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PRESENTING INFINITESIMAL ¢-SCHUR ALGEBRAS

QIANG FU® anpD CHENGQUAN SUN

Abstract. Let X be a commutative ring containing a primitive I’th root ¢
of 1. The infinitesimal g-Schur algebras Sx(n,d), over X form an ascending
chain of subalgebras of the g¢-Schur algebra Sx(n,d), which are useful in
studying representations of the Frobenius kernel of the associated quantum
linear group. Let Ux(gl,) be the quantized enveloping algebra of gl,, over
K. There is a natural surjective algebra homomorphism (4 from Ux(gl,) to
Sx(n,d). The map (4 restricts to a surjective algebra homomorphism (g, from
Ux(G,T) to Sx(n,d),, where Ux(G,T) is a certain Hopf subalgebra of Ux(gl,,),
which is closely related to Frobenius-Lusztig kernels of Ux(gl,,). We give the
extra defining relations needed to define the infinitesimal ¢-Schur algebra
Sx(n,d), as a quotient of Ux(G,T). The map (4, induces a surjective algebra
homomorphism (g, : Ux(G,T) — Sx(n,d),, where Ux(G,T) is the modified
quantum algebra associated with Ux(G,T). We also give a generating set for
the kernel of {4,,.. These results can be used to give a classification of irreducible
Sx(n,d)-modules over a field of characteristic p.

§81. Introduction

Let U(gl,,) be the quantized enveloping algebra of gl, over Q(v) (v an indeterminate)
with Chevalley type generators F;, F;, and Kfl for 1<i<n—1and 1< j<n. Beilinson,
Lusztig, and MacPherson (BLM) [3] constructed a realization for the quantum group
U(gl,,) via a geometric setting of ¢-Schur algebras. A presentation of the g-Schur algebra
S(n,d) was given by Doty—Giaquinto [8]. Du—Parshall [15] provided an approach to the sl,,
type presentation of the g-Schur algebra S(n,d) using the Beilinson—Lusztig—MacPherson’s
construction of U(gl,). The problem of describing the defining relations of a generalized
g-Schur algebra as a quotient of a quantized enveloping algebra was investigated by Doty [7],
Doty—-Giaquinto—Sullivan [9], [10].

Infinitesimal Schur algebras are certain important subalgebras of Schur algebras (cf. [11]).
The polynomial representations of the group scheme G, T of degree d are equivalent to the
representation theory of the infinitesimal Schur algebras S (n,d),. Here, G, is the r-th
Frobenius kernel of the general linear group G over X, and T is the subscheme of G
arising from diagonal elements. A theory of the infinitesimal ¢-Schur algebra was studied
by Cox [4], [5].

Let Z = Z[v,v71] and X be a commutative ring of characteristic p. Let ¢ € X be a
primitive {"th root of 1. We will regard X as a Z-module by specializing v to €. Let Ug(gl,,) =
Uz(gl,) ®z K, where Uz (gl,,) is the Z-subalgebra of U(gl,,) generated by the elements EZ-(m),
Fi(m)7 K;El, and [Kg;o] for 1<i<n—1,1<j<nand m,teN. For r > 1, let Ux(G,) be
the K -subalgebra of Ug(gl,,) generated by the elements Ei(m), Fi(m), K;Fl, and [Kfo] for
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2 Q. FU AND C. SUN

1<i<n—1,1<j<n, teNand 0<m,t <lp"! where | =1"if I’ is odd, and [ =1"/2
otherwise. Furthermore, let Ux(G,T) = Ux(Gr)Ug(gl,,), where UL(gl,,) is the zero part of
Ug(gl,,). Then, we have

Ux(GiT) € - CUx(GrT) C Ux(GraT) S -+ € Uxc(gl,),
and Ug(gl,,) =lim, Ux(G,T). In the case where I’ =1 is an odd number, let
Ux(G,) = Ux(G,)/(K! = 1]1<i<n), Ux(G,T) =Ux(G,T)/{K! ~1|1<i<n).

The algebra U %(G1) is the Lusztig’s small quantum group, and ﬁK(GT) is called Frobenius—
Lusztig kernels of Ug(gl,,) (cf. [12], [22]). The representation theory of Ux(G,.) and Ug (G, T)
was studied in [12].

Jimbo [20] proved that there is a natural surjective algebra homomorphism (; from
U(gl,,) to the g-Schur algebra S(n,d). The map ¢, : U(gl,,) — S(n,d) induces a surjective
algebra homomorphism

Car: Ux(G,T) — Sx(n,d),,

where Sx(n,d), is the infinitesimal g-Schur algebra over X (cf. [18, Prop. 6.1]). Note that
Sx(n,d), is a quotient algebra of Ux(G,T) in the case where I’ =1 is odd. We prove in
Theorem 4.10 that ker(q, is generated by the elements 1 — Z#e\(md) K,, K;K\ — MKy,

[K;;O]KA — [);"]EK,\ for 1<i<n,teN and A € A(n,d), where A(n,d) is the set of all
compositions of d into n parts.
Let U(gl,,) be the modified quantum group with generators F;1y, 1, F;, and 1) for 1 <i <

n—1and A € Z". The map (4: U(gl,,) = S(n,d) induces a surjective algebra homomorphism
¢a: U(gl,) = S(n,d).

Let Ugx(gl,) = Uz(gl,) ®z K, where Uz(gl,,) is the Z-subalgebra of U(gl,,) generated by
the elements EZ.(m)l,\, 1,\Fi(m) for1<i<n—1, meNand X € Z". Let UK(GTT) be the
K-subalgebra of Ux(g[n) generated by t‘he e_lements EZ-(m)l » and 1 ,\Fi(m) for1<i<n—1,
A€ Z"™ and 0 <m < Ip"~t. The map (4 : U(gl,) — S(n,d) induces a surjective algebra
homomorphism

éd,’r‘ : Uﬂ((GrT) — Sg((n,d),,,

We prove in Theorem 5.5 that ker édﬂn is generated by the elements 1, for A & A(n,d).

The organization of the paper is as follows. We recall the BLM construction of
the quantum group U(gl,,) in Section 2. In Section 3, we introduce the infinitesimal
¢-Schur algebra Sx(n,d),. A generating set for the kernel of the epimorphism (g, :
Ux(G,T) — Sx(n,d), is obtained in Section 4. In Section 5, we investigate the kernel of
the epimorphism (g, : Ux(G,T) — Sx(n,d),. In Section 6, we discuss the classical case. In
Section 7, we investigate Borel subalgebras of the infinitesimal g-Schur algebra Sx(n,d),.
As an application, we give a classification of irreducible Sg(n,d),-modules over a field of
characteristic p in Section 8.
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PRESENTING INFINITESIMAL ¢-SCHUR ALGEBRAS 3

Throughout this paper, let Z = Z[v,v™!] where v is an indeterminate. For i € Z let
[i] = v=v . For integers N,¢ with ¢ > 0, let

o [N] NN 1) [N — 4 1]

€z,

where [t]' = [1][2] - [t].
Let K be a commutative ring containing a primitive I’th root € of 1 with I’ > 1. Let [ > 1
be defined by

) if I’ is odd,
B I'/2 if I’ is even.

Let p be the characteristic of &. The commutative ring K will be viewed as a Z-module by
specializing v to €. For c € Z and t € N, we will denote the image of [ﬂ € Z in X by [i]a

For p € Z™ and A € N™ let [lﬂez [Iii]a [QLZL

§2. The BLM construction of U(gl,,)

Following [20], we define the quantized enveloping algebra U(gl,,) of gl,, to be the Q(v)
algebra with generators

Ei, F; (1<i<n-1), K;, K;' (1<j<n),

and relations
(a) KK, = K;K;, KiK' =1;
(b) K;Ej=v szHE K
(c) K F; =vdui+1i— ‘5HFKZ,
(d) E;E; = E;E;, FiF; = Fthen|z—]>1
(e) BiF;— FyE; = 5,J%, where K; = KK\
(f) E2E (v—i—v_l)EEE—i—E E2 =0 when |i—j| = 1;
(2) FEF (v+v ) F,F;F;+ F; FE—O when |i—j|=1.
Following [22], let Uz(gl,) be the Lusztig integral form of U(gl,) generated by
E(m) F(m) KjEl and [KJ’C](I <i<n—1,1<j<n,m,teNceZ), where

t c—s+1 —1,,—c+s—1
Em IR K. Kt K-y
El(m) = [ l]" FZ( ): [ Z:I' and |: ;’C:| — | | J J ,
ml ml vS—ov—S

s=1

with [m]' = [1][2] - [m] and [i] = v'=v ' The following result is given by Lusztig [21].

LEMMA 2.1. The following formulas hold in Uz(gl,,) :

(1) El(M) [K%-;c] _ [Kj;c+m(_(t§i’j+6i+l’j)]Ei(m);

(2) Fi(m)[Kg;c] _ [Kj;c—m(—fi,j-ﬁ-éiﬂ,j)]Fi(m);
(3) For k,l €N, we have

E.Z(k)Fi(l) _ Z Fi(l—t) [KiQQtt— k—l} Ei(k_t)’

o<t<k
t<1

f{-ivcfs+l_l?flvfc+s—1
7

where [X7¢] =T'_,

VS —p—S
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4 Q. FU AND C. SUN

Let II(n) = {a; | 1 <i<n—1}, where o; = €; — €;41 with e; = (0,...,0,1,0---,0) € Z™.

We have the following direct sum decomposition:

UGel,)= @ U@l),.

veZII(n)

where U(gl,,), is defined by the conditions U(gl,),, U(gl,),,» € U(gl,), 1, KfEl €
U(gl,)o, £i € U(gl,),,, Fi € U(gl,)_,, forall Vo' eZlln), 1<i<n—land 1<j<n.
Following [23, 23.1], we introduce the modified quantum group U(gl, ) associated with

U(gl,,) as follows. Let

67

Ugl,)= €P »\U(al,),,

A, WEL™

where

\UaL), = UaL,)/ | 32 (93— Ut + 3 U, (69— 9) |
jezr jezn

and A-j =3, ;¢ Aiji- Let my 0 U(gl,) — 2U(gl,,),, be the canonical projection.
We define the product in U(gl,) as follows. For X, /', N, i/ € Z"™ with N —p/, X' — " €
Z1I(n) and any t € U(gl,)y, ., s € U(gl,) i, define

TN ! (tS)’ if MI = )\/I,

0 otherwise.

7'[')\/7“/ (t)ﬂ')\//’MH (S) = {

Then U(gl,) becomes an associative Q(v)-algebra with the above product. Moreover, the
algebra U(gl,,) is naturally a U(gl,,)-bimodule defined by t'mxs x (8)t" = s s iy (' 5t")
for t' € U(gl,,),,,s € U(gl,),t" € U(gl,), ., and ', \" € Z". Let Uz(gl,,) be the Z-subalgebra
of U(gl,,) generated by the elements Ei(m)l,\ and 1>\Fi(m) for 1 <i<n-—1and m €N, where
1)\ = 7T)\’/\<1).

We now follow [6] to recall the definition of ¢-Schur algebras as follows. The Hecke
algebra H z(d) associated with &, is the Z-algebra generated by 7; (1 <i<d—1), with
the following relations:

(Ti+1)(T;—q) =0, T T =Ty T, T, TT; =T5T; (i —j| > 1).

where ¢ = v Let H(d) = Hz(d) @z Q(v). If w = s;,8,+-5;, is reduced let T, =
T;,T;,---T;,, . Then the set {T\, | w € &4} forms a Z-basis for Hz(d). Let A(n,d) ={\ €
N"[o(A) =d}, where o(A) =3, <;c, Ai- For A€ A(n,d), let 2y =3
the Young subgroup of &,4. The endomorphism algebras

wes, Lw, where &) is

Sz(n,d) ::Endﬂz(d)< P a:,\Hg(d)>, S(n,d) ::Endﬂ(d)< b :U;}L(d)),

AEA(n,d) NEA(n,d)

are called g-Schur algebras over Z and over Q(v), respectively.

We now recall the BLM construction of U(gl,). Let ©(n) be the set of all n xn
matrices over Z with all off diagonal entries in N. Let O(n) be the set of all n xn
matrices over N. Let O(n,d) be the set of all n x n matrices A over N such that o(A) =d,
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where 0(A) =37, ¢, i<, @i For A€ O(n), let ro(A) = (D2ja1,55--+52_;an,;) and co(A) =
(D25 @ity 5D Qin)-

The ¢-Schur algebra Sz(n,d) was reconstructed using the geometry of pairs of n-step
filtrations on a d-dimensional vector space in [3]. In particular, a normalized Z-basis
{[A]} aco(n,a) for Sz(n,d) was constructed. Using the stabilization property of multi-
plication for g¢-Schur algebra, an important Z-algebra Kz(n) (without 1), with basis
{[A]} 4c8(n)» Was constructed in [1, §4]. Let K(n) = Kz(n) ®z Q(v). Following [3, 5.1], we

define K(n) to be the vector space of all formal (possibly infinite) Q(v)-linear combinations
ZAeé(n) BalA] satisfying the following property: for any x € Z", the sets {A € ©(n) | fa #
0,ro(A) =x} and {A € O(n) | Ba # 0,co(A) = x} are finite. The product of two elements
2 acd(n) BalAl, XopesmyvB[Bl in K(n) is defined to be > a.pBavs[A]-[B], where [A]-[B]
is the product in Kz(n). Then K(n) is an associative algebra.

Let ©%(n) be the set of all A € ©(n) such that all diagonal entries are zero. For A € ©F(n)
and j € Z", let

AGd)= Y oM[A+diag(\)] € S(n,d),
AEA(n,d—o(A))

A() =Y vMI[A+diag(\)] € K(n),
AEZ™

where \-j= Zlgign Aiji-

We shall denote by V(n) the subspace of K(n) spanned by the elements A(j) for A €
©*(n) and j € Z". For 1 <4,j <n, let E; ; € ©(n) be the matrix whose (4, j)-entry is 1 and
the other entries are 0. The following result was given by Beilinson—Lusztig—-MacPherson [3].

THEOREM 2.2. (1) V(n) is a subalgebra of K(n) and there is an algebra isomorphism
U(gl,,) = V(n) satisfying

Ep > Eppg1(0), K{*KJ?---KJ" 5 0(j), Fy+> Epg14(0).
(2) There is an algebra epimorphism (4 : U(gl,) — S(n,d) satisfying
En— Eppy1(0,d), KK - Kin 5 0(j,d), Fy — Eni1.4(0,d).
We shall identify U(gl,,) with V(n). By [14] we have the following result (cf. [17]).
LEMMA 2.3. (1) There is an algebra isomorphism o : U(gl,,) — K(n) satisfying
(1) v+ [ding (V)] ulding (1),

for all w € U(gl,) and \,p € Z™. Furthermore, we have p(Uz(gl,,)) = Kz(n).
(2) There is a surjective algebra homomorphism Cg: K(n) — 8(n,d) such that

[A], if A€ ©O(n,d);

0, otherwise.

We shall identify Uz(gl,,) with Kz (n).
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§3. The infinitesimal g-Schur algebra Sx(n,d),

Let Ug(gl,,) = Uz(gl,,) ®z K. We shall denote the images of EZ-(m),Fi(m), etc. in Ug(gl,,)
by the same letters. Let Uy (gl,,) (resp. Uy (gl,,)) be the subalgebra of Ux(gl,,) generated by

the elements Ei(m) (resp. Fi(m)) for 1 <i<n—1and meN. Let U3 (gl,) be the subalgebra
of Ugx(gl,,) generated by the elements K;El and [Kfo] for 1 <j<n and t € N. Then we
have Uy (gl,,) = Uy (gl,,) ® U2 (gl,,) ® Uy (g1,,). The algebras U, (gl,,) and Ux (gl,,) are both
N-graded in terms of the degrees of monomials in the Ei(m) and Fl-(m).

For r > 1, let Ux(G,) be the K-subalgebra of Ux(gl,,) generated by the elements Ei(m),
Fi(m), Kfl, and [K-I{;O] for1<i<n—1,1<j<n,teNand0<m,t<Ip ! Furthermore,
let

Ux(G,T) = UK(GT)U%(Q[n)-

Clearly, the algebra Ux(G,T) is a Hopf subalgebra of Ux(gl,). Let Uf(G,T) (resp.

Ui (G.T)) be the subalgebra of Ux(G,T') generated by the elements Ei(m) (resp. Fi(m)) for

1<i<n—1and 0<m<Ip"~'. Then we have Ux (G, T) 2 UL (G, T)@U%(gl,) @ Ux (G, T).
Let Ot (n) ={A€0O(n)|a;;=0,Vi>j} and O~ (n) ={A€0O(n)|a;; =0,Vi < j}. For

A€ O(n), write A= AT +diag(\)+ A~ with AT € ©F(n), A~ € ©(n) and A € Z". Let

0% (n), ={AcO0*(n)|a;; <lp" ' Vi#j}.
Let
0t (n), =0%(n),NnO0%(n), O (n), =0%(n),NO (n). (3.1)
For A € ©%(n),, let
EWD = M, M, 1My €U (G,T) and FW) = M,Mj--- M, € Ug (G, T),

where

Mj _ Mj (A+) _ E;ajfl,_j)(E;Cijz—2,,j)E‘§0;jl—2,j)) o (E§a1,j)E§a1,j) . E§ili.j))’
and

M) = MJ(A”) = (B o By B0y (B2 B2 ) By,
For A € ©*(n) let

deg(A) = Y |j—ilai;.

1<i,j<n

Then we have deg(E(4")) = deg(A™) and deg(F“ ) = deg(A~) for A€ ©%(n). For A€ N"
and j € Z" let

— ? J Ji
K, = |I [ A },K = Il K.
1<i<n 1<i<n
The following result is given in [18, Lem. 6.3].

PROPOSITION 3.1. (1) The set {EWDKIK\FA) | A € ©%(n),, 6\ € N*,§; €
{0,1},Vi} forms a K-basis for Ux(G,T).
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(2) The set {E(A+) | A€ ©F(n),} (resp. {F*) | Ae©(n),}) forms a K-basis for
U (G, T) (resp. U (G, T))-
For A € (:)(n) let
0ij(A)= Dsistzg Usit ?f Z <]:
ZS}i;tgj Qs t if 1> 7.

Following [3], for A, B € O(n), define B < A if and only if 0i,;(B) < 0;,;(A) for all i # j.
Put B<Aif B A and 0, ,(B) <0, ,;(A) for some i # j.

PROPOSITION 3.2. (1) The set {AT(0)K°K,A=(0) | A € ©*(n),,0,A € N",§; €
{0,1},Vi} forms a -basis for Ugx(G,T).

(2) The set {A(0) | A€ ©T(n).} (resp. {A(0) | A€ O (n),}) forms a K-basis for
Ui (G.T) (resp. Ug (G,T)).

Proof. By [3, 4.6(c)] for A € ©F(n),, we have
EAD = AT (0)+ f, FU) =A7(0)+g, (3.2)

where f is a K-linear combination of B(0) for B € ©T(n) with B < A" and g is a K-linear
combination of C(0) for C' € ©~(n) with C' < A~. By [18, Lem. 6.3] we know that f must a
K-linear combination of B(0) for B € ©"(n), with B < A" and g is a K-linear combination
of C(0) for C € © (n), with C < A~. Now the assertion follows from Proposition 3.1. [

Let U?((Q[n) = Uz(g[n) ®z K =Kz(n)®z XK. We shall denote the images of Ei(m)l,\,
1,\Fi(m), EAWI1,, 1,FA7) in Ug(gl,) by the same letters. For A € O(n) let

[A]. = [A]®1 € Ux(gl,,).

Let U (G, T) be the K-subalgebra of Ug(gl,,) generated by the elements Ei(m) 1) and 1>\Fi(m)
for 1<i<7j—1, ANEZ" and 0 < m < Ip'~1L.
For A€ ©(n) and 1 <i < n, let

o(A) = (01(A),02(A4),...,0n(4)),
where 0i(A) = a;; + ¢ ;(aij +aji). Let
O(n), ={Ae€O(n)|a;; <lp" ', Vi+j}.
We have the following monomial, BLM and PBW bases of Uy (G,T).
PRrROPOSITION 3.3. Fach of the following sets forms a K-basis of UK(GTT) :

(1) My = {EA 1,0 FA) | AcO(n), };
(2) & ={[Al:|A€0O(n)}; _
(3) Z ={AT(0)15a)A=(0)| A€ O(n),}.
Proof.  Let Ux(G,T)" be the K-submodule of Ug(gl,,) spanned by the elements [A]. for
A€O(n),. By [3,4.6(a) for ISh<n—1,0<m<Ip"1, AeO(n),, we have

m utty
Ei(z )[A]SZ Z 6B(t) H |:ah, + :| [A—i— Z tu(Eh,u_Eh+1,u)]E7

t
tEA(n,m) 1<u<n u 1Saen
apy1,uZtu, VuFh+l
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where B(t) =3 _,.,(anj —ant1,)tu+ 2, oo tutw . E A+ tu(Epu— Epyiu) € O(n), for
some t € A(n,m), then we have aj, , +t,, > Ip" ! for some u # h. Since A € O(n),, t € A(n,m)
and m < lp"~!, we have ay,, <Ip"~! and t, < Ip"~!. Hence, by [18, Cor. 3.4] we have

[ah’;ﬁt“]g = 0. Therefore, we have

E\"Ux(G,T) C Ux(G,T).
Similarly, we have
" U(GT)' € Ux(G,T),
for 1<h<n—1and 0<m <Ip"~!. Consequently, we have
U (G, T) C U (G, T)Ug (G, T) C Ux (G, T). (3.3)
Furthermore, by [3, 4.6(c)] for A € O(n),.,
EADy FAT) = (Al + f, (3.4)

where f is a K-linear combination of [B]. for B € (E)(n) with B < A. By (3.3), we see that
f must be a K-linear combination of [B]. for B € O(n), with B < A. It follows from (3.2)
that

AT (0)15(4)A7(0) = [Al: +9, (3.5)

where g is a K-linear combination of [B]. for B € (:)(n)T with B < A. Therefore, each of the
sets M, £, P, forms a K-basis of Uy (G, T)" and

Ux (G, T) CUx(G,T).
Hence, by (3.3) we have Uy (G, T) = Ux(G,T)'. The proof is completed. 0

Let Sx(n,d) =8z(n,d) ®z K. By [13] we have (4(Uz(gl,,)) = Sz(n,d). Therefore, the map
Ca:U(gl,,) = S(n,d) given in Theorem 2.2 restricts to a surjective algebra homomorphism

Cd : Ug(g[n) — Sz(n,d) (36)

A generating set for the kernel of (4 : Uz(gl,,) = Sz(n,d) was given in [19]. The map (4
induces, upon tensoring with X, a surjective algebra homomorphism

Ca: Ux(gl,) = Sx(n,d). (3.7)

Let
e; = Ca(E:), £, = Ca(F), ky = Ca(Kj),
forI<i<n—1land 1<j<n. For A€ O(n) and A € N", let
e = ¢ (BUT), £47) = u(FU)), k) = Cu(K).

For A € ©(n,d), let

[Al: =[A]®1 € Sk(n,d).
By [15, Cor. 5.3], we have

ky = [diag(A)]e, (3.8)

for A € A(n,d).
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Let Sk (n,d), be the infinitesimal ¢g-Schur algebra introduced in [4]. The algebra S (n,d),

is a K-subalgebra of the ¢-Schur algebra Sx(n,d). Let
O(n,d), = {A€O(n,d) |a;; <Ilp"~' for all i # j}.

According to [4, 5.3.1] and the proof of [16, Th. 5.5], we have the following result.

LEMMA 3.4. The set £y, :={[A].| A€ O(n,d),} forms a K-basis of Sx(n,d),.

By [18, Prop. 6.4], we have the following result.

LEMMA 3.5. For d e N we have (4(Ux(G,T)) = Sx(n,d),.

The map ¢q: U(gl,) = K(n) — S(n,d) given in Lemma 2.3 restricts to a surjective algebra

homomorphism

{a: Uz(gl,) = Sz(n,d); (3.9)
tensoring with X, we obtain a surjective algebra homomorphism

Ca: Ux(al,) — Sx(n,d). (3.10)

Combining Lemma 2.3 with Proposition 3.3, we obtain the following result.
LEMMA 3.6. For d e N we have (g(Ug(GT)) = Sxc(n, d),..

For \,p € Z™, write A < pp < \; < p; for 1 < i < n. We have the following monomial and
PBW bases of Sx(n,d),.

PROPOSITION 3.7. FEach of the following set forms a K-basis of Sx(n,d),:

(1) Mgy ={e@Dr\ @A) | A€ OF(n),, A€ A(n,d), A > o (A)};
(2) Py, ={AT(0,d)kxA=(0,d) | A€ OF(n),, A€ A(n,d), A > o (A)}.

Proof. By Lemma 2.3, (3.4), (3.5), and (3.8), for A € ©%(n),, A € A(n,d) with A > o (A),

we have
ekt M) = (EUWD L FA)) = [A+ A —a(A). + f,
AT(0,d)k A7 (0,d) = [A+ A —0o(A)]- +g,

where f,g € span,{[Blc | B € O(n,d),, B < A}. Now the assertion follows from
Lemma 3.4. 0

§4. The algebra Tx(n,d),
For d € N let
Tx(n,d), = Ux(G,T)/La,r,

where Iy, is the two-sided ideal of Ux (G, T) generated by the elements 1 -3 1, o) Ky,
K;Ky—e* K\ and [K;';O]KA— [);iLKA forl<i<n,teNand A€ A(n,d). For 1 <i<n—1,
teNand 0 <m <Ip"! let

o™ = B 4 Iy, £ = F™ 4 I,

Furthermore, for 1 <j<n,c€Z,t€ N and X € N” let

ki;c K;;c
kj:Kj+Id,T>|:Jt ]:[ ; :|+Id,r7k)\:K/\+Id,r-
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We will prove in Theorem 4.10 that the algebra Tg(n,d), is isomorphic to the infinitesimal
g-Schur algebra Sg(n,d),.

LEMMA 4.1. (1) For A\,pu € A(n,d) we have kyk,, =0y k.
(2) Assume v € N" is such that o(v) > d. Then we have k,, = 0.

Proof. For 1 <i<n andtéeN, we have [k’;o]ku = [‘;"]Ek#. It follows that

kyk, = m k,.

[ ] # 0, then we have p > A. This implies that u = X since A\, u € A(n,d). Therefore, we
have kyk, = 6 k). Furthermore, since 1 = Z’YEA(n,d) k, and o(v) > d, we have

| R S

A(n,d A(n,d €A(n,d)
YEA(n,d) yEA(n,d) ooty od

The proof is completed. O

For a,b € Z, we have

R~ O R

0kt

LEMMA 4.2. Let A € A(n,d). Then we have [k;;c]k,\:[ ‘| kx for 1<i<n, ceZ,
teN.

Proof. Assume ¢ > 0. By [22, 2.3 (g9), (g10)], we have
|:kl,:|:0:| Z EC(t J)|: . :| k;Fi |:ki;0.:|‘
t—J
0yt €

Hence, by (4.1), we have

|:ku:t0:| Z é_c(t DFire |::|: :| |: )\z :| k)\ _ |:Az:]:C:| k)\.
o< <t J = ‘7 t €
SYA

The proof is completed. O
By the definition of Tx(n,d),, we have the following result.

LEMMA 4.3. There is an algebra anti-automorphism 14 on Tx(n,d), such that

m m m m k;;0 k;;0
Td<ez(' )):fi( )7 Td(fi( )):ez( )7 Td(kj):kj7 Td(|: ]t ]):[ ]t ]’

for1<i<n—1,1<j<n, teNand0<m<Ilp 1.

LEMMA 4.4. Let \,p € A(n,d) and a € N.
(1) If \it1 < a for some 1 <i<n—1, then we have e( )k = k,\fi(a) =0
(2) If pj < a for some 1< j<n—1, then we have kueg- @) — f](a)ku =0.
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Proof. By Lemma 2.1 and 4.2, we have

a a k570 ki;a “
eg )k)\:ez( ) H [ ] { }k)‘ =Krtae,~Aijiei41© E )k>"

s#iit+1 As [ LAita
o =k, I |:k5;0:| [ j+1;0 ] (@ _ 1 ol
;" = Ku€; "Kitaejri1—pje;-
i Lo |l ta e
Hence, by Lemma 4.1 we have kKxiae;—x;41e;00 =0 and Kxyae, —pje; =0, since A\iy1 <a,
pj < a and A\, pu € A(n,d). Therefore we have e( )k>\ = kue(a) = 0. Consequently, we have
k£ = 74(e!”ky) = 0 and £\ k,, = 4(k,e”) = 0. 0

LEMMA 4.5. Let A€ A(n,d) and a € N. If \j11 > a for some 1 <i<n—1, then we have
ega)k,\ = k>\+aaie§a) and k,\fi(a) = fi(a)k,\eri, where o; = €; — €;41.

Proof. By Lemma 2.1 and 4.2, we have
0@k, — 11 {kﬁo] [ki;_a} |:ki+1;a]e(a)
' i1 Aj Ai Ait1 '

L P

neA(n,d) j#i,i+1 AH_I
Hence, by Lemma 4.4, we have

a —aqy a —aq; a a
eg )k)\: Z |:M A :| le z( )= Z |:M A\ :| kﬂez(‘ ):kk+aaieg )

HEA(>n,d) nEA(n,d), p—ac; 2\
wiza

Therefore, we have k,\f( @ — = T14(e; (a )kA) = 74(Kxrtaa, € (a)) fi(a)k,\eri. U

For simplicity, we set ky =0 if A € N” with o(\) = d, where o(\) = Zlgign Ai. Then, by
Lemma 4.4 and 4.5, we have the following result.

LEMMA 4.6. For X\ € Z™ with o(\) =d and a € N we have ez(.a)kA K)taa,€; e and
(a) _ pla)
k£ = £k tqa,-

For A € ©%(n) let e(A") = p(aM) + I, and £A) = FAD 41,

LEMMA 4.7. Let A€ ©%(n), and A € Z" with o()\) = d. Then, we have ek, =
+ — —
Ky co(a+)troany€ ) and knf A ) = FA DKy L ooaopoan)-

Proof. By Lemma 4.6, we have ek, = ke ") and kafA7) = fA )k, where

=+ Z Z a, Z s = A+ Z Z ar.j(exr —e;) = A—co(AT) +ro(AT),

2<j<n 1<k<y k<s<j 2 <n 1<k<j
and
v=XA+ Z Z aj.k Z g = A+ Z Z ajr(er—e;) =A+co(A”)—ro(A7).
2<jSn1<k<y k<s<j 2<jSn1<k<g
The proof is completed. [
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Recall the sets ©F(n), and ©~(n), defined in (3.1).
LEMMA 4.8. Let A € A(n,d).

(1) If Ac ©F(n), and \; < 0;(A) for some i, then we have ek, = 0.
(2) If A€ ©(n), and \; < a;i(A) for some i, then we have kyf(4) = 0.
Proof. If A€ ©%(n), and \; < 0;(A) for some i, then by Lemma 4.6 we have
eky=m,m,_;---moky =m,m,_;---m; 1 k,m;m;_;---my,
(a.il—l,j)(e(‘aj—z,j)

where m; = e e(a_il—z,,j)> o (egal,j)e;al,j) L eéfilij)) and

j— J—2 Jj—
M:)\—|— E E Q. j E Oés:)\+ E g ak,j(ek_ej)'
2 i 1<k<g k<s<j 2 i 1<k<g

Since p; = \; — 0i(A) < 0 we have k,, = 0. Hence, we have ek, = 0. Assume now that
A€ O (n), and \; < 0;(A) for some i. Then, we have kyf() = r4(e('4k,) = 0. The proof
is completed. O

For A € ©%(n), and A € A(n,d), let
mAN — AN, £(A7)
PROPOSITION 4.9. The set My, = {mAN|A € ©F(n),, A € A(n,d), A > o(A)} is a
spanning set for Tg(n,d),.

Proof. By the definition of I, we have k; = ZAGA(n,d) etiky and ky = Z,uEA(n,d) [‘ﬂ ky
for A € A(n,d) and 1 <4 < n. Hence, by Proposition 3.1, we see that the algebra Tx(n,d), is
spanned by the elements (4 )k, f(A7) for A € ©%(n), and A € A(n,d). Therefore, to prove
the proposition, we have to show that if A; < 0;(A) for some i, then m(4) lies in the span
of Md,r-

We argue by induction on deg(A). The result follows from Lemma 4.4 in the cases where
deg(A) = 1. Assume now that deg(A) > 1, and suppose \; < 0;(A) for some 1 < i < n. For
2<j<nlet

(ajfl,j)(e§‘ij£2,j)e§¢l_jf2,j)) . (egal’j)eg“’j) . eg-a_lij)),

Then, we have e(A") = m,m,_;---ms and f4 ) = m5/ms---m) . Let A; be the submatrix
of A consisting of the first i rows and columns, and write eA) = xle(A:r),f(A_) = f(4)x].
Then,

m@Y = x; Ak, FADx!

where x; = m,m,,_;---m;; and X} =mj, ;mj_ ,---m;. By Lemma 4.8, we may assume
that \; = 0;(A}) = 0;(A1). Furthermore, by Lemma 4.7, we have

M) = x ky eADEAD
where N = X —co(A]) +ro(4;"). By Lemma 2.1,
eADPAT) _ p(AD) (A1) 4 ¢
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where f is a XK-linear combination of x?hjx§ with h; € spang{ky|A € A(n,d)} and
deg(x$) +deg(x§) < deg(A;). Here, x5 (resp. xg) denotes a monomial in the ega) (resp.
fi(a)). Thus, deg(x;) + deg(x$) + deg(xf) + deg(x}) < deg(A). Since ; < 04(A), we have
M=\ —0i(A) < 0i(A) — 0i(AF) = 04 (A]). Tt follows from Lemma 4.7 that ky f(4i) = 0.
Hence, we have

mAN = x ky fx).

Furthermore, by Proposition 3.1, we see that each x;x§ is a K-linear combination of e(P)
with B € ©%(n),, deg(B) = deg(x,1x5) and each ng’1 is a %-linear combination of f(¢)
with C € ©7 (n),, deg(C) = deg(xgx’l). Therefore, by Lemma 4.7 each XlkA/x';hjxgx’l is a
K-linear combination of m(4"#) with deg(A’) < deg(A), since deg(x1) +deg(x?) + deg(xf) +
deg(x}) < deg(A). Consequently, by induction, we have m4Y ¢ spany Mg, ,.. The proof is
completed. U

By Lemma 3.5, we have (4(Ugx(G,T')) = Sx(n,d),. Therefore, the map (4 : Ux(gl,,) —
Sx(n,d) given in (3.7) restricts to a surjective algebra homomorphism

Car: Ux(G,T) = Sg(n,d),. (4.2)
By (3.8), we have
Car (Kx) = [diag(M)]e,

for A € A(n,d). So, we have (q,-(I14,») =0. Hence, the map (4, : Ux (G, T') = Sx(n,d), induces
a surjective algebra homomorphism

Cé,r : TK(nad)r = UK(GTT)/Id,T - Sﬂ((nad)T-

THEOREM 4.10. The map Cél,r is an algebra isomorphism. In particular, the kernel of
the map Ca,r : Ux (G, T) = Sx(n,d), is generated by the elements 1 =3 x, g Ky, KK —
MKy and [K;;O]KA — [’\ti]gKA for1<i<n,teN and A € A(n,d).

Proof. By Proposition 3.7, the set (j,.(Mg,) forms a K-basis for Sx(n,d),. Thus, by
Proposition 4.9, we conclude that C(/i,r is an algebra isomorphism. U

§5. The algebra T (n,d),
For d € N, let

Tx(n,d)r = Ux (G, T)/ Ja,r,

where Jg, is the two-sided ideal of Uy (G,T) generated by the elements 1, for A ¢ A(n,d).
For A e Z", let

=1+ Jg,.

Then, we have 1 = Z)\E/\(md)é,\. For1<i<n—1and 0<m<Ip"! let

ST g = S W
AEA(n,d) AEA(n,d)
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For A € @i(n)r, let. Furthermore for 1 <i<n,1<j<n—1,ce€Z and t € N let

t = Z Kilx+Ja,r, [Eigc}: Z [Kz;c}b\-i-(]d,r, th;c}z Z [Ki;c]b\-i-(]d,r.

AEA(n,d) AEA(n,d) AEA(n,d)

D= S B g 4 = Y LA 4,
AEA(n,d) AEA(n,d)

We will prove in Theorem 5.5 that the algebra T« (n,d), is isomorphic to the infinitesimal
g-Schur algebra Sg(n,d),.
By [3, Lem. 3.10 and Prop. 4.2], we have the following result.

LEMMA 5.1. There is an unique algebra antiautomorphism 74 on Tg(n,d), such that
T'd(egm)) = fgm), ’f'd(fgm)) = egm) and 74(8\) =€\ for 1<i<n—1,0<m<Ilp"! and \ €
A(n,d).

Clearly we have the following result.

LEMMA 5.2. Let1l<i<n,1<j<n—1,c€Z,teNand A€ Z". The following formulas
hold in Tx(n,d), :

£; by [ A — A
B8y = cNEy, [ C]E,\:[ +C] N [J C}EA:[ J ]+1+c] N
t t ], t t ]
Recall from (3.1) that ©F(n), = {4 € ©F(n) |0 < ai; <Ilp" " LVi#j}, ©F(n), ={A €
OF(n)|0<a; <lp™ 1,Vi<j} and O (n),={A€0(n)|0< a;; <Ilp" *,Vi>j}
LEMMA 5.3. Let A € A(n,d). The following results hold in Tx(n,d),. (1) If A€ OF(n),

and \; < 0;(A) for some i, then ¢y =0. (2) If A€ ©~(n), and \; < o;(A) for some i,
then £\f(4) = 0.

Proof. Assume A € ©7(n), and \; < 0;(A) for some i. For p € Z™,1 < j <n—1, we have
e;€, =¥, 1q,¢;. This implies that

m; (A)mi,1 (A) e Mo (A)E)\ = E>\+Vmi (A)mi,1 (A) oMo (A),

(aj—l,j)(e(aj—2,j)e(aj—2,j)) . (egal,j)eéﬁll,j) "'95‘“1")) and

where m; = ejil j—2 j—1 j—

= (X ae( X me).
PAVAUERE A N A 1Ss<g—1

Thus, we have e(A ey =m,m,_1 - -m;; 1€y, mm;_; ---my. Since \; < 0i(A), we have A\+v ¢
A(n,d). It follows that €, = 0. Therefore, we have ¢( ¢\ = 0. Applying 74 to the identity
in (1) gives that in (2). 0

PROPOSITION 5.4. Let My, = {eAerfA7) | A€ ©F(n),, A€ A(n,d), \> o (A)}. Then,
the algebra Tx(n,d), is spanned as a K-module by the elements in Mg .
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Proof. By Proposition 3.3, we have
Tx(n,d), = spanx{e(AﬂE,\f(Aj | A€ ©%(n),, A€ A(n,d)}.

Thus, it is enough to prove that if A € A(n,d) and \; < 0;(A) for some i, e(AﬂP,\f(‘r) IS
spany Mgq,,. We apply induction on deg(A). If deg(A) = 1, then by Lemma 5.3 we have
e(A+)E>\f(A_) = 0. Now suppose deg(A) > 1. For 2 < j < n let

(aj—1,5)

my = el (e(‘aa‘—z,j)e(‘aj—2,j)) . (egal,j)eéal,j) -'-eyfij))

-2 7j—1
) = (F) ) ({2 Ry )
Then, we have

e A7) = X (X080 Y1 Y2 = X (B0 Xo) V1 Y5,

/
n

1 aaa! ’ / /
where X7 = m,,m,,_1 CeMyg, Xo=mm;_q---mo, Y] = moms---m;, Yy = mp o mi o---m
and

N=X+ ) dooages—| D asi|e

2t \1Ss<g—1 I<s<y—1

By Lemma 2.1 and 5.2, we have £y XoY; = &\ Y1 Xo + €\ f1fo where f; is a K-linear
combination of monomials f;; in the ega), fo is a K-linear combination of monomials

for in the fﬁ“), and deg(f1,x) +deg(f2x) < deg(X2)+deg(Y1). Since \; < 0;(A), we have
N, < 0;(A7). Hence by Lemma 5.3, we have €5/ Y7 = 0. This implies that

eADEFAT) = Xy f1 foYo = Ban X1 f1 foYa,
where
N=atk D D awe—| X aw]e
2<j<n \1<s<j—1 1<s<j—1

By Proposition 3.1, we have X f1 1 € spang{¢®) | B € ©F(n),, deg(B) = deg(X1f1,x)} and
forYa € spanK{f(C) | C € ©7(n),,deg(C) = deg(f2,xY2)}. Thus,

Xi1f1fYs € spanK{e(Bﬂf(Bj | B e @i(n)r, deg(B) < deg(A)}.
By induction, we have &y,e(B)f(B7) ¢ spang My, for B € ©F(n), with deg(B) < deg(A).
Therefore, ¢(A N\ fAT) =, X, f1foYs € spang My, . U

By Lemma 3.6, we have (q(Ux(G,T)) = Sx(n,d),. Therefore, the map (g : Ux(gl,,) —
Sx(n,d) given in (3.10) restricts to a surjective algebra homomorphism

Car: Ug(GoT) = Sx(n,d),. (5.1)

Since Cg,(Jg,) =0, the map (g, : Ux(G,T) — Sx(n,d), induces a surjective algebra
homomorphism

C.Zi,r :Tx(n,d), = UK(GTT)/Jd,T — Sx(n,d),.

A presentation of Sg(n,d), was given in [16, Th. 3.9] in the case where r =1, X is a field
and " is odd. We now generalize this result to the general case.
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THEOREM 5.5. The map C'élm : Tx(n,d)r = Sx(n,d), is an algebra isomorphism. In

particular, the kernel of the map (g, : Ux(G,T) — Sx(n,d), is generated by the elements
1y for A ¢ A(n,d).

Proof. By Proposition 3.7, the set C(’“(imdm) forms a K-basis for Sx(n,d),. Therefore,
by Proposition 5.4, we conclude that C'él’r is an algebra isomorphism. O

§6. The classical case

Let U(gl,,) be the Q-algebra defined by the generators

Ei, F, (1<i<n-1), H; (1<j<n),

and the relations

) 7 7 i,54143
) ZEj—2EEE-+E]E :Owhen li—j|=1;
g) F?F;—2F,F;F;+ F;F? =0 when |i—j| =1.

Then, U(gl,,) is the universal enveloping algebra of gl,,. Let Uz(gl,,) be the Z-subalgebra of
U(gl,,) generated by Ei(m), F'i(m), and ( 7) for 1 <i<n—1,1<j<nandm,teN, where

g _ B pom _ B (H) _Hy(Hy 1) (Hy — 4+ 1)

Looml m! t t!

Let Uz(gl,,) =Uz(gl,,) ®z Z, where Z is viewed as Z-modules by specializing v to 1. Let
Uz(gl,) = Uz(gl,)/(K; — 1|1 <i<n). We shall denote the images of E( ™) F(m), etc. in
Uz(gl,,) by the same letters. By [22, 6.7(c)], there is an algebra 1s0morph1sm

0: (7z(g[n) — L{Z(g[n), (6.1)

such that H(Ei(m)) = Ei(m), H(Fi(m)) = Fi(m), (9([1(?0]) = (Ii’) for1<i<n—1,1<j5<n,
m,t € N. We will identify Uz(gl,,) with Uz(gl,,).

Let Sz(n,d) =Sz(n,d) ®z Z where Z is viewed as Z-modules by specializing v to 1. The
map (g given in (3.6) induces, upon tensoring with Z, a surjective algebra homomorphism

€qa:Uz(gl,) — Sz(n,d).
Since £4(K;) =1, the map &, induces a surjective algebra homomorphism
&g :Uz(gl,) = Uz(gl,) — Sz(n,d).
In the remainder of this section, we assume that I’ =1=1. Let
Ux(gl,) =Uz(gl,) @2 K, Sx(n,d)=Sz(n,d)®z %K.

We shall denote the images of El(m), Fi(m), etc. in Ug(gl,,) by the same letters. For A €
O(n,d), let [A]; be the image of [A] in S¢(n,d). The map &; induces, upon tensoring with
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X, a surjective algebra homomorphism

&a: Ux(al,) = Sx(n,d).
Let S¢(n,d), be the infinitesimal Schur algebra introduced in [11]. By [11, (5.3.4)], the
set {[A]1 | A €O(n,d),a; ; <p",Vi,j} forms a K-basis for Sg(n,d),. Hence, we have
SK(TL, d)r = Sy((n, d)r+1.

Let Ux (G, T) be the K-subalgebra of Ux(gl,,) generated by the elements Ei(m), Fi(m), (Iiﬂ)
for1<i<n—1,1<j<n,teNand 0<m <p". Then, by (6.1), we have

Therefore, by Lemma 3.5, we have &;(Usx (G, T)) = Sx(n,d),. Hence, by restricting the map
&4 to Ux (G, T), we obtain a surjective algebra homomorphism

fd,T : UK_(GTT) — SK(n,d)T
By Theorem 4.10, we obtain the following result.

THEOREM 6.1. The kernel of the map &4, : Ux (G, T) — Sx(n,d), is generated by the
elements 1 =3\ n.q) Hu and (bt[)H,\ - (>; JH) for1<i<n,t€N and X € A(n,d), where

H;
Hy = ngign (Ai )
Let
u(g[n) = @ Au(g[n)ua
A, WEZL™

where

(gl =UGgl,)/ | Y (H = N)u(gl,) + Y U(al,) (B —47) |,
Jjezr jeznr

HI = ngignHiji and M = ngign)\gi' Let 7, : U(gl,) = \U(gl,), be the canonical
projection. Let Ty = 7 (1). As in the case of U(gl,), there is a natural associative Q-
algebra structure on ¢(gl,,) inherited from that of 24(gl,,), and U(gl,,) is naturally a U(gl,,)-
bimodule. Let Uz(gl,,) be the Z-subalgebra of U(gl,,) generated by the elements Egm)i A and
L™ for 1<i<n—1, A€ Z" and m € N.

Let Uz(gl,) = Uz(gl,,) ®z Z, where Z is viewed as a Z-module by specializing v to 1. By
(6.1), we have

We will identify Uz(gl,,) with Uz(gl,,). The map {; given in (3.9) induces, upon tensoring
with Z, a surjective algebra homomorphism

éd :ZJZ(g[n) — Sz(n,d).

Let Uq(gl,,) = Uz(gl,,) ®z K. We shall denote the images of El.(m)I)\, 1,\Fi(m) in Us(gl,,)
by the same letters. The map &; induces, upon tensoring with %, a surjective algebra
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homomorphism
éd : uﬂ((g[n) — SK(na d)

Let Uy (G, T) be the K-subalgebra of Uy (gl,,) generated by the elements E\™ 1y, T, F(™
for I1<i<n—1, A€ Z" and 0 < m < p". Then, by (6.2), we have

UK(GTT) = UK(GH-lT)'

By Lemma 3.6, we have &;(Ux(G,T)) = Sg(n,d),. Hence, by restricting the map &, to

Ux (G, T), we obtain a surjective algebra homomorphism
éd,r UK(GTT) — Sy((?’b,d)r
By Theorem 5.5, we obtain the following result.

THEOREM 6.2. The kernel of the map é’dw :ZJK(GTT) — Sx(n,d), is generated by the
elements 1y for A & A(n,d).

§7. Borel subalgebras of the infinitesimal g-Schur algebra Sx(n,d),

In this section, we investigate Borel subalgebras of the infinitesimal ¢-Schur algebra
Sx(n,d),. In what follows, we focus entirely on the quantum case as the corresponding
results for the classical cases are essentially the same.

Let Ux (B T) =Ug (G, T)U%(gl,) and Ux(B,T) = U%(g[n)ng (G;T). These algebras are
called Borel subalgebras of U (G, T). Furthermore, let Ug (B, T) (resp. Ux(B,T)) be the
K-subalgebra of Us (G, T) generated by the elements Ei(m) 1 (resp. 1,\Fi(m)) forl<i<n-—1,
AEZ" and 0 < m < Ip" L.

Let 8io(n,d)r (resp. S;O(n,d)r) be the K-subalgebra of Sx(n,d), generated by ez(-m)
(resp. fgm)) and ky for 1 <i<n—1,0<m<Ip"! and X\ € A(n,d). These algebras are
called Borel subalgebras of Sg(n,d),.

Let Si(n,d), (resp. Sx (n,d),) be the K-subalgebra of Sx(n,d), generated by egm) (resp.

fl(»m)) forl<i<n—1land 0<m<Ilp L
LEMMA 7.1. Fach of the following set forms a K-basis of SX(n,d)T:

(1) A, ={eM | AcOt(n), 0(A) <d};
(2) 2, :=1{A(0,d)| A O (n),, o(A) < d}.

A similar result holds for Sx (n,d),.

Proof. By [8, Prop. 8.2], we have 1 = ZAeA(n,d) k). Hence, by [15, Lem. 4.10], we have

o) — Z eWi, = Z e, | (7.1)
AeA(n,d) Af;;a,%)

for A € ©%(n),. Furthermore, we have

A(0,d)= > A(0,d)[diag(V)]-= Y A(0,d)[diag(N)]-, (7.2)
AEA(n,d) AEAm D
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for A€ ©F(n),, since 1 =37, ,(, 4[diag(N)]-. Therefore, we have
e = 4(0,d) =0,
for A € ©%(n), with o(A) > d. Hence, by Proposition 3.1 and 3.2, we conclude that

S;E(n,d)r = span, .///+ = spanxﬁ . Furthermore, by Proposition 3.7, the sets .///+ and
@:{T are both linearly independent. Our assertion follows. 0

LEMMA 7.2. Fach of the following set forms a K-basis of S%O(n,d)r:

(1) A7) = {eWk\|AcOF(n),, A€ A(n,d), A > a(A)};
(2) Z7) ={[A+diag(\)]: | A€ O (n),, A€ A(n,d—0o(A))}.

A similar result holds for S;O(n,d)r.

Proof. From Lemma 7.1, (7.1) and (7.2), it follows that S/O(n d), spanx//ld%f =
spanKjf 20 Therefore, the result follows from Proposition 3.7. 0

Let 7'K>O(n d), be the quotient of Ux(B;T) by Id/r, where Id%g is the two-sided ideal
of Uy (B T) generated by the elements 1 — 2 peh(n,d) K KK —e* Ky and [Kz;O]K,\ -
(%] Kx for 1<i<n, teNand X € A(n,d).

By restricting the map (4, given in (4.2) to Ux(B;}T), we obtain a surjective algebra
homomorphism (g, : Ux (B, T) — S%O(n,d)r. Since Cdm(lig) =0, the map (g, induces an
epimorphism

Cha T (nyd)y = U(BET) /17, = 83 (0, ).

THEOREM 7.3. The map (. : Tg?o(n,d)r — Sg%o(n,d)T is an algebra isomorphism. In
particular, the kernel of the map g, : Ux(BT) — S;O(n,d)r is Id%g. A similar result holds
for S;O(n,d)r.

Proof. Using an argument similar to the proof of Proposition 4.9, we can show that the

algebra TK}O(TL, d), is spanned as a -module by the elements E(A)KA —1—1/0 for A€ ©F(n),,
A€ A(n,d) and A > o(A). Furthermore, by Lemma 7.2, the set

{Car(EVEKN+I7)) | A€ ©T(n),, A€ A(n,d), A > o (A)},
forms a %-basis for S%O(n,d)r. Hence, (), is an algebra isomorphism. U

Let Tio(n,d)r be the quotient of Uy (B T) by Jd%g, where Jdi? is the two-sided ideal of
Ux(B;'T) generated by the elements 1y for A & A(n,d).

By restricting the map (g, given in (5.1) to UK(BJFT)7 we obtain a surjective algebra
homomorphism (g, : Ugx (B T) — S>O(n d),.. Since {4 T(Jjg) 0, the map 4, induces an
epimorphism

Cor 520 (n,d) = Ux(BST) 7)) = 83 (0, ),

THEOREM 7.4. The map C(’“ : S?(O(n,d)r — S>O(n d), is an algebra isomorphism. In
particular, the kernel of the map Cq,, : Ux (B T) — S/O(n d), is J/O A similar result holds
for S;O(n,d)r.
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Proof. Using an argument similar to the proof of Proposition 5.4, we can show that the
algebra ‘Z?(O (n,d), is spanned as a %-module by the elements F(4) 1 —|—J§B for A€ ©F(n),,
A € A(n,d) and A > o(A). Furthermore, by Lemma 7.2, the set

{Co (B +I7Y) | A€ O (n),, A€ A(n,d), A > o (A)},
forms a %-basis of S%O(n,d)r. Therefore, glélﬂ, is an algebra isomorphism. U

§8. Irreducible Sy (n,d),-modules

In this section, we assume that X is a field, p > 0 and I’ =1 is odd. Let X = Z" and
Xt={AeX | A=A ==\, }. For A€ X, let L(\) be the simple integrable Ux (gl,,)-
module of highest weight A. Let Indgf(—) = H%(Uy/Uy,—) be the induction functor for
quantized enveloping algebras defined in [1], [2].

For A € X let

Z,(\) =Ind (7N Le(\) = socu, e, 1) Zr(A).

Let P, ={AeN"|0< A\ —N\is1 < Ipr—! for 1<i< n}, where A\, 11 = 0. The following result
was given in [12, Ths. 3.4.1 & 3.4.3].

THEOREM 8.1. (1) The set {L.(\) | A € X} form a complete set of pairwise nonisomor-
phic irreducible integrable Ux (G, T")-modules.

A

(2) For A\, p € X, we have Ly(A+1p" 1) = L. (\) @1lp" 4.

~

(3) For A € P, we have L(\)|u,(a,m) = Lr(A).
If M is a Ug(G,T)-module and X € X let

MA:{w€M|Kiw:5/\iwa|: ;

Ai .
}w:[t] w for 1 <i<n,teN}
1>
Let T, = P, +1p" 'N" and I'? = {)\ € TT|Z?:1 A = d}. For \,u € Z™ with Z1<i<n)‘i =
Zlgignﬂi we write A < p if E1<s<z‘)‘s < Z1<s<iﬂs for 1 <i<n.

LEMMA 8.2. For A € 'Y we have Er(/\) = @ueA(n,d)Er(/\)u-

Proof. We write A\ = a+Ip"~ ! with o € P, and 8 € N*. By Theorem 8.1, we have
L.(\) = L(a) ® Ip"~' 8. Hence, it suffices to show that L(c) = Cpueamn,ayL(a),, where
d' =3 1cicni- If L(a), #0 for some p € Z" with >, i =d'. We claim that
p € N™. Otherwise, there exists some element w in the symmetric group &,, such that
Y = (Haw(1)s- -+ > Haw(n)) and 7y, < 0. Since L(a), # 0, we have L(«a),, # 0 and hence v <Ja. This
implies that Zlgign—1 v < Zlgign—l a; < d'. Hence, since ,, < 0, we have Zlgign% <d.
This is a contradiction. The assertion follows.

The irreducible modules for infinitesimal ¢g-Schur algebras were classified in [4, Sec. 5.1].
We now use Theorem 4.10 to give a classification of irreducible Sk (n,d),-modules.

THEOREM 8.3. The set {L,(\) | A€ T%} forms a completed set of pairwise nonisomor-
phic irreducible Sx(n,d),-modules.

Proof. Let A € I'Y. By Lemma 8.2, we have L,()\) = @uGA(n,d)Er<)‘)u- Let w, be a
nonzero vector in Er()\)# for some p € A(n,d). Since € A(n,d), we have K w, = [g]sw# =
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da,pwy, for a € A(n,d). It follows that

Z Kgw,, = Z 08,1 Wy = Wy,

BEA(n,d) BeA(n,d)

(K — ") Kqwy, = 6o, Kiwy, — %64, yw,, =0,

KZ';O (67 Kl,O (673
(5] o= o o

for « € A(n,d), 1 <i<n and t € N. Thus, by Theorem 4.10, we conclude that Er()\) can
be regarded as a Sx(n,d),-module.

On the other hand, let L be an irreducible S (n,d),-module. By Theorem 8.1, we conclude
that L = ET(V—i—lp’“_l(S) >~ L(v)®Ip"~1§ for some v € P, and § € Z™. Hence, since L is
a Sg(n,d),-module, we have (Vw(l),uw(g),...,uw(n))—Hp’"_lé € A(n,d) for any w in the
symmetric group &,,. It follows that v, +Ip"~'d; > 0 for 1 < j < n. Furthermore, since
v € P,, we have 0 < v, < lp"~!. Therefore, we have 0; = 0 for 1 < 7 < n. Consequently, we
have v+ Ip"~1§ € I'?. The proof is completed. 0
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