
${\lambda }\cdot {\mathbf {j}}=\sum _{1\leqslant i\leqslant n}{\lambda }_ij_i$
. Let
$\pi _{{\lambda },\mu }: {{\mathbf {U}}(\mathfrak {gl}_n)}\rightarrow {}_{{\lambda }}{{\mathbf {U}}(\mathfrak {gl}_n)}_{\mu }$
be the canonical projection.
We define the product in
$\dot {{{\mathbf {U}}}}(\mathfrak {gl}_n)$
as follows. For
${\lambda }', \mu ', {\lambda }", \mu " \in \mathbb Z^{n}$
with
${\lambda }'-\mu '$
,
${\lambda }"-\mu " \in \mathbb Z \Pi (n)$
and any
$t \in {{\mathbf {U}}(\mathfrak {gl}_n)}_{{\lambda }'-\mu '}$
,
$s \in {{\mathbf {U}}(\mathfrak {gl}_n)}_{{\lambda }"-\mu "}$
, define
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu14.png?pub-status=live)
Then
$\dot {{{\mathbf {U}}}}(\mathfrak {gl}_n)$
becomes an associative
$\mathbb Q(v)$
-algebra with the above product. Moreover, the algebra
$\dot {{{\mathbf {U}}}}(\mathfrak {gl}_n)$
is naturally a
${{\mathbf {U}}(\mathfrak {gl}_n)}$
-bimodule defined by
$t' \pi _{{\lambda }', {\lambda }"}(s) t"=\pi _{{\lambda }'+\nu ', {\lambda }"-\nu "}(t' s t")$
for
$t' \in {{\mathbf {U}}(\mathfrak {gl}_n)}_{\nu '}, s \in {{\mathbf {U}}(\mathfrak {gl}_n)}, t" \in {{\mathbf {U}}(\mathfrak {gl}_n)}_{\nu "}$
, and
${\lambda }', {\lambda }" \in \mathbb Z^{n} .$
Let
$\dot {{U}}_{\mathcal Z}(\mathfrak {gl}_n)$
be the
${\mathcal Z}$
-subalgebra of
$\dot {{{\mathbf {U}}}}(\mathfrak {gl}_n)$
generated by the elements
$E_{i}^{(m)} 1_{\lambda }$
and
$1_{\lambda } F_{i}^{(m)}$
for
$1 \leqslant i \leqslant n-1$
and
$m \in \mathbb {N}$
, where
$1_{\lambda }=\pi _{\lambda , \lambda }(1)$
.
We now follow [Reference Dipper and James6] to recall the definition of q-Schur algebras as follows. The Hecke algebra
${{\mathcal H}_{\mathcal Z}(d)}$
associated with
${\mathfrak S}_d$
is the
${\mathcal Z}$
-algebra generated by
$T_i$
(
$1\leqslant i\leqslant d-1$
), with the following relations:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu15.png?pub-status=live)
where
$q=v^2$
. Let
${\boldsymbol {\mathcal H}}(d)={{\mathcal H}_{\mathcal Z}(d)}\otimes _{\mathcal Z}\mathbb Q(v)$
. If
$w=s_{i_1}s_{i_2}\cdots s_{i_m}$
is reduced let
$T_w=T_{i_1}T_{i_2}\cdots T_{i_m}$
. Then the set
$\{T_w\mid w\in {\mathfrak S}_d\}$
forms a
${\mathcal Z}$
-basis for
${{\mathcal H}_{\mathcal Z}(d)}$
. Let
$\Lambda (n,d)=\{{\lambda }\in \mathbb N^{n}\mid \sigma ({\lambda })=d\}$
, where
$\sigma ({\lambda })=\sum _{1\leqslant i\leqslant n}{\lambda }_i$
. For
${\lambda }\in \Lambda (n,d)$
, let
$x_{{\lambda }}=\sum _{w\in {\mathfrak S}_{{\lambda }}}T_w$
, where
${\mathfrak S}_{{\lambda }}$
is the Young subgroup of
${\mathfrak S}_d$
. The endomorphism algebras
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu16.png?pub-status=live)
are called q-Schur algebras over
${\mathcal Z}$
and over
$\mathbb Q(v)$
, respectively.
We now recall the BLM construction of
${{\mathbf {U}}(\mathfrak {gl}_n)}$
. Let
$\widetilde {\Theta }(n)$
be the set of all
$n \times n$
matrices over
$\mathbb {Z}$
with all off diagonal entries in
$\mathbb {N}$
. Let
$\Theta (n)$
be the set of all
$n\times n$
matrices over
$\mathbb N$
. Let
${\Theta (n,d)}$
be the set of all
$n \times n$
matrices A over
$\mathbb {N}$
such that
$\sigma (A)=d$
, where
$\sigma (A)=\sum _{1 \leqslant i, j \leqslant n} a_{i, j}$
. For
$A \in \widetilde {\Theta }(n)$
, let
$\operatorname {ro}(A)=(\sum _{j} a_{1, j}, \ldots , \sum _{j} a_{n, j})$
and
$\operatorname {co}(A)=$
$(\sum _{i} a_{i, 1}, \ldots , \sum _{i} a_{i, n})$
.
The q-Schur algebra
${\mathcal S}_{\mathcal Z}(n,d)$
was reconstructed using the geometry of pairs of n-step filtrations on a d-dimensional vector space in [Reference Beilinson, Lusztig and MacPherson3]. In particular, a normalized
${\mathcal Z}$
-basis
$\{[A]\}_{A \in {\Theta (n,d)}}$
for
${\mathcal S}_{\mathcal Z}(n,d)$
was constructed. Using the stabilization property of multiplication for q-Schur algebra, an important
${\mathcal Z}$
-algebra
$K_{\mathcal Z}(n)$
(without
$ 1 $
), with basis
$\{[A]\}_{A \in \widetilde {\Theta }(n)} $
, was constructed in [1, §4]. Let
${\mathbf K}(n)=K_{\mathcal Z}(n)\otimes _{\mathcal Z}\mathbb Q(v)$
. Following [Reference Beilinson, Lusztig and MacPherson3, 5.1], we define
$\widehat {{\mathbf K}}(n)$
to be the vector space of all formal (possibly infinite)
$\mathbb {Q}(v)$
-linear combinations
$\sum _{A \in \widetilde {\Theta }(n)} \beta _{A}[A]$
satisfying the following property: for any
${\mathbf {x}} \in \mathbb Z^{n}$
, the sets
$\{A \in \widetilde {\Theta }(n) \mid \beta _{A} \neq 0, \operatorname {ro}(A)={\mathbf {x}}\}$
and
$\{A \in \widetilde {\Theta }(n) \mid \beta _{A} \neq 0, \operatorname {co}(A)={\mathbf {x}}\}$
are finite. The product of two elements
$\sum _{A \in \widetilde {\Theta }(n)} \beta _{A}[A]$
,
$\sum _{B \in \widetilde {\Theta }(n)} \gamma _{B}[B]$
in
$\widehat {{\mathbf K}}(n)$
is defined to be
$\sum _{A, B} \beta _{A} \gamma _{B}[A] \cdot [B]$
, where
$[A] \cdot [B]$
is the product in
$K_{\mathcal Z}(n).$
Then
$\widehat {{\mathbf K}}(n)$
is an associative algebra.
Let
$\Theta ^\pm (n)$
be the set of all
$A \in \Theta (n)$
such that all diagonal entries are zero. For
$A \in \Theta ^\pm (n)$
and
${\mathbf {j}} \in \mathbb {Z}^{n}$
, let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu17.png?pub-status=live)
where
${\lambda }\cdot{{\mathbf {j}}}=\sum _{1\leqslant i\leqslant n}{\lambda }_i{j_i}$
.
We shall denote by
$\mathbf {V}(n)$
the subspace of
$\widehat {{\mathbf K}}(n)$
spanned by the elements
$A({\mathbf {j}})$
for
$A \in \Theta ^{\pm }(n)$
and
${\mathbf {j}} \in \mathbb {Z}^{n}$
. For
$1 \leqslant i, j \leqslant n$
, let
$E_{i, j} \in \Theta (n)$
be the matrix whose
$(i,j)$
-entry is
$1$
and the other entries are
$0$
. The following result was given by Beilinson–Lusztig–MacPherson [Reference Beilinson, Lusztig and MacPherson3].
Theorem 2.2.
$(1)$
$\mathbf {V}(n)$
is a subalgebra of
$\widehat {{\mathbf K}}(n)$
and there is an algebra isomorphism
${{\mathbf {U}}(\mathfrak {gl}_n)}\stackrel {\thicksim }{\,\rightarrow }\mathbf {V}(n)$
satisfying
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu18.png?pub-status=live)
$(2)$
There is an algebra epimorphism
$\zeta _d:{{\mathbf {U}}(\mathfrak {gl}_n)}\rightarrow {\boldsymbol {\mathcal S}}(n,d)$
satisfying
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu19.png?pub-status=live)
We shall identify
${{\mathbf {U}}(\mathfrak {gl}_n)}$
with
$\mathbf {V}(n)$
. By [Reference Du and Fu14] we have the following result (cf. [Reference Fu17]).
Lemma 2.3.
$(1)$
There is an algebra isomorphism
$\varphi :\dot {{{\mathbf {U}}}}(\mathfrak {gl}_n)\rightarrow {\mathbf K}(n)$
satisfying
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu20.png?pub-status=live)
for all
$u\in {{\mathbf {U}}(\mathfrak {gl}_n)}$
and
${\lambda },\mu \in \mathbb Z^{n}$
. Furthermore, we have
$\varphi (\dot {{U}}_{\mathcal Z}(\mathfrak {gl}_n))=K_{\mathcal Z}(n)$
.
$(2)$
There is a surjective algebra homomorphism
$\dot {\zeta }_d:{\mathbf K}(n)\rightarrow {\boldsymbol {\mathcal S}}(n,d)$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu21.png?pub-status=live)
We shall identify
$\dot {{U}}_{\mathcal Z}(\mathfrak {gl}_n)$
with
$K_{\mathcal Z}(n)$
.
3 The infinitesimal q-Schur algebra
Let . We shall denote the images of
$E_{i}^{(m)}, F_{i}^{(m)}$
, etc. in
by the same letters. Let
(resp.
) be the subalgebra of
generated by the elements
$E_{i}^{(m)}$
(resp.
$F_{i}^{(m)}$
) for
$1\leqslant i\leqslant n-1$
and
$m\in \mathbb N$
. Let
be the subalgebra of
generated by the elements
$K_{j}^{\pm 1}$
and
$\big [{K_j;0 \atop t} \big ]$
for
$1 \leqslant j \leqslant n$
and
$t \in \mathbb {N}$
. Then we have
. The algebras
and
are both
$\mathbb {N}$
-graded in terms of the degrees of monomials in the
$E_{i}^{(m)}$
and
$F_{i}^{(m)}$
.
For
$r\geqslant 1$
, let
be the
-subalgebra of
generated by the elements
$E_{i}^{(m)}$
,
$F_{i}^{(m)}$
,
$K_{j}^{\pm 1}$
, and
$\big [{K_j;0 \atop t} \big ]$
for
$1 \leqslant i \leqslant n-1$
,
$1 \leqslant j \leqslant n$
,
$t \in \mathbb {N}$
and
$0 \leqslant m,t<l p^{r-1}$
. Furthermore, let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu22.png?pub-status=live)
Clearly, the algebra is a Hopf subalgebra of
. Let
(resp.
) be the subalgebra of
generated by the elements
$E_{i}^{(m)}$
(resp.
$F_{i}^{(m)}$
) for
$1\leqslant i\leqslant n-1$
and
$0 \leqslant m<l p^{r-1}$
. Then we have
.
Let
$\Theta ^+(n)=\left \{A \in \Theta (n) \mid a_{i, j}=0, \forall i \geqslant j\right \}$
and
$\Theta ^-(n)=\left \{A \in \Theta (n) \mid a_{i, j}=0, \forall i \leqslant j\right \}$
. For
$A \in \widetilde \Theta (n)$
, write
$A=A^{+}+\operatorname {diag}({\lambda })+A^{-}$
with
$A^{+} \in \Theta ^+(n)$
,
$A^{-} \in \Theta ^-(n)$
and
${\lambda }\in \mathbb Z^{n}$
. Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu23.png?pub-status=live)
Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqn1.png?pub-status=live)
For
$A \in \Theta ^\pm (n)_r$
, let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu24.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu25.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu26.png?pub-status=live)
For
$A \in \Theta ^\pm (n)$
let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu27.png?pub-status=live)
Then we have
$\textrm {deg}(E^{(A^+)})=\textrm {deg}(A^+)$
and
$\textrm {deg}(F^{(A^-)})=\textrm { deg}(A^-)$
for
$A\in \Theta ^\pm (n)$
. For
${\lambda }\in \mathbb N^{n}$
and
${\mathbf {j}}\in \mathbb Z^{n}$
let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu28.png?pub-status=live)
The following result is given in [Reference Fu18, Lem. 6.3].
Proposition 3.1.
$(1)$
The set
$\big \{E^{(A^+)} K^\delta K_{\lambda } F^{(A^-)} \mid A \in \Theta ^\pm (n)_r,\, \delta ,{\lambda } \in \mathbb N^{n},\, \delta _{i} \in \{0,1\},\,\forall i\big \}$
forms a
-basis for
.
$(2)$
The set
$\big \{E^{(A^+)} \mid A \in \Theta ^+(n)_r\}$
(resp.
$\big \{F^{(A^-)} \mid A \in \Theta ^-(n)_r\}$
) forms a
-basis for
(resp.
).
For
$A\in \widetilde \Theta (n)$
let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu29.png?pub-status=live)
Following [Reference Beilinson, Lusztig and MacPherson3], for
$A,B\in \widetilde \Theta (n)$
, define
$B \preccurlyeq A$
if and only if
$\sigma _{i,j}( B )\leqslant \sigma _{i,j}(A)$
for all
$i\not =j$
. Put
$ B \prec A$
if
$ B \preccurlyeq A$
and
$\sigma _{i,j}( B )<\sigma _{i,j}(A)$
for some
$i\not =j$
.
Proposition 3.2.
$(1)$
The set
$\big \{A^+(\mathbf {0}) K^\delta K_{\lambda } A^-(\mathbf {0}) \mid A \in \Theta ^\pm (n)_r,\,\delta ,\lambda \in \mathbb {N}^{n},\, \delta _{i} \in \{0,1\}, \forall i \big \}$
forms a -basis for
.
$(2)$
The set
$\big \{A(\mathbf {0}) \mid A \in \Theta ^+(n)_r\}$
(resp.
$\big \{A(\mathbf {0}) \mid A \in \Theta ^-(n)_r\}$
) forms a
-basis for
(resp.
).
Proof. By [Reference Beilinson, Lusztig and MacPherson3, 4.6(c)] for
$A \in \Theta ^\pm (n)_r$
, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqn2.png?pub-status=live)
where f is a -linear combination of
$B(\mathbf {0})$
for
$B\in \Theta ^+(n)$
with
$B\prec A^+$
and g is a
-linear combination of
$C(\mathbf {0})$
for
$C\in \Theta ^-(n)$
with
$C\prec A^-$
. By [Reference Fu18, Lem. 6.3] we know that f must a
-linear combination of
$B(\mathbf {0})$
for
$B\in \Theta ^+(n)_r$
with
$B\prec A^+$
and g is a
-linear combination of
$C(\mathbf {0})$
for
$C\in \Theta ^-(n)_r$
with
$C\prec A^-$
. Now the assertion follows from Proposition 3.1.
Let . We shall denote the images of
$E_{i}^{(m)}1_{\lambda }$
,
$1_{\lambda } F_{i}^{(m)}$
,
$E^{(A^+)} 1_{\lambda }$
,
$1_{\lambda }F^{(A^-)}$
in
by the same letters. For
$A\in \widetilde \Theta (n)$
let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu30.png?pub-status=live)
Let be the
-subalgebra of
generated by the elements
$E_{i}^{(m)}1_{\lambda }$
and
$1_{\lambda } F_{i}^{(m)}$
for
$1 \leqslant i \leqslant n-1$
,
$\lambda \in \mathbb Z^{n}$
and
$0 \leqslant m<l p^{r-1}$
.
For
$ A \in \widetilde \Theta (n)$
and
$1 \leqslant i \leqslant n$
, let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu31.png?pub-status=live)
where
$ \sigma _{i}(A)=a_{i,i}+\sum _{1 \leqslant j<i}(a_{i j}+a_{j i})$
. Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu32.png?pub-status=live)
We have the following monomial, BLM and PBW bases of .
Proposition 3.3. Each of the following sets forms a -basis of
:
-
(1)
${\mathscr M}_r:=\{E^{(A^+)} 1_{{\boldsymbol \sigma }(A)} F^{(A^-)} \mid A\in \widetilde \Theta (n)_r\};$
-
(2)
${\mathscr L}_r:=\{[A]_{\varepsilon }\mid A\in \widetilde \Theta (n)_r\};$
-
(3)
${\mathscr P}_r:=\{A^+(\mathbf {0}) 1_{{\boldsymbol \sigma }(A)} A^-(\mathbf {0}) \mid A\in \widetilde \Theta (n)_r\}$ .
Proof. Let be the
-submodule of
spanned by the elements
$[A]_{\varepsilon }$
for
$A\in \widetilde \Theta (n)_r$
. By [Reference Beilinson, Lusztig and MacPherson3, 4.6(a)] for
$1\leqslant h\leqslant n-1$
,
$0\leqslant m<lp^{r-1}$
,
$A\in \widetilde \Theta (n)_r$
, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu33.png?pub-status=live)
where
$\beta ({\mathbf {t}})=\sum _{j> u}(a_{h,j}-a_{h+1,j})t_u+\sum _{u<u'}t_ut_{u'}$
. If
$A+\sum _{u}t_u(E_{h,u}-E_{h+1,u})\not \in \widetilde \Theta (n)_r$
for some
${\mathbf {t}}\in \Lambda (n,m)$
, then we have
$a_{h,u}+t_u\geqslant lp^{r-1}$
for some
$u\not =h$
. Since
$A\in \widetilde \Theta (n)_r$
,
${\mathbf {t}}\in \Lambda (n,m)$
and
$m<lp^{r-1}$
, we have
$a_{h,u}<lp^{r-1}$
and
$t_u<lp^{r-1}$
. Hence, by [Reference Fu18, Cor. 3.4] we have
$\big [{a_{h,u}+t_u\atop t_u}\big ]_{\varepsilon }=0$
. Therefore, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu34.png?pub-status=live)
Similarly, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu35.png?pub-status=live)
for
$1\leqslant h\leqslant n-1$
and
$0\leqslant m<lp^{r-1}$
. Consequently, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqn3.png?pub-status=live)
Furthermore, by [Reference Beilinson, Lusztig and MacPherson3, 4.6(c)] for
$A \in \widetilde \Theta (n)_r$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqn4.png?pub-status=live)
where f is a -linear combination of
$[B]_{\varepsilon }$
for
$B\in \widetilde \Theta (n)$
with
$B\prec A$
. By (3.3), we see that f must be a
-linear combination of
$[B]_{\varepsilon }$
for
$B\in \widetilde \Theta (n)_r$
with
$B\prec A$
. It follows from (3.2) that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqn5.png?pub-status=live)
where g is a -linear combination of
$[B]_{\varepsilon }$
for
$B\in \widetilde \Theta (n)_r$
with
$B\prec A$
. Therefore, each of the sets
${\mathscr M}_r$
,
${\mathscr L}_r$
,
${\mathscr P}_r$
forms a
-basis of
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu36.png?pub-status=live)
Hence, by (3.3) we have . The proof is completed.
Let . By [Reference Du13] we have
$\zeta _d({U_{\mathcal Z}(\mathfrak {gl}_n)})={\mathcal S}_{\mathcal Z}(n,d)$
. Therefore, the map
$\zeta _d: {{\mathbf {U}}(\mathfrak {gl}_n)} \rightarrow {\boldsymbol {\mathcal S}}(n,d)$
given in Theorem 2.2 restricts to a surjective algebra homomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqn6.png?pub-status=live)
A generating set for the kernel of
$\zeta _{d}:{U_{\mathcal Z}(\mathfrak {gl}_n)} \rightarrow {\mathcal S}_{\mathcal Z}(n,d)$
was given in [Reference Fu and Gao19]. The map
$\zeta _{d}$
induces, upon tensoring with
, a surjective algebra homomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqn7.png?pub-status=live)
Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu37.png?pub-status=live)
for
$1 \leqslant i \leqslant n-1$
and
$1\leqslant j \leqslant n$
. For
$A \in \Theta (n)$
and
${\lambda }\in \mathbb N^{n} $
, let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu38.png?pub-status=live)
For
$ A \in {\Theta (n,d)}$
, let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu39.png?pub-status=live)
By [Reference Du and Parshall15, Cor. 5.3], we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqn8.png?pub-status=live)
for
${\lambda }\in \Lambda (n,d)$
.
Let be the infinitesimal q-Schur algebra introduced in [Reference Cox4]. The algebra
is a
-subalgebra of the q-Schur algebra
. Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu40.png?pub-status=live)
According to [Reference Cox4, 5.3.1] and the proof of [Reference Fu16, Th. 5.5], we have the following result.
Lemma 3.4. The set
${\mathscr L}_{d,r}:=\{[A]_{\varepsilon } \mid A \in \Theta (n,d)_r\}$
forms a
-basis of
.
By [Reference Fu18, Prop. 6.4], we have the following result.
Lemma 3.5. For
$d\in \mathbb N$
we have
The map
$\dot {\zeta }_d: \dot {{{\mathbf {U}}}}(\mathfrak {gl}_n)={\mathbf K}(n)\rightarrow {\boldsymbol {\mathcal S}}(n,d)$
given in Lemma 2.3 restricts to a surjective algebra homomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqn9.png?pub-status=live)
tensoring with , we obtain a surjective algebra homomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqn10.png?pub-status=live)
Combining Lemma 2.3 with Proposition 3.3, we obtain the following result.
Lemma 3.6. For
$d\in \mathbb N$
we have
.
For
${\lambda },\mu \in \mathbb Z^{n}$
, write
${\lambda }\leqslant \mu \Leftrightarrow {\lambda }_i\leqslant \mu _i$
for
$1\leqslant i\leqslant n$
. We have the following monomial and PBW bases of
.
Proposition 3.7. Each of the following set forms a -basis of
:
-
(1)
${\mathscr M}_{d,r}=\{{\mathtt e}^{(A^+)}\mathtt {k}_{{\lambda }} {\mathtt f}^{(A^-)} \mid A \in \Theta ^\pm (n)_r,\,{\lambda }\in \Lambda (n,d),\,{\lambda }\geqslant {\boldsymbol \sigma }(A)\};$
-
(2)
${\mathscr P}_{d,r}=\{A^+(\mathbf {0},d) \mathtt {k}_{{\lambda }} A^-(\mathbf {0},d) \mid A \in \Theta ^\pm (n)_r,\,{\lambda }\in \Lambda (n,d),\,{\lambda }\geqslant {\boldsymbol \sigma }(A)\}.$
Proof. By Lemma 2.3, (3.4), (3.5), and (3.8), for
$A \in \Theta ^\pm (n)_r$
,
${\lambda }\in \Lambda (n,d)$
with
${\lambda }\geqslant {\boldsymbol \sigma }(A)$
, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu41.png?pub-status=live)
where . Now the assertion follows from Lemma 3.4.
4 The algebra
For
$d\in \mathbb N$
let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu42.png?pub-status=live)
where
$I_{d,r}$
is the two-sided ideal of
generated by the elements
$1-\sum _{\mu \in \Lambda (n,d)} K_{\mu }$
,
$K_{i} K_{\lambda }-\varepsilon ^{\lambda _{i}} K_{\lambda }$
and
$\big [{K_i;0 \atop t}\big ] K_{\lambda }-\big [{{\lambda }_i \atop t}\big ]_{\varepsilon } K_{\lambda }$
for
$1 \leqslant i \leqslant n$
,
$t \in \mathbb {N}$
and
$\lambda \in \Lambda (n,d)$
. For
$1\leqslant i\leqslant n-1$
,
$t\in \mathbb N$
and
$0\leqslant m<lp^{r-1}$
let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu43.png?pub-status=live)
Furthermore, for
$1\leqslant j\leqslant n$
,
$c\in \mathbb Z$
,
$t\in \mathbb N$
and
${\lambda }\in \mathbb N^{n}$
let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu44.png?pub-status=live)
We will prove in Theorem 4.10 that the algebra is isomorphic to the infinitesimal q-Schur algebra
.
Lemma 4.1.
$(1)$
For
${\lambda },\mu \in \Lambda (n,d)$
we have
$\mathbf {k}_{\lambda }\mathbf {k}_\mu =\delta _{{\lambda },\mu }\mathbf {k}_{\lambda }$
.
$(2)$
Assume
$\nu \in \mathbb N^{n}$
is such that
$\sigma (\nu )>d$
. Then we have
$\mathbf {k}_\nu =0$
.
Proof. For
$1\leqslant i\leqslant n$
and
$t\in \mathbb N$
, we have
$\big [{\mathbf {k}_i;0 \atop t}\big ]\mathbf {k}_\mu = \big [{ \mu _i\atop t}\big ]_{\varepsilon } \mathbf {k}_\mu $
. It follows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu45.png?pub-status=live)
If
$\big [{ \mu \atop {\lambda }}\big ]_{\varepsilon }\not =0$
, then we have
$\mu \geqslant {\lambda }$
. This implies that
$\mu ={\lambda }$
since
${\lambda },\mu \in \Lambda (n,d)$
. Therefore, we have
$\mathbf {k}_{\lambda }\mathbf {k}_\mu =\delta _{{\lambda },\mu }\mathbf {k}_{\lambda }$
. Furthermore, since
$1=\sum _{{\gamma } \in \Lambda (n,d)}\mathbf {k}_{\gamma }$
and
$\sigma (\nu )>d$
, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu46.png?pub-status=live)
The proof is completed.
For
$a,b\in \mathbb Z$
, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqn11.png?pub-status=live)
Lemma 4.2. Let
${\lambda }\in \Lambda (n,d)$
. Then we have
$\big [{\mathbf {k}_i;c\atop t}\big ] \mathbf {k}_{\lambda }=\big [{{\lambda }_i+c\atop t}\big ]_{\varepsilon } \mathbf {k}_{\lambda }$
for
$1\leqslant i\leqslant n$
,
$c\in \mathbb Z$
,
$t\in \mathbb N$
.
Proof. Assume
$c\geqslant 0$
. By [Reference Lusztig22, 2.3 (g9), (g10)], we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu47.png?pub-status=live)
Hence, by (4.1), we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu48.png?pub-status=live)
The proof is completed.
By the definition of , we have the following result.
Lemma 4.3. There is an algebra anti-automorphism
$\tau _d$
on
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu49.png?pub-status=live)
for
$1\leqslant i \leqslant n-1$
,
$1\leqslant j \leqslant n$
,
$t\in \mathbb N$
and
$0\leqslant m<lp^{r-1}$
.
Lemma 4.4. Let
${\lambda },\mu \in \Lambda (n,d)$
and
$a\in \mathbb N$
.
$(1)$
If
${\lambda }_{i+1}<a$
for some
$1\leqslant i \leqslant n-1$
, then we have
$\mathbf {e}_i^{(a)}\mathbf {k}_{\lambda }=\mathbf {k}_{\lambda }\mathbf {f}_i^{(a)}=0$
.
$(2)$
If
$\mu _{j}<a$
for some
$1\leqslant j \leqslant n-1$
, then we have
$\mathbf {k}_\mu \mathbf {e}_j^{(a)}=\mathbf {f}_j^{(a)}\mathbf {k}_\mu =0$
.
Proof. By Lemma 2.1 and 4.2, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu50.png?pub-status=live)
Hence, by Lemma 4.1 we have
$\mathbf {k}_{{\lambda }+a\boldsymbol {e}_i-{\lambda }_{i+1}\boldsymbol {e}_{i+1}}=0$
and
$\mathbf {k}_{{\lambda }+a\boldsymbol {e}_{j+1}-\mu _j\boldsymbol {e}_j}=0$
, since
${\lambda }_{i+1}<a$
,
$\mu _j<a$
and
${\lambda },\mu \in \Lambda (n,d)$
. Therefore we have
$\mathbf {e}_i^{(a)}\mathbf {k}_{\lambda }=\mathbf {k}_\mu \mathbf {e}_j^{(a)}=0$
. Consequently, we have
$\mathbf {k}_{\lambda }\mathbf {f}_i^{(a)}=\tau _d(\mathbf {e}_i^{(a)}\mathbf {k}_{\lambda })=0$
and
$\mathbf {f}_j^{(a)}\mathbf {k}_\mu =\tau _d(\mathbf {k}_\mu \mathbf {e}_j^{(a)})=0$
.
Lemma 4.5. Let
${\lambda } \in \Lambda (n,d)$
and
$a\in \mathbb N$
. If
${\lambda }_{i+1}\geqslant a$
for some
$1\leqslant i \leqslant n-1$
, then we have
$\mathbf {e}_i^{(a)}\mathbf {k}_{\lambda }=\mathbf {k}_{{\lambda }+a\alpha _i}\mathbf {e}_i^{(a)}$
and
$\mathbf {k}_{\lambda }\mathbf {f}_i^{(a)}=\mathbf {f}_i^{(a)}\mathbf {k}_{{\lambda }+a\alpha _i}$
, where
$\alpha _i=\boldsymbol {e}_i-\boldsymbol {e}_{i+1}$
.
Proof. By Lemma 2.1 and 4.2, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu51.png?pub-status=live)
Hence, by Lemma 4.4, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu52.png?pub-status=live)
Therefore, we have
$\mathbf {k}_{\lambda }\mathbf {f}_i^{(a)}=\tau _d(\mathbf {e}_i^{(a)}\mathbf {k}_{\lambda })= \tau _d(\mathbf {k}_{{\lambda }+a\alpha _i} \mathbf {e}_i^{(a)} )=\mathbf {f}_i^{(a)}\mathbf {k}_{{\lambda }+a\alpha _i}$
.
For simplicity, we set
$\mathbf {k}_{\lambda }=0$
if
${\lambda }\not \in \mathbb N^{n}$
with
$\sigma ({\lambda })=d$
, where
$\sigma ({\lambda })=\sum _{1\leqslant i\leqslant n}{\lambda }_i$
. Then, by Lemma 4.4 and 4.5, we have the following result.
Lemma 4.6. For
${\lambda } \in \mathbb Z^{n}$
with
$\sigma ({\lambda })=d$
and
$a\in \mathbb N$
we have
$\mathbf {e}_i^{(a)}\mathbf {k}_{\lambda }=\mathbf {k}_{{\lambda }+a\alpha _i}\mathbf {e}_i^{(a)}$
and
$\mathbf {k}_{\lambda }\mathbf {f}_i^{(a)}=\mathbf {f}_i^{(a)}\mathbf {k}_{{\lambda }+a\alpha _i}$
.
For
$A\in \Theta ^\pm (n)$
let
$\mathbf {e}^{(A^+)}=E^{(A^+)}+I_{d,r}$
and
$\mathbf {f}^{(A^-)}=F^{(A^-)}+I_{d,r}$
.
Lemma 4.7. Let
$A\in \Theta ^\pm (n)_r$
and
${\lambda } \in \mathbb Z^{n}$
with
$\sigma ({\lambda })=d$
. Then, we have
$\mathbf {e}^{(A^+)}\mathbf {k}_{\lambda }=\mathbf { k}_{{\lambda }-\textrm {co}(A^+)+\textrm {ro}(A^+)}\mathbf {e}^{(A^+)}$
and
$\mathbf {k}_{\lambda }\mathbf {f}^{(A^-)}= \mathbf {f}^{(A^-)}\mathbf {k}_{{\lambda }+\textrm {co}(A^-)-\textrm {ro}(A^-)}$
.
Proof. By Lemma 4.6, we have
$ \mathbf {e}^{(A^+)}\mathbf {k}_{\lambda }=\mathbf {k}_\mu \mathbf {e}^{(A^+)}$
and
$\mathbf {k}_{\lambda }\mathbf {f}^{(A^-)}=\mathbf {f}^{(A^-)}\mathbf {k}_\nu $
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu53.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu54.png?pub-status=live)
The proof is completed.
Recall the sets
$\Theta ^+(n)_r$
and
$\Theta ^-(n)_r$
defined in (3.1).
Lemma 4.8. Let
${\lambda } \in \Lambda (n,d)$
.
-
(1) If
$A \in \Theta ^+(n)_r$ and
${\lambda }_i<\sigma _i(A)$ for some i, then we have
$\mathbf {e}^{(A)}\mathbf {k}_{\lambda }=0$ .
-
(2) If
$A \in \Theta ^-(n)_r$ and
${\lambda }_i<\sigma _i(A)$ for some i, then we have
$\mathbf {k}_{\lambda }\mathbf {f}^{(A)}=0$ .
Proof. If
$A \in \Theta ^+(n)_r$
and
${\lambda }_i<\sigma _i(A)$
for some i, then by Lemma 4.6 we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu55.png?pub-status=live)
where
$\mathbf {m}_j=\mathbf {e}^{(a_{j-1,j})}_{j-1}(\mathbf {e}_{j-2}^{(a_{j-2, j})} \mathbf {e}_{j-1}^{(a_{j-2, j})}) \cdots (\mathbf {e}_{1}^{(a_{1, j})} \mathbf { e}_{2}^{(a_{1, j})} \cdots \mathbf {e}_{j-1}^{(a_{1, j})})$
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu56.png?pub-status=live)
Since
$\mu _i={\lambda }_i-\sigma _i(A)<0$
we have
$\mathbf {k}_\mu =0$
. Hence, we have
$\mathbf {e}^{(A)}\mathbf {k}_{\lambda }=0$
. Assume now that
$A \in \Theta ^-(n)_r$
and
${\lambda }_i<\sigma _i(A)$
for some i. Then, we have
$\mathbf {k}_{\lambda }\mathbf {f}^{(A)}=\tau _d(\mathbf {e}^{({}^tA)}\mathbf {k}_{\lambda })=0$
. The proof is completed.
For
$A \in \Theta ^\pm (n)_r$
and
${\lambda } \in \Lambda (n,d)$
, let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu57.png?pub-status=live)
Proposition 4.9. The set
$\mathbf {M}_{d,r}=\{\mathbf {m}^{(A,{\lambda })}| A \in \Theta ^\pm (n)_r,\, {\lambda } \in \Lambda (n,d),\, {\lambda }\geqslant {\boldsymbol \sigma }(A)\}$
is a spanning set for
.
Proof. By the definition of
$I_{d,r}$
we have
$\mathbf {k}_i=\sum _{{\lambda }\in \Lambda (n,d)}\varepsilon ^{{\lambda }_i}\mathbf {k}_{\lambda }$
and
$\mathbf {k}_{\lambda }=\sum _{\mu \in \Lambda (n,d)} \big [{\mu \atop {\lambda }}\big ]_{\varepsilon }\mathbf {k}_\mu $
for
${\lambda }\in \Lambda (n,d)$
and
$1\leqslant i\leqslant n$
. Hence, by Proposition 3.1, we see that the algebra
is spanned by the elements
$\mathbf {e}^{(A^+)} \mathbf {k}_{\lambda } \mathbf {f}^{(A^-)}$
for
$A\in \Theta ^\pm (n)_r$
and
$\lambda \in \Lambda (n,d)$
. Therefore, to prove the proposition, we have to show that if
${\lambda }_i< \sigma _i(A)$
for some i, then
$\mathbf {m}^{(A,{\lambda })}$
lies in the span of
$\mathbf {M}_{d,r}$
.
We argue by induction on
$\textrm {deg}(A)$
. The result follows from Lemma 4.4 in the cases where
$\textrm {deg}(A)=1$
. Assume now that
$\textrm {deg}(A)>1$
, and suppose
${\lambda }_i<\sigma _i(A)$
for some
$1\leqslant i\leqslant n$
. For
$2\leqslant j\leqslant n$
let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu58.png?pub-status=live)
Then, we have
$\mathbf {e}^{(A^+)} =\mathbf {m}_n\mathbf {m}_{n-1}\cdots \mathbf {m}_2$
and
$\mathbf {f}^{(A^-)} =\mathbf {m}_2^{\prime }\mathbf {m}_{3}^{\prime }\cdots \mathbf {m}_n'$
. Let
$A_i$
be the submatrix of A consisting of the first i rows and columns, and write
$\mathbf {e}^{(A^+)}=\mathbf {x}_1 \mathbf {e}^{(A_i^{+})}, \mathbf { f}^{(A^-)}=\mathbf {f}^{(A_i^-)}\mathbf {x}_1^\prime $
. Then,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu59.png?pub-status=live)
where
$\mathbf {x}_1=\mathbf {m}_n\mathbf {m}_{n-1}\cdots \mathbf {m}_{i+1}$
and
$\mathbf {x}_1^{\prime }=\mathbf {m}_{i+1}^{\prime }\mathbf {m}_{i+2}^{\prime }\cdots \mathbf {m}_{n}^{\prime }$
. By Lemma 4.8, we may assume that
${\lambda }_i\geqslant \sigma _i(A_i^{+})=\sigma _i(A^{+})$
. Furthermore, by Lemma 4.7, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu60.png?pub-status=live)
where
${\lambda }^\prime ={\lambda }-\textrm {co}(A_i^{+})+\textrm {ro}(A_i^+)$
. By Lemma 2.1,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu61.png?pub-status=live)
where f is a -linear combination of
$\mathbf {x}_j^{\mathbf {e}}\mathbf {h}_j \mathbf {x}^{\mathbf {f}}_j$
with
and
$\textrm {deg}(\mathbf {x}_j^{\mathbf {e}})+\textrm {deg} (\mathbf {x}_j^{\mathbf { f}}) < \textrm {deg}(A_i)$
. Here,
$\mathbf {x}_j^{\mathbf {e}}$
(resp.
$\mathbf {x}_j^{\mathbf {f}}$
) denotes a monomial in the
$\mathbf {e}_i^{(a)}$
(resp.
$\mathbf {f}_i^{(a)}$
). Thus,
$\textrm {deg}(\mathbf {x}_1)+\textrm {deg}(\mathbf {x}_j^{\mathbf {e}})+\textrm {deg}(\mathbf {x}^{\mathbf {f}}_j)+\textrm {deg}(\mathbf {x}_1')<\textrm {deg}(A)$
. Since
${\lambda }_i<\sigma _i(A)$
, we have
${\lambda }_i^{\prime }={\lambda }_i-\sigma _i(A_i^+)<\sigma _i(A)-\sigma _i(A_i^+)=\sigma _i(A_i^-)$
. It follows from Lemma 4.7 that
$ \mathbf {k}_{{\lambda }'}\mathbf {f}^{(A_i^-)}=0$
. Hence, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu62.png?pub-status=live)
Furthermore, by Proposition 3.1, we see that each
$\mathbf {x}_1\mathbf {x}_j^{\mathbf {e}}$
is a
-linear combination of
$\mathbf { e}^{(B)}$
with
$B\in \Theta ^+(n)_r$
,
$\textrm {deg}(B)=\textrm {deg}(\mathbf {x}_1\mathbf {x}_j^{\mathbf {e}})$
and each
$\mathbf {x}_j^{\mathbf {f}} \mathbf {x}_1^\prime $
is a
-linear combination of
$\mathbf {f}^{(C)}$
with
$C\in \Theta ^-(n)_r$
,
$\textrm {deg}(C)=\textrm { deg}(\mathbf {x}_j^{\mathbf {f}} \mathbf {x}_1^\prime )$
. Therefore, by Lemma 4.7 each
$\mathbf {x}_1 \mathbf {k}_{{\lambda }'} \mathbf {x}_j^{\mathbf {e}}\mathbf {h}_j \mathbf {x}^{\mathbf {f}}_j\mathbf {x}_1^\prime $
is a
-linear combination of
$\mathbf {m}^{(A',\mu )}$
with
$\textrm {deg}(A')<\textrm {deg}(A)$
, since
$\textrm {deg}(\mathbf {x}_1)+\textrm {deg}(\mathbf {x}_j^{\mathbf {e}})+\textrm {deg}(\mathbf {x}^{\mathbf {f}}_j)+\textrm {deg}(\mathbf {x}_1')<\textrm {deg}(A)$
. Consequently, by induction, we have
. The proof is completed.
By Lemma 3.5, we have Therefore, the map
given in (3.7) restricts to a surjective algebra homomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqn12.png?pub-status=live)
By (3.8), we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu63.png?pub-status=live)
for
${\lambda }\in \Lambda (n,d)$
. So, we have
$\zeta _{d,r} (I_{d,r})=0$
. Hence, the map
induces a surjective algebra homomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu64.png?pub-status=live)
Theorem 4.10. The map
$\zeta _{d,r}^{\prime }$
is an algebra isomorphism. In particular, the kernel of the map
is generated by the elements
$1-\sum _{\mu \in \Lambda (n,d)} K_{\mu }$
,
$K_{i} K_{\lambda }-\varepsilon ^{\lambda _{i}} K_{\lambda }$
and
$\big [{K_i;0 \atop t}\big ] K_{\lambda }-\big [{{\lambda }_i \atop t}\big ]_{\varepsilon } K_{\lambda }$
for
$1 \leqslant i \leqslant n$
,
$t \in \mathbb {N}$
and
$\lambda \in \Lambda (n,d)$
.
5 The algebra
For
$d\in \mathbb N$
, let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu65.png?pub-status=live)
where
$J_{d,r}$
is the two-sided ideal of
generated by the elements
$1_{\lambda }$
for
$\lambda \notin \Lambda (n,d)$
. For
${\lambda }\in \mathbb Z^{n}$
, let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu66.png?pub-status=live)
Then, we have
$1=\sum _{{\lambda }\in \Lambda (n,d)}\mathfrak {k}_{\lambda }$
. For
$1\leqslant i\leqslant n-1$
and
$0\leqslant m<lp^{r-1}$
, let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu67.png?pub-status=live)
For
$A\in \Theta ^\pm (n)_r$
, let. Furthermore for
$1\leqslant i\leqslant n$
,
$1\leqslant j\leqslant n-1$
,
$c\in\mathbb{Z}$
and
$t\in\mathbb{N}$
let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu68.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu69.png?pub-status=live)
We will prove in Theorem 5.5 that the algebra is isomorphic to the infinitesimal q-Schur algebra
.
By [Reference Beilinson, Lusztig and MacPherson3, Lem. 3.10 and Prop. 4.2], we have the following result.
Lemma 5.1. There is an unique algebra antiautomorphism
$\dot \tau _d$
on
such that
$\dot \tau _d(\mathfrak {e}_i^{(m)})=\mathfrak {f}_i^{(m)}$
,
$\dot \tau _d(\mathfrak {f}_i^{(m)})=\mathfrak {e}_i^{(m)}$
and
$\dot \tau _d(\mathfrak {k}_{\lambda })=\mathfrak {k}_{\lambda }$
for
$1\leqslant i\leqslant n-1$
,
$0\leqslant m<lp^{r-1}$
and
${\lambda }\in \Lambda (n,d)$
.
Clearly we have the following result.
Lemma 5.2. Let
$1 \leqslant i \leqslant n, 1\leqslant j\leqslant n-1$
,
$c\in \mathbb Z$
,
$t\in \mathbb N$
and
$\lambda \in \mathbb {Z}^{n}$
. The following formulas hold in
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu70.png?pub-status=live)
Recall from (3.1) that
$\Theta ^\pm (n)_r=\{A\in \Theta ^\pm (n) \mid 0 \leqslant a_{ij} < lp^{r-1}, \forall i \neq j\} $
,
$\Theta ^+(n)_r=\{A\in \Theta ^+(n) \mid 0 \leqslant a_{ij} < lp^{r-1}, \forall i < j \}$
and
$\Theta ^-(n)_r=\{A\in \Theta ^-(n) \mid 0 \leqslant a_{ij} < lp^{r-1}, \forall i> j \}$
.
Lemma 5.3. Let
$\lambda \in \Lambda (n,d)$
. The following results hold in
. (1) If
$A \in \Theta ^+(n)_r$
and
$\lambda _{i}<\sigma _{i}(A)$
for some i, then
$\mathfrak {e}^{(A)}\mathfrak {k}_{\lambda } =0$
. (2) If
$A \in \Theta ^-(n)_r$
and
$\lambda _{i}<\sigma _{i}(A)$
for some i, then
$\mathfrak {k}_{\lambda }\mathfrak {f}^{(A)}=0$
.
Proof. Assume
$A\in \Theta ^+(n)_r$
and
${\lambda }_i<\sigma _i(A)$
for some i. For
$\mu \in \mathbb Z^{n}, 1 \leqslant j \leqslant n-1$
, we have
$\mathfrak {e}_j\mathfrak {k}_\mu =\mathfrak {k}_{\mu +\alpha _j} \mathfrak {e}_j$
. This implies that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu71.png?pub-status=live)
where
$\mathfrak {m}_{j} =\mathfrak {e}_{j-1}^{(a_{j-1, j})}(\mathfrak {e}_{j-2}^{(a_{j-2, j})} \mathfrak {e}_{j-1}^{(a_{j-2, j})}) \cdots (\mathfrak {e}_{1}^{(a_{1, j})} \mathfrak {e}_{2}^{(a_{1, j})} \cdots \mathfrak {e}_{j-1}^{(a_{1, j})})$
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu72.png?pub-status=live)
Thus, we have
$ {\mathfrak {e}^{(A)}\mathfrak {k}_{\lambda }}= {\mathfrak {m}_n \mathfrak {m}_{n-1} \cdots \mathfrak {m}_{i+1} \mathfrak {k}_{{\lambda }+\nu } \mathfrak {m}_i \mathfrak {m}_{i-1} \cdots \mathfrak {m}_2 }.$
Since
${\lambda }_i<\sigma _i(A)$
, we have
${\lambda }+\nu \not \in \Lambda (n,d)$
. It follows that
$\mathfrak {k}_{{\lambda }+\nu }=0$
. Therefore, we have
$\mathfrak {e}^{(A)}\mathfrak {k}_{\lambda }=0$
. Applying
$\dot \tau _d$
to the identity in (1) gives that in (2).
Proposition 5.4. Let
${\mathfrak M}_{d,r}=\{\mathfrak {e}^{(A^+)}\mathfrak {k}_{\lambda }\mathfrak {f}^{(A^-)} \mid A \in \Theta ^\pm (n)_r,\, \lambda \in \Lambda (n,d),\, \lambda \geqslant {\boldsymbol \sigma }(A) \}$
. Then, the algebra
is spanned as a
-module by the elements in
${\mathfrak M}_{d,r}$
.
Proof. By Proposition 3.3, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu73.png?pub-status=live)
Thus, it is enough to prove that if
${\lambda } \in \Lambda (n,d)$
and
$ {\lambda }_i <\sigma _i(A) $
for some i,
. We apply induction on
$\textrm {deg}(A)$
. If
$\textrm {deg}(A)=1$
, then by Lemma 5.3 we have
$\mathfrak {e}^{(A^+)}\mathfrak {k}_{\lambda }\mathfrak {f}^{(A^-)}=0$
. Now suppose
$\textrm {deg}(A)>1$
. For
$2\leqslant j\leqslant n$
let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu74.png?pub-status=live)
Then, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu75.png?pub-status=live)
where
$X_1=\mathfrak {m}_n\mathfrak {m}_{n-1}\cdots \mathfrak {m}_{i+1}$
,
$X_2=\mathfrak {m}_i\mathfrak {m}_{i-1}\cdots \mathfrak {m}_2$
,
$Y_1=\mathfrak {m}_2^{\prime }\mathfrak {m}_3^{\prime }\cdots \mathfrak {m}_i^{\prime }$
,
$Y_2=\mathfrak {m}_{i+1}^{\prime }\mathfrak {m}_{i+2}^{\prime }\cdots \mathfrak {m}_{n}^{\prime }$
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu76.png?pub-status=live)
By Lemma 2.1 and 5.2, we have
$\mathfrak {k}_{{\lambda }'}X_2Y_1=\mathfrak {k}_{{\lambda }'}Y_1X_2+\mathfrak {k}_{{\lambda }'}f_1f_2$
where
$f_1$
is a
-linear combination of monomials
$f_{1,k}$
in the
$\mathfrak {e}_s^{(a)}$
,
$f_{2}$
is a
-linear combination of monomials
$f_{2,k}$
in the
$\mathfrak {f}_s^{(a)}$
, and
$\textrm {deg}(f_{1,k})+\textrm {deg}(f_{2,k})<\textrm {deg}(X_2)+\textrm {deg}(Y_1)$
. Since
${\lambda }_i<\sigma _i(A)$
, we have
${\lambda }_i^{\prime }<\sigma _i(A^-)$
. Hence by Lemma 5.3, we have
$\mathfrak {k}_{{\lambda }'}Y_1=0$
. This implies that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu77.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu78.png?pub-status=live)
By Proposition 3.1, we have and
. Thus,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu79.png?pub-status=live)
By induction, we have for
$B\in \Theta ^\pm (n)_r$
with
$\textrm {deg}(B)<\textrm {deg}(A)$
. Therefore,
.
By Lemma 3.6, we have Therefore, the map
given in (3.10) restricts to a surjective algebra homomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqn13.png?pub-status=live)
Since
$\dot {\zeta }_{d,r} (J_{d,r})=0$
, the map
induces a surjective algebra homomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu80.png?pub-status=live)
A presentation of was given in [Reference Fu16, Th. 3.9] in the case where
$r=1$
,
is a field and
$l'$
is odd. We now generalize this result to the general case.
Theorem 5.5. The map is an algebra isomorphism. In particular, the kernel of the map
is generated by the elements
$1_{\lambda }$
for
$\lambda \notin \Lambda (n,d)$
.
6 The classical case
Let
${\mathcal U}(\mathfrak {gl}_n)$
be the
$\mathbb Q$
-algebra defined by the generators
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu81.png?pub-status=live)
and the relations
-
(a)
$H_iH_j=H_jH_i;$
-
(b)
$H_{i}\bar E_j-\bar E_jH_i=(\delta _{i,j}-\delta _{i,j+1}) \bar E_j;$
-
(c)
$H_{i}\bar F_j-\bar F_jH_i=(-\delta _{i,j}+\delta _{i,j+1}) \bar F_j;$
-
(d)
$ \bar E_i\bar E_j=\bar E_j\bar E_i,\ \bar F_i\bar F_j=\bar F_j\bar F_i\ when\ |i-j|>1;$
-
(e)
$\bar E_i\bar F_j-\bar F_j\bar E_i=\delta _{i,j}H_i;$
-
(f)
$ \bar E_i^2\bar E_j-2\bar E_i\bar E_j\bar E_i+\bar E_j\bar E_i^2=0\ when\ |i-j|=1;$
-
(g)
$ \bar F_i^2\bar F_j-2\bar F_i\bar F_j\bar F_i+\bar F_j\bar F_i^2=0\ when\ |i-j|=1.$
Then,
${\mathcal U}(\mathfrak {gl}_n)$
is the universal enveloping algebra of
$\mathfrak {gl}_n$
. Let
${\mathcal U}_{\mathbb Z}(\mathfrak {gl}_n)$
be the
$\mathbb Z$
-subalgebra of
${\mathcal U}(\mathfrak {gl}_n)$
generated by
$\bar E_i^{(m)}$
,
$\bar F_i^{(m)}$
, and
$\big ({H_j\atop t}\big )$
for
$1\leqslant i\leqslant n-1$
,
$1\leqslant j\leqslant n$
and
$m,t\in \mathbb N$
, where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu82.png?pub-status=live)
Let
${U_{\mathbb Z}(\mathfrak {gl}_n)}={U_{\mathcal Z}(\mathfrak {gl}_n)}\otimes _{\mathcal Z}\mathbb Z$
, where
$\mathbb Z$
is viewed as
${\mathcal Z}$
-modules by specializing v to
$1$
. Let
${\bar U_{\mathbb Z}(\mathfrak {gl}_n)}={U_{\mathbb Z}(\mathfrak {gl}_n)}/\langle K_i-1\mid 1\leqslant i\leqslant n\rangle $
. We shall denote the images of
$E_i^{(m)}$
,
$F_i^{(m)}$
, etc. in
${\bar U_{\mathbb Z}(\mathfrak {gl}_n)}$
by the same letters. By [Reference Lusztig22, 6.7(c)], there is an algebra isomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqn14.png?pub-status=live)
such that
$\theta (E_i^{(m)})=\bar E_i^{(m)}$
,
$\theta (F_i^{(m)})=\bar F_i^{(m)}$
,
$\theta (\big [{K_j;0\atop t}\big ])=\big ({H_j\atop t}\big )$
for
$1\leqslant i\leqslant n-1$
,
$1\leqslant j\leqslant n$
,
$m,t\in \mathbb N$
. We will identify
${\bar U_{\mathbb Z}(\mathfrak {gl}_n)}$
with
${\mathcal U}_{\mathbb Z}(\mathfrak {gl}_n)$
.
Let
${\mathcal S}_{\mathbb Z}(n,d)={\mathcal S}_{\mathcal Z}(n,d)\otimes _{\mathcal Z}\mathbb Z$
where
$\mathbb Z$
is viewed as
${\mathcal Z}$
-modules by specializing v to
$1$
. The map
$\zeta _{d}$
given in (3.6) induces, upon tensoring with
$\mathbb Z$
, a surjective algebra homomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu83.png?pub-status=live)
Since
$\xi _{d}(K_i)=1$
, the map
$\xi _{d}$
induces a surjective algebra homomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu84.png?pub-status=live)
In the remainder of this section, we assume that
$l'=l=1$
. Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu85.png?pub-status=live)
We shall denote the images of
$\bar E_{i}^{(m)}$
,
$\bar F_{i}^{(m)}$
, etc. in
by the same letters. For
$A\in {\Theta (n,d)}$
, let
$[A]_1$
be the image of
$[A]$
in
. The map
$\xi _{d}$
induces, upon tensoring with
, a surjective algebra homomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu86.png?pub-status=live)
Let be the infinitesimal Schur algebra introduced in [Reference Doty, Nakano and Peters11]. By [Reference Doty, Nakano and Peters11, (5.3.4)], the set
$\{[A]_1\mid A\in {\Theta (n,d)},\,a_{i,j}<p^r,\,\forall i,j\}$
forms a
-basis for
. Hence, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu87.png?pub-status=live)
Let be the
-subalgebra of
generated by the elements
$\bar E_i^{(m)}$
,
$\bar F_i^{(m)}$
,
$\big ({H_j\atop t}\big )$
for
$1\leqslant i\leqslant n-1$
,
$1\leqslant j\leqslant n$
,
$t\in \mathbb N$
and
$0\leqslant m<p^{r}$
. Then, by (6.1), we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu88.png?pub-status=live)
Therefore, by Lemma 3.5, we have . Hence, by restricting the map
$\xi _{d}$
to
, we obtain a surjective algebra homomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu89.png?pub-status=live)
By Theorem 4.10, we obtain the following result.
Theorem 6.1. The kernel of the map is generated by the elements
$1-\sum _{\mu \in \Lambda (n,d)} H_{\mu }$
and
$\big ({H_i \atop t}\big ) H_{\lambda }-\big ({{\lambda }_i \atop t}\big ) H_{\lambda }$
for
$1 \leqslant i \leqslant n$
,
$t \in \mathbb {N}$
and
$\lambda \in \Lambda (n,d)$
, where
$H_{\lambda }=\prod _{1\leqslant i\leqslant n}\big ({H_i\atop {\lambda }_i}\big ).$
Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu90.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu91.png?pub-status=live)
$H^{\mathbf {j}}=\prod _{1\leqslant i\leqslant n} H_i^{j_i}$
and
${\lambda }^{{\mathbf {j}}}=\prod _{1\leqslant i\leqslant n}{\lambda }_i^{j_i}$
. Let
$\bar \pi _{{\lambda },\mu }:{\mathcal U}(\mathfrak {gl}_n)\rightarrow {}_{\lambda }{\mathcal U}(\mathfrak {gl}_n)_\mu $
be the canonical projection. Let
$\bar 1_{\lambda }=\bar \pi _{{\lambda },{\lambda }}(1)$
. As in the case of
$\dot {{{\mathbf {U}}}}(\mathfrak {gl}_n)$
, there is a natural associative
$\mathbb Q$
-algebra structure on
$\dot {\mathcal U}(\mathfrak {gl}_n)$
inherited from that of
${\mathcal U}(\mathfrak {gl}_n)$
, and
$\dot {\mathcal U}(\mathfrak {gl}_n)$
is naturally a
${\mathcal U}(\mathfrak {gl}_n)$
-bimodule. Let
$\dot {\mathcal U}_{\mathbb Z}(\mathfrak {gl}_n)$
be the
$\mathbb Z$
-subalgebra of
$\dot {\mathcal U}(\mathfrak {gl}_n)$
generated by the elements
$\bar E_i^{(m)}\bar 1_{\lambda }$
and
$\bar 1_{\lambda }\bar F_i^{(m)}$
for
$1\leqslant i\leqslant n-1$
,
${\lambda }\in \mathbb Z^{n}$
and
$m\in \mathbb N$
.
Let
${\dot U_{\mathbb Z}(\mathfrak {gl}_n)}=\dot {{U}}_{\mathcal Z}(\mathfrak {gl}_n)\otimes _{\mathcal Z}\mathbb Z$
, where
$\mathbb Z$
is viewed as a
${\mathcal Z}$
-module by specializing v to
$1$
. By (6.1), we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqn15.png?pub-status=live)
We will identify
${\dot U_{\mathbb Z}(\mathfrak {gl}_n)}$
with
$\dot {\mathcal U}_{\mathbb Z}(\mathfrak {gl}_n)$
. The map
$\dot {\zeta }_{d}$
given in (3.9) induces, upon tensoring with
$\mathbb Z$
, a surjective algebra homomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu92.png?pub-status=live)
Let . We shall denote the images of
$\bar E_{i}^{(m)}\bar 1_{\lambda }$
,
$\bar 1_{\lambda }\bar F_{i}^{(m)}$
in
by the same letters. The map
$\dot \xi _{d}$
induces, upon tensoring with
, a surjective algebra homomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu93.png?pub-status=live)
Let be the
-subalgebra of
generated by the elements
$\bar E_i^{(m)}\bar 1_{\lambda }$
,
$\bar 1_{\lambda }\bar F_i^{(m)}$
for
$1\leqslant i\leqslant n-1$
,
${\lambda }\in \mathbb Z^{n}$
and
$0\leqslant m<p^{r}$
. Then, by (6.2), we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu94.png?pub-status=live)
By Lemma 3.6, we have . Hence, by restricting the map
$\dot {\xi }_{d}$
to
, we obtain a surjective algebra homomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu95.png?pub-status=live)
By Theorem 5.5, we obtain the following result.
Theorem 6.2. The kernel of the map is generated by the elements
$\bar 1_{\lambda }$
for
${\lambda }\not \in \Lambda (n,d)$
.
7 Borel subalgebras of the infinitesimal q-Schur algebra
In this section, we investigate Borel subalgebras of the infinitesimal q-Schur algebra . In what follows, we focus entirely on the quantum case as the corresponding results for the classical cases are essentially the same.
Let and
. These algebras are called Borel subalgebras of
. Furthermore, let
(resp.
) be the
-subalgebra of
generated by the elements
$E_{i}^{(m)}1_{\lambda }$
(resp.
$1_{\lambda } F_{i}^{(m)}$
) for
$1\leqslant i\leqslant n-1$
,
${\lambda }\in \mathbb Z^{n}$
and
$0\leqslant m<lp^{r-1}$
.
Let (resp.
) be the
-subalgebra of
generated by
$\mathtt {e}_i^{(m)}$
(resp.
$\mathtt {f}_i^{(m)}$
) and
$\mathtt {k}_\lambda $
for
$1 \leqslant i \leqslant n-1$
,
$0\leqslant m<lp^{r-1}$
and
$\lambda \in \Lambda (n,d)$
. These algebras are called Borel subalgebras of
.
Let (resp.
) be the
-subalgebra of
generated by
$\mathtt {e}_i^{(m)}$
(resp.
$\mathtt {f}_i^{(m)}$
) for
$1\leqslant i\leqslant n-1$
and
$0\leqslant m<lp^{r-1}$
.
Lemma 7.1. Each of the following set forms a -basis of
:
-
(1)
${\mathscr M}_{d,r}^+:=\{\mathtt {e}^{(A)} \mid A \in \Theta ^+(n)_r,\,\sigma (A)\leqslant d\}$ ;
-
(2)
${\mathscr P}_{d,r}^+:=\{A(\mathbf {0},d)\mid A\in \Theta ^+(n)_r,\,\sigma (A)\leqslant d\}$ .
A similar result holds for .
Proof. By [Reference Doty and Giaquinto8, Prop. 8.2], we have
$1=\sum _{{\lambda }\in \Lambda (n,d)}\mathtt {k}_{\lambda }$
. Hence, by [Reference Du and Parshall15, Lem. 4.10], we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqn16.png?pub-status=live)
for
$A\in \Theta ^+(n)_r$
. Furthermore, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqn17.png?pub-status=live)
for
$A\in \Theta ^+(n)_r$
, since
$1=\sum _{{\lambda }\in \Lambda (n,d)}[\operatorname {diag}({\lambda })]_{\varepsilon }$
. Therefore, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu96.png?pub-status=live)
for
$A\in \Theta ^+(n)_r$
with
$\sigma (A)>d$
. Hence, by Proposition 3.1 and 3.2, we conclude that
. Furthermore, by Proposition 3.7, the sets
${\mathscr M}_{d,r}^+$
and
${\mathscr P}_{d,r}^+$
are both linearly independent. Our assertion follows.
Lemma 7.2. Each of the following set forms a -basis of
:
-
(1)
${\mathscr M}_{d,r}^{\geqslant 0}:=\{{\mathtt e}^{(A)}\mathtt {k}_\lambda \mid A \in \Theta ^+(n)_r,\,{\lambda }\in \Lambda (n,d),\, \lambda \geqslant {\boldsymbol \sigma }(A)\}$ ;
-
(2)
${\mathscr L}_{d,r}^{\geqslant 0}:= \{[A+\operatorname {diag}({\lambda })]_{\varepsilon } \mid A \in \Theta ^+(n)_r,\, {\lambda }\in \Lambda (n,d-\sigma (A)) \}$ .
A similar result holds for .
Proof. From Lemma 7.1, (7.1) and (7.2), it follows that . Therefore, the result follows from Proposition 3.7.
Let be the quotient of
by
$I_{d,r}^{\geqslant 0}$
, where
$I_{d,r}^{\geqslant 0}$
is the two-sided ideal of
generated by the elements
$1-\sum _{\mu \in \Lambda (n,d)} K_{\mu }, K_{i} K_{\lambda }-\varepsilon ^{\lambda _{i}} K_{\lambda }$
and
$\big [{K_i;0 \atop t}\big ] K_{\lambda }-\big [{{\lambda }_i \atop t}\big ]_{\varepsilon } K_{\lambda }$
for
$1 \leqslant i \leqslant n$
,
$t \in \mathbb {N}$
and
$\lambda \in \Lambda (n,d)$
.
By restricting the map
$\zeta _{d,r}$
given in (4.2) to
, we obtain a surjective algebra homomorphism
. Since
$\zeta _{d,r}(I_{d,r}^{\geqslant 0})=0$
, the map
$\zeta _{d,r}$
induces an epimorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu97.png?pub-status=live)
Theorem 7.3. The map is an algebra isomorphism. In particular, the kernel of the map
is
$I_{d,r}^{\geqslant 0}$
. A similar result holds for
.
Proof. Using an argument similar to the proof of Proposition 4.9, we can show that the algebra is spanned as a
-module by the elements
$E^{(A)} K_{\lambda }+I_{d,r}^{\geqslant 0}$
for
$A \in \Theta ^+(n)_r$
,
$\lambda \in \Lambda (n,d)$
and
$\lambda \geqslant {\boldsymbol \sigma }(A)$
. Furthermore, by Lemma 7.2, the set
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu98.png?pub-status=live)
forms a -basis for
. Hence,
$\zeta _{d,r}' $
is an algebra isomorphism.
Let be the quotient of
by
$J_{d,r}^{\geqslant 0}$
, where
$J_{d,r}^{\geqslant 0}$
is the two-sided ideal of
generated by the elements
$1_{\lambda }$
for
$\lambda \not \in \Lambda (n,d)$
.
By restricting the map
$\dot {\zeta }_{d,r}$
given in (5.1) to
, we obtain a surjective algebra homomorphism
. Since
$\dot {\zeta }_{d,r}(J_{d,r}^{\geqslant 0})=0$
, the map
$\dot {\zeta }_{d,r}$
induces an epimorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu99.png?pub-status=live)
Theorem 7.4. The map is an algebra isomorphism. In particular, the kernel of the map
is
$J_{d,r}^{\geqslant 0}$
. A similar result holds for
.
Proof. Using an argument similar to the proof of Proposition 5.4, we can show that the algebra is spanned as a
-module by the elements
$E^{(A)}1_{\lambda }+J_{d,r}^{\geqslant 0}$
for
$A\in \Theta ^+(n)_r$
,
${\lambda } \in \Lambda (n,d)$
and
${\lambda } \geqslant {\boldsymbol \sigma }(A)$
. Furthermore, by Lemma 7.2, the set
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu100.png?pub-status=live)
forms a -basis of
. Therefore,
$\dot {\zeta }_{d,r}'$
is an algebra isomorphism.
8 Irreducible
-modules
In this section, we assume that is a field,
$p>0$
and
$l'=l$
is odd. Let
$X=\mathbb Z^{n}$
and
$X^+=\{{\lambda }\in X\mid {\lambda }_1\geqslant {\lambda }_{2}\geqslant \cdots \geqslant {\lambda }_n\}$
. For
${\lambda }\in X^+$
, let
$L({\lambda })$
be the simple integrable
-module of highest weight
${\lambda }$
. Let
$\text {Ind}^{U_2}_{U_1}(-)= H^0(U_2/U_1,-)$
be the induction functor for quantized enveloping algebras defined in [Reference Andersen, Polo and Wen1], [Reference Andersen, Polo and Wen2].
For
${\lambda }\in X$
, let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu101.png?pub-status=live)
Let
$P_r=\{{\lambda }\in \mathbb N^{n}\mid 0\leqslant {\lambda }_i-{\lambda }_{i+1}<lp^{r-1}\text { for }1\leqslant i\leqslant n \}$
, where
${\lambda }_{n+1}=0$
. The following result was given in [Reference Drupieski12, Ths. 3.4.1 & 3.4.3].
Theorem 8.1.
$(1)$
The set
$\{\widehat L_r({\lambda })\mid {\lambda }\in X\}$
form a complete set of pairwise nonisomorphic irreducible integrable
-modules.
$(2)$
For
${\lambda },\mu \in X$
, we have
$\widehat L_r({\lambda }+lp^{r-1}\mu )\cong \widehat L_r({\lambda })\otimes lp^{r-1}\mu $
.
$(3)$
For
${\lambda }\in P_r$
, we have
.
If M is a -module and
${\lambda }\in X$
let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu102.png?pub-status=live)
Let
${\Gamma }_r=P_r+lp^{r-1}\mathbb N^{n}$
and
${\Gamma }_r^d=\big \{{\lambda }\in {\Gamma }_r\big |\sum _{i=1}^n{\lambda }_i=d\big \}.$
For
${\lambda },\mu \in \mathbb Z^{n}$
with
$\sum _{1\leqslant i\leqslant n}{\lambda }_i=\sum _{1\leqslant i\leqslant n}\mu _i$
we write
${\lambda }\trianglelefteq \mu $
if
$\sum _{1\leqslant s\leqslant i}{\lambda }_s\leqslant \sum _{1\leqslant s\leqslant i}\mu _s$
for
$1\leqslant i\leqslant n$
.
Lemma 8.2. For
${\lambda }\in {\Gamma }_r^d$
we have
$\widehat L_r({\lambda })=\oplus _{\mu \in \Lambda (n,d)}\widehat L_r({\lambda })_\mu $
.
Proof. We write
${\lambda }=\alpha +lp^{r-1}\beta $
with
$\alpha \in P_r$
and
$\beta \in \mathbb N^{n}$
. By Theorem 8.1, we have
$\widehat L_r({\lambda })\cong L(\alpha )\otimes lp^{r-1}\beta .$
Hence, it suffices to show that
$L(\alpha )=\oplus _{\mu \in \Lambda (n,d')}L(\alpha )_\mu $
, where
$d'=\sum _{1\leqslant i\leqslant n}\alpha _i$
. If
$L(\alpha )_\mu \not =0$
for some
$\mu \in \mathbb Z^{n}$
with
$\sum _{1\leqslant i\leqslant n}\mu _i=d'$
. We claim that
$\mu \in \mathbb N^{n}$
. Otherwise, there exists some element w in the symmetric group
$\mathfrak {S}_n$
such that
$\gamma =(\mu _{w(1)},\ldots ,\mu _{w(n)})$
and
$\gamma _n<0$
. Since
$L(\alpha )_\mu \not =0$
, we have
$L(\alpha )_{\gamma }\not =0$
and hence
${\gamma }\unlhd \alpha $
. This implies that
$\sum _{1\leqslant i\leqslant n-1}\gamma _i\leqslant \sum _{1\leqslant i\leqslant n-1}\alpha _i\leqslant d'$
. Hence, since
${\gamma }_n<0$
, we have
$\sum _{1\leqslant i\leqslant n}\gamma _i<d'$
. This is a contradiction. The assertion follows.
The irreducible modules for infinitesimal q-Schur algebras were classified in [Reference Cox4, Sec. 5.1]. We now use Theorem 4.10 to give a classification of irreducible -modules.
Theorem 8.3. The set
$\{\widehat L_r({\lambda })\mid {\lambda }\in {\Gamma }_r^d\}$
forms a completed set of pairwise nonisomorphic irreducible
-modules.
Proof. Let
${\lambda }\in {\Gamma }_r^d$
. By Lemma 8.2, we have
$\widehat L_r({\lambda })=\oplus _{\mu \in \Lambda (n,d)}\widehat L_r({\lambda })_\mu $
. Let
$w_\mu $
be a nonzero vector in
$\widehat L_r({\lambda })_\mu $
for some
$\mu \in \Lambda (n,d)$
. Since
$\mu \in \Lambda (n,d)$
, we have
$K_\alpha w_\mu =\big [{\mu \atop \alpha }\big ]_{\varepsilon } w_\mu =\delta _{\alpha ,\mu }w_\mu $
for
$\alpha \in \Lambda (n,d)$
. It follows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250110152721658-0100:S0027763024000291:S0027763024000291_eqnu103.png?pub-status=live)
for
$\alpha \in \Lambda (n,d)$
,
$1\leqslant i\leqslant n$
and
$t\in \mathbb N$
. Thus, by Theorem 4.10, we conclude that
$\widehat L_r({\lambda })$
can be regarded as a
-module.
On the other hand, let L be an irreducible -module. By Theorem 8.1, we conclude that
$L\cong \widehat L_r(\nu +lp^{r-1}\delta )\cong L(\nu )\otimes lp^{r-1}\delta $
for some
$\nu \in P_r$
and
$\delta \in \mathbb Z^{n}$
. Hence, since L is a
-module, we have
$(\nu _{w(1)},\nu _{w(2)},\ldots ,\nu _{w(n)})+ lp^{r-1}\delta \in \Lambda (n,d)$
for any w in the symmetric group
${\mathfrak S}_n$
. It follows that
$\nu _n+lp^{r-1}\delta _j\geqslant 0$
for
$1\leqslant j\leqslant n$
. Furthermore, since
$\nu \in P_r$
, we have
$0\leqslant \nu _n<lp^{r-1}$
. Therefore, we have
$\delta _j\geqslant 0$
for
$1\leqslant j\leqslant n$
. Consequently, we have
$\nu +lp^{r-1}\delta \in {\Gamma }_r^d$
. The proof is completed.
Acknowledgement
Supported by the National Natural Science Foundation of China (12371032, 12431002).