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PRESENTING INFINITESIMAL q-SCHUR ALGEBRAS

QIANG FU and CHENGQUAN SUN

Abstract. Let K be a commutative ring containing a primitive l′th root ε

of 1. The infinitesimal q-Schur algebras SK (n,d)r over K form an ascending

chain of subalgebras of the q-Schur algebra SK (n,d), which are useful in

studying representations of the Frobenius kernel of the associated quantum

linear group. Let UK (gln) be the quantized enveloping algebra of gln over

K . There is a natural surjective algebra homomorphism ζd from UK (gln) to

SK (n,d). The map ζd restricts to a surjective algebra homomorphism ζd,r from

UK (GrT ) to SK (n,d)r, where UK (GrT ) is a certain Hopf subalgebra of UK (gln),

which is closely related to Frobenius–Lusztig kernels of UK (gln). We give the

extra defining relations needed to define the infinitesimal q-Schur algebra

SK (n,d)r as a quotient of UK (GrT ). The map ζd,r induces a surjective algebra

homomorphism ζ̇d,r : U̇K (GrT ) → SK (n,d)r, where U̇K (GrT ) is the modified

quantum algebra associated with UK (GrT ). We also give a generating set for

the kernel of ζ̇d,r. These results can be used to give a classification of irreducible

SK (n,d)r-modules over a field of characteristic p.

§1. Introduction

Let U(gln) be the quantized enveloping algebra of gln over Q(v) (v an indeterminate)

with Chevalley type generators Ei, Fi, and K±1
j for 1 � i � n−1 and 1 � j � n. Beilinson,

Lusztig, and MacPherson (BLM) [3] constructed a realization for the quantum group

U(gln) via a geometric setting of q-Schur algebras. A presentation of the q-Schur algebra

S(n,d) was given by Doty–Giaquinto [8]. Du–Parshall [15] provided an approach to the sln
type presentation of the q-Schur algebra S(n,d) using the Beilinson–Lusztig–MacPherson’s

construction of U(gln). The problem of describing the defining relations of a generalized

q-Schur algebra as a quotient of a quantized enveloping algebra was investigated by Doty [7],

Doty–Giaquinto–Sullivan [9], [10].

Infinitesimal Schur algebras are certain important subalgebras of Schur algebras (cf. [11]).

The polynomial representations of the group scheme GrT of degree d are equivalent to the

representation theory of the infinitesimal Schur algebras S̄K (n,d)r. Here, Gr is the r -th

Frobenius kernel of the general linear group G over K , and T is the subscheme of G

arising from diagonal elements. A theory of the infinitesimal q-Schur algebra was studied

by Cox [4], [5].

Let Z = Z[v,v−1] and K be a commutative ring of characteristic p. Let ε ∈ K be a

primitive l′th root of 1. We will regard K as a Z-module by specializing v to ε. Let UK (gln)=

UZ(gln)⊗Z K , where UZ(gln) is the Z-subalgebra ofU(gln) generated by the elements E
(m)
i ,

F
(m)
i , K±1

j , and
[
Kj ;0
t

]
for 1 � i � n−1, 1 � j � n and m,t ∈ N. For r � 1, let UK (Gr) be

the K -subalgebra of UK (gln) generated by the elements E
(m)
i , F

(m)
i , K±1

j , and
[
Kj ;0
t

]
for
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2 Q. FU AND C. SUN

1 � i � n− 1, 1 � j � n, t ∈ N and 0 � m,t < lpr−1, where l = l′ if l′ is odd, and l = l′/2

otherwise. Furthermore, let UK (GrT ) = UK (Gr)U
0
K (gln), where U0

K (gln) is the zero part of

UK (gln). Then, we have

UK (G1T )⊆ ·· · ⊆ UK (GrT )⊆ UK (Gr+1T )⊆ ·· · ⊆ UK (gln),

and UK (gln) = limrUK (GrT ). In the case where l′ = l is an odd number, let

ŨK (Gr) = UK (Gr)/〈Kl
i −1 | 1 � i � n〉, ŨK (GrT ) = UK (GrT )/〈Kl

i −1 | 1 � i � n〉.

The algebra ŨK (G1) is the Lusztig’s small quantum group, and ŨK (Gr) is called Frobenius–

Lusztig kernels of UK (gln) (cf. [12], [22]). The representation theory of ŨK (Gr) and ŨK (GrT )

was studied in [12].

Jimbo [20] proved that there is a natural surjective algebra homomorphism ζd from

U(gln) to the q-Schur algebra S(n,d). The map ζd :U(gln)→ S(n,d) induces a surjective

algebra homomorphism

ζd,r : UK (GrT )→SK (n,d)r,

where SK (n,d)r is the infinitesimal q-Schur algebra over K (cf. [18, Prop. 6.1]). Note that

SK (n,d)r is a quotient algebra of ŨK (GrT ) in the case where l′ = l is odd. We prove in

Theorem 4.10 that kerζd,r is generated by the elements 1−
∑

μ∈Λ(n,d)Kμ, KiKλ− ελiKλ,[
Ki;0
t

]
Kλ −

[
λi

t

]
ε
Kλ for 1 � i � n, t ∈ N and λ ∈ Λ(n,d), where Λ(n,d) is the set of all

compositions of d into n parts.

Let U̇(gln) be the modified quantum group with generators Ei1λ, 1λFi, and 1λ for 1� i�
n−1 and λ∈Zn. The map ζd :U(gln)→S(n,d) induces a surjective algebra homomorphism

ζ̇d : U̇(gln)→ S(n,d).

Let U̇K (gln) = U̇Z(gln)⊗Z K , where U̇Z(gln) is the Z-subalgebra of U̇(gln) generated by

the elements E
(m)
i 1λ, 1λF

(m)
i for 1 � i � n− 1, m ∈ N and λ ∈ Zn. Let U̇K (GrT ) be the

K -subalgebra of U̇K (gln) generated by the elements E
(m)
i 1λ and 1λF

(m)
i for 1 � i � n− 1,

λ ∈ Zn and 0 � m < lpr−1. The map ζ̇d : U̇(gln) → S(n,d) induces a surjective algebra

homomorphism

ζ̇d,r : U̇K (GrT )→SK (n,d)r.

We prove in Theorem 5.5 that ker ζ̇d,r is generated by the elements 1λ for λ �∈ Λ(n,d).

The organization of the paper is as follows. We recall the BLM construction of

the quantum group U(gln) in Section 2. In Section 3, we introduce the infinitesimal

q-Schur algebra SK (n,d)r. A generating set for the kernel of the epimorphism ζd,r :

UK (GrT ) → SK (n,d)r is obtained in Section 4. In Section 5, we investigate the kernel of

the epimorphism ζ̇d,r : U̇K (GrT )→SK (n,d)r. In Section 6, we discuss the classical case. In

Section 7, we investigate Borel subalgebras of the infinitesimal q-Schur algebra SK (n,d)r.

As an application, we give a classification of irreducible SK (n,d)r-modules over a field of

characteristic p in Section 8.
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PRESENTING INFINITESIMAL q-SCHUR ALGEBRAS 3

Throughout this paper, let Z = Z[v,v−1] where v is an indeterminate. For i ∈ Z let

[i] = vi−v−i

v−v−1 . For integers N,t with t � 0, let[
N

t

]
=

[N ][N −1] · · · [N − t+1]

[t]!
∈ Z,

where [t]! = [1][2] · · · [t].
Let K be a commutative ring containing a primitive l′th root ε of 1 with l′ � 1. Let l � 1

be defined by

l =

{
l′ if l′ is odd,

l′/2 if l′ is even.

Let p be the characteristic of K . The commutative ring K will be viewed as a Z-module by

specializing v to ε. For c ∈ Z and t ∈ N, we will denote the image of
[
c
t

]
∈ Z in K by

[
c
t

]
ε
.

For μ ∈ Zn and λ ∈ Nn let
[
μ
λ

]
ε
=
[
μ1

λ1

]
ε
· · ·

[
μn

λn

]
ε
.

§2. The BLM construction of U(gln)

Following [20], we define the quantized enveloping algebra U(gln) of gln to be the Q(v)

algebra with generators

Ei, Fi (1 � i � n−1), Kj , K
−1
j (1 � j � n),

and relations

(a) KiKj =KjKi, KiK
−1
i = 1;

(b) KiEj = vδi,j−δi,j+1EjKi;

(c) KiFj = vδi,j+1−δi,jFjKi;

(d) EiEj = EjEi, FiFj = FjFi when |i− j|> 1;

(e) EiFj −FjEi = δi,j
˜Ki− ˜K−1

i

v−v−1 , where K̃i =KiK
−1
i+1;

(f) E2
i Ej − (v+v−1)EiEjEi+EjE

2
i = 0 when |i− j|= 1;

(g) F 2
i Fj − (v+v−1)FiFjFi+FjF

2
i = 0 when |i− j|= 1.

Following [22], let UZ(gln) be the Lusztig integral form of U(gln) generated by

E
(m)
i ,F

(m)
i , K±1

j , and
[
Kj ;c
t

]
(1 � i � n−1,1 � j � n,m,t ∈ N, c ∈ Z), where

E
(m)
i =

Em
i

[m]!
, F

(m)
i =

Fm
i

[m]!
and

[
Kj ;c

t

]
=

t∏
s=1

Kjv
c−s+1−K−1

j v−c+s−1

vs−v−s
,

with [m]! = [1][2] · · · [m] and [i] = vi−v−i

v−v−1 . The following result is given by Lusztig [21].

Lemma 2.1. The following formulas hold in UZ(gln) :

(1) E
(m)
i

[
Kj ;c
t

]
=
[
Kj ;c+m(−δi,j+δi+1,j)

t

]
E

(m)
i ;

(2) F
(m)
i

[
Kj ;c
t

]
=

[
Kj ;c−m(−δi,j+δi+1,j)

t

]
F

(m)
i ;

(3) For k, l ∈ N, we have

E
(k)
i F

(l)
i =

∑
0�t�k

t�l

F
(l−t)
i

[
K̃i;2t−k− l

t

]
E

(k−t)
i ,

where
[

˜Ki;c
t

]
=
∏t

s=1

˜Kiv
c−s+1− ˜K−1

i v−c+s−1

vs−v−s .
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4 Q. FU AND C. SUN

Let Π(n) = {αi | 1 � i � n− 1}, where αi = ei−ei+1 with ei = (0, . . . ,0,1
i
,0 · · · ,0) ∈ Zn.

We have the following direct sum decomposition:

U(gln) =
⊕

ν∈ZΠ(n)

U(gln)ν ,

where U(gln)ν is defined by the conditions U(gln)ν′U(gln)ν′′ ⊆ U(gln)ν′+ν′′ , K±1
j ∈

U(gln)0, Ei ∈U(gln)αi
, Fi ∈U(gln)−αi

for all ν′,ν′′ ∈ ZΠ(n), 1 � i � n−1 and 1 � j � n.

Following [23, 23.1], we introduce the modified quantum group U̇(gln) associated with

U(gln) as follows. Let

U̇(gln) =
⊕

λ,μ∈Zn

λU(gln)μ,

where

λU(gln)μ =U(gln)/

⎛⎝∑
j∈Zn

(Kj−vλ·j)U(gln)+
∑
j∈Zn

U(gln)(K
j−vμ·j)

⎞⎠ ,

and λ · j=
∑

1�i�nλiji. Let πλ,μ :U(gln)→ λU(gln)μ be the canonical projection.

We define the product in U̇(gln) as follows. For λ
′,μ′,λ′′,μ′′ ∈ Zn with λ′−μ′, λ′′−μ′′ ∈

ZΠ(n) and any t ∈U(gln)λ′−μ′ , s ∈U(gln)λ′′−μ′′ , define

πλ′,μ′(t)πλ′′,μ′′(s) =

{
πλ′,μ′′(ts), if μ′ = λ′′,

0 otherwise.

Then U̇(gln) becomes an associative Q(v)-algebra with the above product. Moreover, the

algebra U̇(gln) is naturally a U(gln)-bimodule defined by t′πλ′,λ′′(s)t′′ = πλ′+ν′,λ′′−ν′′(t′st′′)

for t′ ∈U(gln)ν′ , s∈U(gln), t
′′ ∈U(gln)ν′′ , and λ′,λ′′ ∈Zn. Let U̇Z(gln) be the Z-subalgebra

of U̇(gln) generated by the elements E
(m)
i 1λ and 1λF

(m)
i for 1� i� n−1 and m∈N, where

1λ = πλ,λ(1).

We now follow [6] to recall the definition of q-Schur algebras as follows. The Hecke

algebra HZ(d) associated with Sd is the Z-algebra generated by Ti (1 � i � d− 1), with

the following relations:

(Ti+1)(Ti− q) = 0, TiTi+1Ti = Ti+1TiTi+1, TiTj = TjTi (|i− j|> 1).

where q = v2. Let H(d) = HZ(d) ⊗Z Q(v). If w = si1si2 · · ·sim is reduced let Tw =

Ti1Ti2 · · ·Tim . Then the set {Tw | w ∈ Sd} forms a Z-basis for HZ(d). Let Λ(n,d) = {λ ∈
Nn | σ(λ) = d}, where σ(λ) =

∑
1�i�nλi. For λ ∈ Λ(n,d), let xλ =

∑
w∈Sλ

Tw, where Sλ is

the Young subgroup of Sd. The endomorphism algebras

SZ(n,d) := EndHZ(d)

( ⊕
λ∈Λ(n,d)

xλHZ(d)

)
, S(n,d) := EndH(d)

( ⊕
λ∈Λ(n,d)

xλH(d)

)
,

are called q-Schur algebras over Z and over Q(v), respectively.

We now recall the BLM construction of U(gln). Let Θ̃(n) be the set of all n× n

matrices over Z with all off diagonal entries in N. Let Θ(n) be the set of all n× n

matrices over N. Let Θ(n,d) be the set of all n×n matrices A over N such that σ(A) = d,
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PRESENTING INFINITESIMAL q-SCHUR ALGEBRAS 5

where σ(A) =
∑

1�i,j�nai,j . For A ∈ Θ̃(n), let ro(A) = (
∑

j a1,j , . . . ,
∑

j an,j) and co(A) =

(
∑

iai,1, . . . ,
∑

iai,n).

The q-Schur algebra SZ(n,d) was reconstructed using the geometry of pairs of n-step

filtrations on a d -dimensional vector space in [3]. In particular, a normalized Z-basis

{[A]}A∈Θ(n,d) for SZ(n,d) was constructed. Using the stabilization property of multi-

plication for q-Schur algebra, an important Z-algebra KZ(n) (without 1), with basis

{[A]}A∈˜Θ(n), was constructed in [1, §4]. Let K(n) =KZ(n)⊗Z Q(v). Following [3, 5.1], we

define K̂(n) to be the vector space of all formal (possibly infinite) Q(v)-linear combinations∑
A∈˜Θ(n)βA[A] satisfying the following property: for any x ∈ Zn, the sets {A ∈ Θ̃(n) | βA �=

0,ro(A) = x} and {A ∈ Θ̃(n) | βA �= 0,co(A) = x} are finite. The product of two elements∑
A∈˜Θ(n)βA[A],

∑
B∈˜Θ(n) γB[B] in K̂(n) is defined to be

∑
A,B βAγB[A] · [B], where [A] · [B]

is the product in KZ(n). Then K̂(n) is an associative algebra.

Let Θ±(n) be the set of all A∈Θ(n) such that all diagonal entries are zero. For A∈Θ±(n)

and j ∈ Zn, let

A(j,d) =
∑

λ∈Λ(n,d−σ(A))

vλ·j[A+diag(λ)] ∈ S(n,d),

A(j) =
∑
λ∈Zn

vλ·j[A+diag(λ)] ∈ K̂(n),

where λ · j=
∑

1�i�nλiji.

We shall denote by V(n) the subspace of K̂(n) spanned by the elements A(j) for A ∈
Θ±(n) and j ∈ Zn. For 1 � i, j � n, let Ei,j ∈Θ(n) be the matrix whose (i, j)-entry is 1 and

the other entries are 0. The following result was given by Beilinson–Lusztig–MacPherson [3].

Theorem 2.2. (1) V(n) is a subalgebra of K̂(n) and there is an algebra isomorphism

U(gln)
∼→V(n) satisfying

Eh 	→ Eh,h+1(0), K
j1
1 Kj2

2 · · ·Kjn
n 	→ 0(j), Fh 	→ Eh+1,h(0).

(2) There is an algebra epimorphism ζd :U(gln)→ S(n,d) satisfying

Eh 	→ Eh,h+1(0,d), K
j1
1 Kj2

2 · · ·Kjn
n 	→ 0(j,d), Fh 	→ Eh+1,h(0,d).

We shall identify U(gln) with V(n). By [14] we have the following result (cf. [17]).

Lemma 2.3. (1) There is an algebra isomorphism ϕ : U̇(gln)→K(n) satisfying

πλμ(u) 	→ [diag(λ)]u[diag(μ)],

for all u ∈U(gln) and λ,μ ∈ Zn. Furthermore, we have ϕ(U̇Z(gln)) =KZ(n).

(2) There is a surjective algebra homomorphism ζ̇d :K(n)→ S(n,d) such that

ζ̇d([A]) =

{
[A], if A ∈Θ(n,d);

0, otherwise.

We shall identify U̇Z(gln) with KZ(n).

https://doi.org/10.1017/nmj.2024.29 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2024.29


6 Q. FU AND C. SUN

§3. The infinitesimal q-Schur algebra SK (n,d)r

Let UK (gln) = UZ(gln)⊗Z K . We shall denote the images of E
(m)
i ,F

(m)
i , etc. in UK (gln)

by the same letters. Let U+
K (gln) (resp. U

−
K (gln)) be the subalgebra of UK (gln) generated by

the elements E
(m)
i (resp. F

(m)
i ) for 1 � i � n−1 and m ∈N. Let U0

K (gln) be the subalgebra

of UK (gln) generated by the elements K±1
j and

[
Kj ;0
t

]
for 1 � j � n and t ∈ N. Then we

have UK (gln)
∼= U+

K (gln)⊗U0
K (gln)⊗U−

K (gln). The algebras U+
K (gln) and U−

K (gln) are both

N-graded in terms of the degrees of monomials in the E
(m)
i and F

(m)
i .

For r � 1, let UK (Gr) be the K -subalgebra of UK (gln) generated by the elements E
(m)
i ,

F
(m)
i , K±1

j , and
[
Kj ;0
t

]
for 1� i� n−1, 1� j � n, t ∈N and 0�m,t < lpr−1. Furthermore,

let

UK (GrT ) = UK (Gr)U
0
K (gln).

Clearly, the algebra UK (GrT ) is a Hopf subalgebra of UK (gln). Let U+
K (GrT ) (resp.

U−
K (GrT )) be the subalgebra of UK (GrT ) generated by the elements E

(m)
i (resp. F

(m)
i ) for

1� i� n−1 and 0�m< lpr−1. Then we have UK (GrT )∼=U+
K (GrT )⊗U0

K (gln)⊗U−
K (GrT ).

Let Θ+(n) = {A ∈Θ(n) | ai,j = 0,∀i � j} and Θ−(n) = {A ∈Θ(n) | ai,j = 0,∀i � j}. For
A ∈ Θ̃(n), write A=A++diag(λ)+A− with A+ ∈Θ+(n), A− ∈Θ−(n) and λ ∈ Zn. Let

Θ±(n)r = {A ∈Θ±(n) | ai,j < lpr−1, ∀i �= j}.

Let

Θ+(n)r =Θ±(n)r ∩Θ+(n), Θ−(n)r =Θ±(n)r ∩Θ−(n). (3.1)

For A ∈Θ±(n)r, let

E(A+) =MnMn−1 · · ·M2 ∈ U+
K (GrT ) and F (A−) =M ′

2M
′
3 · · ·M ′

n ∈ U−
K (GrT ),

where

Mj =Mj(A
+) = E

(aj−1,j)
j−1 (E

(aj−2,j)
j−2 E

(aj−2,j)
j−1 ) · · ·(E(a1,j)

1 E
(a1,j)
2 · · ·E(a1,j)

j−1 ),

and

M ′
j =M ′

j(A
−) = (F

(aj,1)
j−1 · · ·F (aj,1)

2 F
(aj,1)
1 ) · · ·(F (aj,j−2)

j−1 F
(aj,j−2)
j−2 )F

(aj,j−1)
j−1 .

For A ∈Θ±(n) let

deg(A) =
∑

1�i,j�n

|j− i|ai,j .

Then we have deg(E(A+)) = deg(A+) and deg(F (A−)) = deg(A−) for A∈Θ±(n). For λ∈Nn

and j ∈ Zn let

Kλ =
∏

1�i�n

[
Ki;0

λi

]
, Kj =

∏
1�i�n

Kji
i .

The following result is given in [18, Lem. 6.3].

Proposition 3.1. (1) The set
{
E(A+)KδKλF

(A−) | A ∈ Θ±(n)r, δ,λ ∈ Nn, δi ∈
{0,1}, ∀i

}
forms a K -basis for UK (GrT ).
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(2) The set
{
E(A+) | A ∈ Θ+(n)r} (resp.

{
F (A−) | A ∈ Θ−(n)r}) forms a K -basis for

U+
K (GrT ) (resp. U

−
K (GrT )).

For A ∈ Θ̃(n) let

σi,j(A) =

{∑
s�i;t�j as,t if i < j∑
s�i;t�j as,t if i > j.

Following [3], for A,B ∈ Θ̃(n), define B � A if and only if σi,j(B) � σi,j(A) for all i �= j.

Put B ≺A if B � A and σi,j(B)< σi,j(A) for some i �= j.

Proposition 3.2. (1) The set
{
A+(0)KδKλA

−(0) | A ∈ Θ±(n)r, δ,λ ∈ Nn, δi ∈
{0,1},∀i

}
forms a -basis for UK (GrT ).

(2) The set
{
A(0) | A ∈ Θ+(n)r} (resp.

{
A(0) | A ∈ Θ−(n)r}) forms a K -basis for

U+
K (GrT ) (resp. U

−
K (GrT )).

Proof. By [3, 4.6(c)] for A ∈Θ±(n)r, we have

E(A+) =A+(0)+f, F (A−) =A−(0)+g, (3.2)

where f is a K -linear combination of B(0) for B ∈Θ+(n) with B ≺A+ and g is a K -linear

combination of C(0) for C ∈Θ−(n) with C ≺A−. By [18, Lem. 6.3] we know that f must a

K -linear combination of B(0) for B ∈Θ+(n)r with B ≺A+ and g is a K -linear combination

of C(0) for C ∈Θ−(n)r with C ≺A−. Now the assertion follows from Proposition 3.1.

Let U̇K (gln) = U̇Z(gln)⊗Z K = KZ(n)⊗Z K . We shall denote the images of E
(m)
i 1λ,

1λF
(m)
i , E(A+)1λ, 1λF

(A−) in U̇K (gln) by the same letters. For A ∈ Θ̃(n) let

[A]ε = [A]⊗1 ∈ U̇K (gln).

Let U̇K (GrT ) be the K -subalgebra of U̇K (gln) generated by the elements E
(m)
i 1λ and 1λF

(m)
i

for 1 � i � n−1, λ ∈ Zn and 0 � m< lpr−1.

For A ∈ Θ̃(n) and 1 � i � n, let

σ(A) = (σ1(A),σ2(A), . . . ,σn(A)),

where σi(A) = ai,i+
∑

1�j<i(aij +aji). Let

Θ̃(n)r = {A ∈ Θ̃(n) | ai,j < lpr−1, ∀i �= j}.

We have the following monomial, BLM and PBW bases of U̇K (GrT ).

Proposition 3.3. Each of the following sets forms a K -basis of U̇K (GrT ):

(1) Mr := {E(A+)1σ(A)F
(A−) |A ∈ Θ̃(n)r};

(2) Lr := {[A]ε |A ∈ Θ̃(n)r};
(3) Pr := {A+(0)1σ(A)A

−(0) |A ∈ Θ̃(n)r}.

Proof. Let U̇K (GrT )
′ be the K -submodule of U̇K (gln) spanned by the elements [A]ε for

A ∈ Θ̃(n)r. By [3, 4.6(a)] for 1 � h � n−1, 0 � m< lpr−1, A ∈ Θ̃(n)r, we have

E
(m)
h [A]ε =

∑
t∈Λ(n,m)

ah+1,u�tu,∀u �=h+1

εβ(t)
∏

1≤u≤n

[
ah,u+ tu

tu

]
ε

[
A+

∑
1≤u≤n

tu(Eh,u−Eh+1,u)
]
ε
,
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where β(t) =
∑

j>u(ah,j −ah+1,j)tu+
∑

u<u′ tutu′ . If A+
∑

u tu(Eh,u−Eh+1,u) �∈ Θ̃(n)r for

some t∈Λ(n,m), then we have ah,u+tu � lpr−1 for some u �= h. Since A∈ Θ̃(n)r, t∈Λ(n,m)

and m < lpr−1, we have ah,u < lpr−1 and tu < lpr−1. Hence, by [18, Cor. 3.4] we have[
ah,u+tu

tu

]
ε
= 0. Therefore, we have

E
(m)
h U̇K (GrT )

′ ⊆ U̇K (GrT )
′.

Similarly, we have

F
(m)
h U̇K (GrT )

′ ⊆ U̇K (GrT )
′,

for 1 � h � n−1 and 0 � m< lpr−1. Consequently, we have

U̇K (GrT )⊆ U̇K (GrT )U̇K (GrT )
′ ⊆ U̇K (GrT )

′. (3.3)

Furthermore, by [3, 4.6(c)] for A ∈ Θ̃(n)r,

E(A+)1σ(A)F
(A−) = [A]ε+f, (3.4)

where f is a K -linear combination of [B]ε for B ∈ Θ̃(n) with B ≺ A. By (3.3), we see that

f must be a K -linear combination of [B]ε for B ∈ Θ̃(n)r with B ≺ A. It follows from (3.2)

that

A+(0)1σ(A)A
−(0) = [A]ε+g, (3.5)

where g is a K -linear combination of [B]ε for B ∈ Θ̃(n)r with B ≺A. Therefore, each of the

sets Mr, Lr, Pr forms a K -basis of U̇K (GrT )
′ and

U̇K (GrT )
′ ⊆ U̇K (GrT ).

Hence, by (3.3) we have U̇K (GrT ) = U̇K (GrT )
′. The proof is completed.

Let SK (n,d) =SZ(n,d)⊗Z K . By [13] we have ζd(UZ(gln)) =SZ(n,d). Therefore, the map

ζd :U(gln)→S(n,d) given in Theorem 2.2 restricts to a surjective algebra homomorphism

ζd : UZ(gln)→SZ(n,d). (3.6)

A generating set for the kernel of ζd : UZ(gln) → SZ(n,d) was given in [19]. The map ζd
induces, upon tensoring with K , a surjective algebra homomorphism

ζd : UK (gln)→SK (n,d). (3.7)

Let

ei = ζd(Ei), fi = ζd(Fi), kj = ζd(Kj),

for 1 � i � n−1 and 1 � j � n. For A ∈Θ(n) and λ ∈ Nn, let

e(A
+) = ζd(E

(A+)), f(A
−) = ζd(F

(A−)), kλ = ζd(Kλ).

For A ∈Θ(n,d), let

[A]ε = [A]⊗1 ∈ SK (n,d).

By [15, Cor. 5.3], we have

kλ = [diag(λ)]ε, (3.8)

for λ ∈ Λ(n,d).
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Let SK (n,d)r be the infinitesimal q-Schur algebra introduced in [4]. The algebra SK (n,d)r
is a K -subalgebra of the q-Schur algebra SK (n,d). Let

Θ(n,d)r = {A ∈Θ(n,d) | aij < lpr−1 for all i �= j}.

According to [4, 5.3.1] and the proof of [16, Th. 5.5], we have the following result.

Lemma 3.4. The set Ld,r := {[A]ε |A ∈Θ(n,d)r} forms a K -basis of SK (n,d)r.

By [18, Prop. 6.4], we have the following result.

Lemma 3.5. For d ∈ N we have ζd(UK (GrT )) = SK (n,d)r.

The map ζ̇d : U̇(gln) =K(n)→S(n,d) given in Lemma 2.3 restricts to a surjective algebra

homomorphism

ζ̇d : U̇Z(gln)→SZ(n,d); (3.9)

tensoring with K , we obtain a surjective algebra homomorphism

ζ̇d : U̇K (gln)→SK (n,d). (3.10)

Combining Lemma 2.3 with Proposition 3.3, we obtain the following result.

Lemma 3.6. For d ∈ N we have ζ̇d(U̇K (GrT )) = SK (n,d)r.

For λ,μ ∈ Zn, write λ � μ⇔ λi � μi for 1 � i � n. We have the following monomial and

PBW bases of SK (n,d)r.

Proposition 3.7. Each of the following set forms a K -basis of SK (n,d)r:

(1) Md,r = {e(A+)kλf
(A−) |A ∈Θ±(n)r, λ ∈ Λ(n,d), λ � σ(A)};

(2) Pd,r = {A+(0,d)kλA
−(0,d) |A ∈Θ±(n)r, λ ∈ Λ(n,d), λ � σ(A)}.

Proof. By Lemma 2.3, (3.4), (3.5), and (3.8), for A∈Θ±(n)r, λ∈Λ(n,d) with λ�σ(A),

we have

e(A
+)kλf

(A−) = ζ̇d(E
(A+)1λF

(A−)) = [A+λ−σ(A)]ε+f,

A+(0,d)kλA
−(0,d) = [A+λ−σ(A)]ε+g,

where f,g ∈ spanK {[B]ε | B ∈ Θ(n,d)r, B ≺ A}. Now the assertion follows from

Lemma 3.4.

§4. The algebra TK (n,d)r

For d ∈ N let

TK (n,d)r = UK (GrT )/Id,r,

where Id,r is the two-sided ideal of UK (GrT ) generated by the elements 1−
∑

μ∈Λ(n,d)Kμ,

KiKλ−ελiKλ and
[
Ki;0
t

]
Kλ−

[
λi

t

]
ε
Kλ for 1� i� n, t∈N and λ∈Λ(n,d). For 1� i� n−1,

t ∈ N and 0 � m< lpr−1 let

e
(m)
i = E

(m)
i + Id,r, f

(m)
i = F

(m)
i + Id,r.

Furthermore, for 1 � j � n, c ∈ Z, t ∈ N and λ ∈ Nn let

kj =Kj + Id,r,

[
kj ;c

t

]
=

[
Kj ;c

t

]
+ Id,r, kλ =Kλ+ Id,r.
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We will prove in Theorem 4.10 that the algebra TK (n,d)r is isomorphic to the infinitesimal

q-Schur algebra SK (n,d)r.

Lemma 4.1. (1) For λ,μ ∈ Λ(n,d) we have kλkμ = δλ,μkλ.

(2) Assume ν ∈ Nn is such that σ(ν)> d. Then we have kν = 0.

Proof. For 1 � i � n and t ∈ N, we have
[
ki;0
t

]
kμ =

[
μi

t

]
ε
kμ. It follows that

kλkμ =

[
μ

λ

]
ε

kμ.

If
[
μ
λ

]
ε
�= 0, then we have μ � λ. This implies that μ= λ since λ,μ ∈ Λ(n,d). Therefore, we

have kλkμ = δλ,μkλ. Furthermore, since 1 =
∑

γ∈Λ(n,d)kγ and σ(ν)> d, we have

kν =
∑

γ∈Λ(n,d)

kνkγ =
∑

γ∈Λ(n,d)

[
γ

ν

]
ε

kγ =
∑

γ∈Λ(n,d)
σ(γ)�σ(ν)>d

[
γ

ν

]
ε

kγ = 0.

The proof is completed.

For a,b ∈ Z, we have [
b+a

t

]
ε

=
∑

0�j�t

εa(t−j)−bj

[
a

j

]
ε

[
b

t− j

]
ε

. (4.1)

Lemma 4.2. Let λ ∈ Λ(n,d). Then we have
[
ki;c
t

]
kλ =

[
λi+c

t

]
ε
kλ for 1 � i � n, c ∈ Z,

t ∈ N.

Proof. Assume c � 0. By [22, 2.3 (g9), (g10)], we have[
ki;±c

t

]
=

∑
0�j�t

εc(t−j)

[
±c

j

]
ε

k∓j
i

[
ki;0

t− j

]
.

Hence, by (4.1), we have[
ki;±c

t

]
kλ =

∑
0�j�t

εc(t−j)∓jλi

[
±c

j

]
ε

[
λi

t− j

]
ε

kλ =

[
λi± c

t

]
ε

kλ.

The proof is completed.

By the definition of TK (n,d)r, we have the following result.

Lemma 4.3. There is an algebra anti-automorphism τd on TK (n,d)r such that

τd(e
(m)
i ) = f

(m)
i , τd(f

(m)
i ) = e

(m)
i , τd(kj) = kj , τd

([
kj ;0

t

])
=

[
kj ;0

t

]
,

for 1 � i � n−1, 1 � j � n, t ∈ N and 0 � m< lpr−1.

Lemma 4.4. Let λ,μ ∈ Λ(n,d) and a ∈ N.

(1) If λi+1 < a for some 1 � i � n−1, then we have e
(a)
i kλ = kλf

(a)
i = 0.

(2) If μj < a for some 1 � j � n−1, then we have kμe
(a)
j = f

(a)
j kμ = 0.
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Proof. By Lemma 2.1 and 4.2, we have

e
(a)
i kλ = e

(a)
i

∏
s �=i,i+1

[
ks;0

λs

][
ki;a

λi+a

]
kλ = kλ+aei−λi+1ei+1e

(a)
i kλ,

kμe
(a)
j = kμ

∏
s �=j,j+1

[
ks;0

μs

][
kj+1;a

μj+1+a

]
e
(a)
j = kμe

(a)
j kλ+aej+1−μjej .

Hence, by Lemma 4.1 we have kλ+aei−λi+1ei+1 = 0 and kλ+aej+1−μjej = 0, since λi+1 < a,

μj < a and λ,μ ∈ Λ(n,d). Therefore we have e
(a)
i kλ = kμe

(a)
j = 0. Consequently, we have

kλf
(a)
i = τd(e

(a)
i kλ) = 0 and f

(a)
j kμ = τd(kμe

(a)
j ) = 0.

Lemma 4.5. Let λ ∈Λ(n,d) and a ∈N. If λi+1 � a for some 1� i� n−1, then we have

e
(a)
i kλ = kλ+aαie

(a)
i and kλf

(a)
i = f

(a)
i kλ+aαi, where αi = ei−ei+1.

Proof. By Lemma 2.1 and 4.2, we have

e
(a)
i kλ =

∏
j �=i,i+1

[
kj ;0

λj

][
ki;−a

λi

][
ki+1;a

λi+1

]
e
(a)
i

=
∑

μ∈Λ(n,d)

∏
j �=i,i+1

[
kj ;0

λj

][
ki;−a

λi

][
ki+1;a

λi+1

]
kμe

(a)
i .

Hence, by Lemma 4.4, we have

e
(a)
i kλ =

∑
μ∈Λ(n,d)

μi�a

[
μ−aαi

λ

]
ε

kμe
(a)
i =

∑
μ∈Λ(n,d),μ−aαi�λ

[
μ−aαi

λ

]
ε

kμe
(a)
i = kλ+aαie

(a)
i .

Therefore, we have kλf
(a)
i = τd(e

(a)
i kλ) = τd(kλ+aαie

(a)
i ) = f

(a)
i kλ+aαi .

For simplicity, we set kλ = 0 if λ �∈Nn with σ(λ) = d, where σ(λ) =
∑

1�i�nλi. Then, by

Lemma 4.4 and 4.5, we have the following result.

Lemma 4.6. For λ ∈ Zn with σ(λ) = d and a ∈ N we have e
(a)
i kλ = kλ+aαie

(a)
i and

kλf
(a)
i = f

(a)
i kλ+aαi.

For A ∈Θ±(n) let e(A
+) = E(A+)+ Id,r and f (A

−) = F (A−)+ Id,r.

Lemma 4.7. Let A ∈ Θ±(n)r and λ ∈ Zn with σ(λ) = d. Then, we have e(A
+)kλ =

kλ−co(A+)+ro(A+)e
(A+) and kλf

(A−) = f (A
−)kλ+co(A−)−ro(A−).

Proof. By Lemma 4.6, we have e(A
+)kλ = kμe

(A+) and kλf
(A−) = f (A

−)kν where

μ= λ+
∑

2�j�n

∑
1�k<j

ak,j
∑

k�s<j

αs = λ+
∑

2�j�n

∑
1�k<j

ak,j(ek−ej) = λ− co(A+)+ro(A+),

and

ν = λ+
∑

2�j�n

∑
1�k<j

aj,k
∑

k�s<j

αs = λ+
∑

2�j�n

∑
1�k<j

aj,k(ek−ej) = λ+co(A−)− ro(A−).

The proof is completed.
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Recall the sets Θ+(n)r and Θ−(n)r defined in (3.1).

Lemma 4.8. Let λ ∈ Λ(n,d).

(1) If A ∈Θ+(n)r and λi < σi(A) for some i, then we have e(A)kλ = 0.

(2) If A ∈Θ−(n)r and λi < σi(A) for some i, then we have kλf
(A) = 0.

Proof. If A ∈Θ+(n)r and λi < σi(A) for some i, then by Lemma 4.6 we have

e(A)kλ =mnmn−1 · · ·m2kλ =mnmn−1 · · ·mi+1kμmimi−1 · · ·m2,

where mj = e
(aj−1,j)
j−1 (e

(aj−2,j)
j−2 e

(aj−2,j)
j−1 ) · · ·(e(a1,j)

1 e
(a1,j)
2 · · ·e(a1,j)

j−1 ) and

μ= λ+
∑

2�j�i

∑
1�k<j

ak,j
∑

k�s<j

αs = λ+
∑

2�j�i

∑
1�k<j

ak,j(ek−ej).

Since μi = λi−σi(A) < 0 we have kμ = 0. Hence, we have e(A)kλ = 0. Assume now that

A ∈Θ−(n)r and λi < σi(A) for some i. Then, we have kλf
(A) = τd(e

(tA)kλ) = 0. The proof

is completed.

For A ∈Θ±(n)r and λ ∈ Λ(n,d), let

m(A,λ) = e(A
+)kλf

(A−).

Proposition 4.9. The set Md,r = {m(A,λ)|A ∈ Θ±(n)r, λ ∈ Λ(n,d), λ � σ(A)} is a

spanning set for TK (n,d)r.

Proof. By the definition of Id,r we have ki =
∑

λ∈Λ(n,d) ε
λikλ and kλ =

∑
μ∈Λ(n,d)

[
μ
λ

]
ε
kμ

for λ∈Λ(n,d) and 1� i� n. Hence, by Proposition 3.1, we see that the algebra TK (n,d)r is

spanned by the elements e(A
+)kλf

(A−) for A ∈Θ±(n)r and λ ∈ Λ(n,d). Therefore, to prove

the proposition, we have to show that if λi < σi(A) for some i, then m(A,λ) lies in the span

of Md,r.

We argue by induction on deg(A). The result follows from Lemma 4.4 in the cases where

deg(A) = 1. Assume now that deg(A)> 1, and suppose λi < σi(A) for some 1 � i � n. For

2 � j � n let

mj = e
(aj−1,j)
j−1 (e

(aj−2,j)
j−2 e

(aj−2,j)
j−1 ) · · ·(e(a1,j)

1 e
(a1,j)
2 · · ·e(a1,j)

j−1 ),

m′
j = (f

(aj,1)
j−1 · · · f (aj,1)

2 f
(aj,1)
1 ) · · ·(f (aj,j−2)

j−1 f
(aj,j−2)
j−2 )f

(aj,j−1)
j−1 .

Then, we have e(A
+) =mnmn−1 · · ·m2 and f (A

−) =m′
2m

′
3 · · ·m′

n. Let Ai be the submatrix

of A consisting of the first i rows and columns, and write e(A
+) = x1e

(A+
i ), f (A

−) = f (A
−
i )x′

1.

Then,

m(A,λ) = x1e
(A+

i )kλf
(A−

i )x′
1,

where x1 =mnmn−1 · · ·mi+1 and x′
1 =m′

i+1m
′
i+2 · · ·m′

n. By Lemma 4.8, we may assume

that λi � σi(A
+
i ) = σi(A

+). Furthermore, by Lemma 4.7, we have

m(A,λ) = x1kλ′e(A
+
i )f (A

−
i )x′

1,

where λ′ = λ− co(A+
i )+ro(A+

i ). By Lemma 2.1,

e(A
+
i )f (A

−
i ) = f (A

−
i )e(A

+
i )+f,

https://doi.org/10.1017/nmj.2024.29 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2024.29


PRESENTING INFINITESIMAL q-SCHUR ALGEBRAS 13

where f is a K -linear combination of xe
jhjx

f
j with hj ∈ spanK {kλ|λ ∈ Λ(n,d)} and

deg(xe
j ) + deg(xf

j) < deg(Ai). Here, xe
j (resp. xf

j) denotes a monomial in the e
(a)
i (resp.

f
(a)
i ). Thus, deg(x1) + deg(xe

j ) + deg(xf
j) + deg(x′

1) < deg(A). Since λi < σi(A), we have

λ′
i = λi−σi(A

+
i )< σi(A)−σi(A

+
i ) = σi(A

−
i ). It follows from Lemma 4.7 that kλ′f (A

−
i ) = 0.

Hence, we have

m(A,λ) = x1kλ′fx′
1.

Furthermore, by Proposition 3.1, we see that each x1x
e
j is a K -linear combination of e(B)

with B ∈ Θ+(n)r, deg(B) = deg(x1x
e
j ) and each xf

jx
′
1 is a K -linear combination of f (C)

with C ∈Θ−(n)r, deg(C) = deg(xf
jx

′
1). Therefore, by Lemma 4.7 each x1kλ′xe

jhjx
f
jx

′
1 is a

K -linear combination of m(A′,μ) with deg(A′)< deg(A), since deg(x1)+deg(xe
j )+deg(xf

j)+

deg(x′
1)< deg(A). Consequently, by induction, we have m(A,λ) ∈ spanK Md,r. The proof is

completed.

By Lemma 3.5, we have ζd(UK (GrT )) = SK (n,d)r. Therefore, the map ζd : UK (gln) →
SK (n,d) given in (3.7) restricts to a surjective algebra homomorphism

ζd,r : UK (GrT )→SK (n,d)r. (4.2)

By (3.8), we have

ζd,r(Kλ) = [diag(λ)]ε,

for λ∈Λ(n,d). So, we have ζd,r(Id,r)= 0. Hence, the map ζd,r :UK (GrT )→SK (n,d)r induces

a surjective algebra homomorphism

ζ ′d,r : TK (n,d)r = UK (GrT )/Id,r →SK (n,d)r.

Theorem 4.10. The map ζ ′d,r is an algebra isomorphism. In particular, the kernel of

the map ζd,r :UK (GrT )→SK (n,d)r is generated by the elements 1−
∑

μ∈Λ(n,d)Kμ, KiKλ−
ελiKλ and

[
Ki;0
t

]
Kλ−

[
λi

t

]
ε
Kλ for 1 � i � n, t ∈ N and λ ∈ Λ(n,d).

Proof. By Proposition 3.7, the set ζ ′d,r(Md,r) forms a K -basis for SK (n,d)r. Thus, by

Proposition 4.9, we conclude that ζ ′d,r is an algebra isomorphism.

§5. The algebra TK (n,d)r

For d ∈ N, let

TK (n,d)r = U̇K (GrT )/Jd,r,

where Jd,r is the two-sided ideal of U̇K (GrT ) generated by the elements 1λ for λ /∈ Λ(n,d).

For λ ∈ Zn, let

kλ = 1λ+Jd,r.

Then, we have 1 =
∑

λ∈Λ(n,d) kλ. For 1 � i � n−1 and 0 � m< lpr−1, let

e
(m)
i =

∑
λ∈Λ(n,d)

E
(m)
i 1λ+Jd,r, f

(m)
i =

∑
λ∈Λ(n,d)

1λF
(m)
i +Jd,r.
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For A ∈Θ±(n)r, let. Furthermore for 1 � i � n, 1 � j � n−1, c ∈ Z and t ∈ N let

ki =
∑

λ∈Λ(n,d)

Ki1λ+Jd,r,

[
ki;c

t

]
=

∑
λ∈Λ(n,d)

[
Ki;c

t

]
1λ+Jd,r,

[
k̃j ;c

t

]
=

∑
λ∈Λ(n,d)

[
K̃j ;c

t

]
1λ+Jd,r.

e(A
+) =

∑
λ∈Λ(n,d)

E(A+)1λ+Jd,r, f
(A−) =

∑
λ∈Λ(n,d)

1λF
(A−)+Jd,r.

We will prove in Theorem 5.5 that the algebra TK (n,d)r is isomorphic to the infinitesimal

q-Schur algebra SK (n,d)r.

By [3, Lem. 3.10 and Prop. 4.2], we have the following result.

Lemma 5.1. There is an unique algebra antiautomorphism τ̇d on TK (n,d)r such that

τ̇d(e
(m)
i ) = f

(m)
i , τ̇d(f

(m)
i ) = e

(m)
i and τ̇d(kλ) = kλ for 1 � i � n− 1, 0 � m < lpr−1 and λ ∈

Λ(n,d).

Clearly we have the following result.

Lemma 5.2. Let 1� i� n,1� j � n−1, c∈Z, t∈N and λ∈Zn. The following formulas

hold in TK (n,d)r :

kikλ = ελikλ,

[
ki;c

t

]
kλ =

[
λi+ c

t

]
ε

kλ,

[
k̃j ;c

t

]
kλ =

[
λj −λj+1+ c

t

]
ε

kλ.

Recall from (3.1) that Θ±(n)r = {A ∈ Θ±(n) | 0 � aij < lpr−1,∀i �= j}, Θ+(n)r = {A ∈
Θ+(n) | 0 � aij < lpr−1,∀i < j} and Θ−(n)r = {A ∈Θ−(n) | 0 � aij < lpr−1,∀i > j}.

Lemma 5.3. Let λ ∈ Λ(n,d). The following results hold in TK (n,d)r. (1) If A ∈Θ+(n)r
and λi < σi(A) for some i, then e(A)kλ = 0. (2) If A ∈ Θ−(n)r and λi < σi(A) for some i,

then kλf
(A) = 0.

Proof. Assume A∈Θ+(n)r and λi <σi(A) for some i. For μ∈Zn,1� j � n−1, we have

ejkμ = kμ+αj ej . This implies that

mi(A)mi−1(A) · · ·m2(A)kλ = kλ+νmi(A)mi−1(A) · · ·m2(A),

where mj = e
(aj−1,j)
j−1 (e

(aj−2,j)
j−2 e

(aj−2,j)
j−1 ) · · ·(e(a1,j)

1 e
(a1,j)
2 · · ·e(a1,j)

j−1 ) and

ν =
∑

2�j�i

( ∑
1�s�j−1

as,jes− (
∑

1�s�j−1

as,j)ej

)
.

Thus, we have e(A)kλ =mnmn−1 · · ·mi+1kλ+νmimi−1 · · ·m2. Since λi <σi(A), we have λ+ν �∈
Λ(n,d). It follows that kλ+ν = 0. Therefore, we have e(A)kλ = 0. Applying τ̇d to the identity

in (1) gives that in (2).

Proposition 5.4. Let Md,r = {e(A+)kλf
(A−) |A∈Θ±(n)r, λ∈Λ(n,d), λ�σ(A)}. Then,

the algebra TK (n,d)r is spanned as a K -module by the elements in Md,r.
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Proof. By Proposition 3.3, we have

TK (n,d)r = spanK {e(A
+)kλf

(A−) |A ∈Θ±(n)r, λ ∈ Λ(n,d)}.

Thus, it is enough to prove that if λ ∈ Λ(n,d) and λi < σi(A) for some i, e(A
+)kλf

(A−) ∈
spanK Md,r. We apply induction on deg(A). If deg(A) = 1, then by Lemma 5.3 we have

e(A
+)kλf

(A−) = 0. Now suppose deg(A)> 1. For 2 � j � n let

mj = e
(aj−1,j)
j−1 (e

(aj−2,j)
j−2 e

(aj−2,j)
j−1 ) · · ·(e(a1,j)

1 e
(a1,j)
2 · · ·e(a1,j)

j−1 )

m′
j = (f

(aj,1)
j−1 · · · f(aj,1)

2 f
(aj,1)
1 ) · · ·(f(aj,j−2)

j−1 f
(aj,j−2)
j−2 )f

(aj,j−1)
j−1 .

Then, we have

e(A
+)kλf

(A−) =X1(X2kλ)Y1Y2 =X1(kλ′X2)Y1Y2,

where X1 = mnmn−1 · · ·mi+1, X2 = mimi−1 · · ·m2, Y1 = m′
2m

′
3 · · ·m′

i, Y2 = m′
i+1m

′
i+2 · · ·m′

n

and

λ′ = λ+
∑

2�j�i

⎛⎝ ∑
1�s�j−1

as,jes−

⎛⎝ ∑
1�s�j−1

as,j

⎞⎠ej

⎞⎠ .

By Lemma 2.1 and 5.2, we have kλ′X2Y1 = kλ′Y1X2 + kλ′f1f2 where f1 is a K -linear

combination of monomials f1,k in the e
(a)
s , f2 is a K -linear combination of monomials

f2,k in the f
(a)
s , and deg(f1,k)+deg(f2,k) < deg(X2)+deg(Y1). Since λi < σi(A), we have

λ′
i < σi(A

−). Hence by Lemma 5.3, we have kλ′Y1 = 0. This implies that

e(A
+)kλf

(A−) =X1kλ′f1f2Y2 = kλ′′X1f1f2Y2,

where

λ′′ = λ+
∑

2�j�n

⎛⎝ ∑
1�s�j−1

as,jes−

⎛⎝ ∑
1�s�j−1

as,j

⎞⎠ej

⎞⎠ .

By Proposition 3.1, we have X1f1,k ∈ spanK {e(B) |B ∈Θ+(n)r, deg(B) = deg(X1f1,k)} and

f2,kY2 ∈ spanK {f(C) | C ∈Θ−(n)r, deg(C) = deg(f2,kY2)}. Thus,

X1f1f2Y2 ∈ spanK {e(B
+)f(B

−) |B ∈Θ±(n)r, deg(B)< deg(A)}.

By induction, we have kλ′′e(B
+)f(B

−) ∈ spanK Md,r for B ∈ Θ±(n)r with deg(B) < deg(A).

Therefore, e(A
+)kλf

(A−) = kλ′′X1f1f2Y2 ∈ spanK Md,r.

By Lemma 3.6, we have ζ̇d(U̇K (GrT )) = SK (n,d)r. Therefore, the map ζ̇d : U̇K (gln) →
SK (n,d) given in (3.10) restricts to a surjective algebra homomorphism

ζ̇d,r : U̇K (GrT )→SK (n,d)r. (5.1)

Since ζ̇d,r(Jd,r) = 0, the map ζ̇d,r : U̇K (GrT ) → SK (n,d)r induces a surjective algebra

homomorphism

ζ̇ ′d,r : TK (n,d)r = U̇K (GrT )/Jd,r →SK (n,d)r.

A presentation of SK (n,d)r was given in [16, Th. 3.9] in the case where r = 1, K is a field

and l′ is odd. We now generalize this result to the general case.
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Theorem 5.5. The map ζ̇ ′d,r : TK (n,d)r → SK (n,d)r is an algebra isomorphism. In

particular, the kernel of the map ζ̇d,r : U̇K (GrT ) → SK (n,d)r is generated by the elements

1λ for λ /∈ Λ(n,d).

Proof. By Proposition 3.7, the set ζ̇ ′d,r(Md,r) forms a K -basis for SK (n,d)r. Therefore,

by Proposition 5.4, we conclude that ζ̇ ′d,r is an algebra isomorphism.

§6. The classical case

Let U(gln) be the Q-algebra defined by the generators

Ēi, F̄i (1 � i � n−1), Hj (1 � j � n),

and the relations

(a) HiHj =HjHi;

(b) HiĒj − ĒjHi = (δi,j − δi,j+1)Ēj ;

(c) HiF̄j − F̄jHi = (−δi,j + δi,j+1)F̄j ;

(d) ĒiĒj = ĒjĒi, F̄iF̄j = F̄jF̄i when |i− j|> 1;

(e) ĒiF̄j − F̄jĒi = δi,jHi;

(f) Ē2
i Ēj −2ĒiĒjĒi+ ĒjĒ

2
i = 0 when |i− j|= 1;

(g) F̄ 2
i F̄j −2F̄iF̄jF̄i+ F̄jF̄

2
i = 0 when |i− j|= 1.

Then, U(gln) is the universal enveloping algebra of gln. Let UZ(gln) be the Z-subalgebra of

U(gln) generated by Ē
(m)
i , F̄

(m)
i , and

(
Hj

t

)
for 1 � i � n−1, 1 � j � n and m,t ∈ N, where

Ē
(m)
i =

Ēm
i

m!
, F̄

(m)
i =

F̄m
i

m!
,

(
Hj

t

)
=

Hj(Hj −1) · · ·(Hj − t+1)

t!
.

Let UZ(gln) = UZ(gln)⊗Z Z, where Z is viewed as Z-modules by specializing v to 1. Let

ŪZ(gln) = UZ(gln)/〈Ki− 1 | 1 � i � n〉. We shall denote the images of E
(m)
i , F

(m)
i , etc. in

ŪZ(gln) by the same letters. By [22, 6.7(c)], there is an algebra isomorphism

θ : ŪZ(gln)→UZ(gln), (6.1)

such that θ(E
(m)
i ) = Ē

(m)
i , θ(F

(m)
i ) = F̄

(m)
i , θ(

[
Kj ;0
t

]
) =

(
Hj

t

)
for 1 � i � n− 1, 1 � j � n,

m,t ∈ N. We will identify ŪZ(gln) with UZ(gln).

Let SZ(n,d) = SZ(n,d)⊗Z Z where Z is viewed as Z-modules by specializing v to 1. The

map ζd given in (3.6) induces, upon tensoring with Z, a surjective algebra homomorphism

ξd : UZ(gln)→SZ(n,d).

Since ξd(Ki) = 1, the map ξd induces a surjective algebra homomorphism

ξd : UZ(gln) = ŪZ(gln)→SZ(n,d).

In the remainder of this section, we assume that l′ = l = 1. Let

UK (gln) = UZ(gln)⊗Z K , S̄K (n,d) = SZ(n,d)⊗Z K .

We shall denote the images of Ē
(m)
i , F̄

(m)
i , etc. in UK (gln) by the same letters. For A ∈

Θ(n,d), let [A]1 be the image of [A] in S̄K (n,d). The map ξd induces, upon tensoring with

https://doi.org/10.1017/nmj.2024.29 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2024.29


PRESENTING INFINITESIMAL q-SCHUR ALGEBRAS 17

K , a surjective algebra homomorphism

ξd : UK (gln)→ S̄K (n,d).

Let S̄K (n,d)r be the infinitesimal Schur algebra introduced in [11]. By [11, (5.3.4)], the

set {[A]1 |A ∈Θ(n,d), ai,j < pr, ∀i, j} forms a K -basis for S̄K (n,d)r. Hence, we have

S̄K (n,d)r ∼= SK (n,d)r+1.

Let UK (GrT ) be the K -subalgebra of UK (gln) generated by the elements Ē
(m)
i , F̄

(m)
i ,

(
Hj

t

)
for 1 � i � n−1, 1 � j � n, t ∈ N and 0 � m< pr. Then, by (6.1), we have

UK (GrT )∼= UK (Gr+1T )/〈Ki−1 | 1 � i � n〉.

Therefore, by Lemma 3.5, we have ξd(UK (GrT )) = S̄K (n,d)r. Hence, by restricting the map

ξd to UK (GrT ), we obtain a surjective algebra homomorphism

ξd,r : UK (GrT )→ S̄K (n,d)r.

By Theorem 4.10, we obtain the following result.

Theorem 6.1. The kernel of the map ξd,r : UK (GrT ) → S̄K (n,d)r is generated by the

elements 1−
∑

μ∈Λ(n,d)Hμ and
(
Hi

t

)
Hλ−

(
λi

t

)
Hλ for 1� i� n, t∈N and λ∈Λ(n,d), where

Hλ =
∏

1�i�n

(
Hi

λi

)
.

Let

U̇(gln) :=
⊕

λ,μ∈Zn

λU(gln)μ,

where

λU(gln)μ = U(gln)/

⎛⎝∑
j∈Zn

(
Hj−λj

)
U(gln)+

∑
j∈Zn

U(gln)
(
Hj−μj)

⎞⎠ ,

Hj =
∏

1�i�nH
ji
i and λj =

∏
1�i�nλ

ji
i . Let π̄λ,μ : U(gln) → λU(gln)μ be the canonical

projection. Let 1̄λ = π̄λ,λ(1). As in the case of U̇(gln), there is a natural associative Q-

algebra structure on U̇(gln) inherited from that of U(gln), and U̇(gln) is naturally a U(gln)-
bimodule. Let U̇Z(gln) be the Z-subalgebra of U̇(gln) generated by the elements Ē

(m)
i 1̄λ and

1̄λF̄
(m)
i for 1 � i � n−1, λ ∈ Zn and m ∈ N.

Let U̇Z(gln) = U̇Z(gln)⊗Z Z, where Z is viewed as a Z-module by specializing v to 1. By

(6.1), we have

U̇Z(gln)
∼= U̇Z(gln). (6.2)

We will identify U̇Z(gln) with U̇Z(gln). The map ζ̇d given in (3.9) induces, upon tensoring

with Z, a surjective algebra homomorphism

ξ̇d : U̇Z(gln)→SZ(n,d).

Let U̇K (gln) = U̇Z(gln)⊗Z K . We shall denote the images of Ē
(m)
i 1̄λ, 1̄λF̄

(m)
i in U̇K (gln)

by the same letters. The map ξ̇d induces, upon tensoring with K , a surjective algebra
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homomorphism

ξ̇d : U̇K (gln)→ S̄K (n,d).

Let U̇K (GrT ) be the K -subalgebra of U̇K (gln) generated by the elements Ē
(m)
i 1̄λ, 1̄λF̄

(m)
i

for 1 � i � n−1, λ ∈ Zn and 0 � m< pr. Then, by (6.2), we have

U̇K (GrT )∼= U̇K (Gr+1T ).

By Lemma 3.6, we have ξ̇d(U̇K (GrT )) = S̄K (n,d)r. Hence, by restricting the map ξ̇d to

U̇K (GrT ), we obtain a surjective algebra homomorphism

ξ̇d,r : U̇K (GrT )→ S̄K (n,d)r.

By Theorem 5.5, we obtain the following result.

Theorem 6.2. The kernel of the map ξ̇d,r : U̇K (GrT ) → S̄K (n,d)r is generated by the

elements 1̄λ for λ �∈ Λ(n,d).

§7. Borel subalgebras of the infinitesimal q-Schur algebra SK (n,d)r

In this section, we investigate Borel subalgebras of the infinitesimal q-Schur algebra

SK (n,d)r. In what follows, we focus entirely on the quantum case as the corresponding

results for the classical cases are essentially the same.

Let UK (B
+
r T ) =U+

K (GrT )U
0
K (gln) and UK (BrT ) =U0

K (gln)U
−
K (GrT ). These algebras are

called Borel subalgebras of UK (GrT ). Furthermore, let U̇K (B
+
r T ) (resp. U̇K (BrT )) be the

K -subalgebra of U̇K (GrT ) generated by the elements E
(m)
i 1λ (resp. 1λF

(m)
i ) for 1� i�n−1,

λ ∈ Zn and 0 � m< lpr−1.

Let S�0
K (n,d)r (resp. S�0

K (n,d)r) be the K -subalgebra of SK (n,d)r generated by e
(m)
i

(resp. f
(m)
i ) and kλ for 1 � i � n− 1, 0 � m < lpr−1 and λ ∈ Λ(n,d). These algebras are

called Borel subalgebras of SK (n,d)r.

Let S+
K (n,d)r (resp. S−

K (n,d)r) be the K -subalgebra of SK (n,d)r generated by e
(m)
i (resp.

f
(m)
i ) for 1 � i � n−1 and 0 � m< lpr−1.

Lemma 7.1. Each of the following set forms a K -basis of S+
K (n,d)r:

(1) M+
d,r := {e(A) |A ∈Θ+(n)r, σ(A) � d};

(2) P+
d,r := {A(0,d) |A ∈Θ+(n)r, σ(A) � d}.

A similar result holds for S−
K (n,d)r.

Proof. By [8, Prop. 8.2], we have 1 =
∑

λ∈Λ(n,d)kλ. Hence, by [15, Lem. 4.10], we have

e(A) =
∑

λ∈Λ(n,d)

e(A)kλ =
∑

λ∈Λ(n,d)
λ�σ(A)

e(A)kλ, (7.1)

for A ∈Θ+(n)r. Furthermore, we have

A(0,d) =
∑

λ∈Λ(n,d)

A(0,d)[diag(λ)]ε =
∑

λ∈Λ(n,d)
λ�σ(A)

A(0,d)[diag(λ)]ε, (7.2)
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for A ∈Θ+(n)r, since 1 =
∑

λ∈Λ(n,d)[diag(λ)]ε. Therefore, we have

e(A) =A(0,d) = 0,

for A ∈ Θ+(n)r with σ(A) > d. Hence, by Proposition 3.1 and 3.2, we conclude that

S+
K (n,d)r = spanK M+

d,r = spanK P+
d,r. Furthermore, by Proposition 3.7, the sets M+

d,r and

P+
d,r are both linearly independent. Our assertion follows.

Lemma 7.2. Each of the following set forms a K -basis of S�0
K (n,d)r:

(1) M �0
d,r := {e(A)kλ |A ∈Θ+(n)r, λ ∈ Λ(n,d), λ � σ(A)};

(2) L �0
d,r := {[A+diag(λ)]ε |A ∈Θ+(n)r, λ ∈ Λ(n,d−σ(A))}.

A similar result holds for S�0
K (n,d)r.

Proof. From Lemma 7.1, (7.1) and (7.2), it follows that S�0
K (n,d)r = spanK M �0

d,r =

spanK L �0
d,r . Therefore, the result follows from Proposition 3.7.

Let T �0
K (n,d)r be the quotient of UK (B

+
r T ) by I�0

d,r , where I�0
d,r is the two-sided ideal

of UK (B
+
r T ) generated by the elements 1−

∑
μ∈Λ(n,d)Kμ,KiKλ− ελiKλ and

[
Ki;0
t

]
Kλ−[

λi

t

]
ε
Kλ for 1 � i � n, t ∈ N and λ ∈ Λ(n,d).

By restricting the map ζd,r given in (4.2) to UK (B
+
r T ), we obtain a surjective algebra

homomorphism ζd,r : UK (B
+
r T )→S�0

K (n,d)r. Since ζd,r(I
�0
d,r ) = 0, the map ζd,r induces an

epimorphism

ζ ′d,r : T �0
K (n,d)r = UK (B

+
r T )/I

�0
d,r →S�0

K (n,d)r.

Theorem 7.3. The map ζ ′d,r : T
�0

K (n,d)r → S�0
K (n,d)r is an algebra isomorphism. In

particular, the kernel of the map ζd,r :UK (B
+
r T )→S�0

K (n,d)r is I�0
d,r . A similar result holds

for S�0
K (n,d)r.

Proof. Using an argument similar to the proof of Proposition 4.9, we can show that the

algebra T �0
K (n,d)r is spanned as a K -module by the elements E(A)Kλ+I�0

d,r for A∈Θ+(n)r,

λ ∈ Λ(n,d) and λ � σ(A). Furthermore, by Lemma 7.2, the set

{ζd,r(E(A)Kλ+ I�0
d,r ) |A ∈Θ+(n)r, λ ∈ Λ(n,d), λ � σ(A)},

forms a K -basis for S�0
K (n,d)r. Hence, ζ

′
d,r is an algebra isomorphism.

Let T�0
K (n,d)r be the quotient of U̇K (B

+
r T ) by J�0

d,r , where J�0
d,r is the two-sided ideal of

U̇K (B
+
r T ) generated by the elements 1λ for λ �∈ Λ(n,d).

By restricting the map ζ̇d,r given in (5.1) to U̇K (B
+
r T ), we obtain a surjective algebra

homomorphism ζ̇d,r : U̇K (B
+
r T )→S�0

K (n,d)r. Since ζ̇d,r(J
�0
d,r ) = 0, the map ζ̇d,r induces an

epimorphism

ζ̇ ′d,r : T
�0
K (n,d)r = U̇K (B

+
r T )/J

�0
d,r →S�0

K (n,d)r.

Theorem 7.4. The map ζ̇ ′d,r : T
�0
K (n,d)r → S�0

K (n,d)r is an algebra isomorphism. In

particular, the kernel of the map ζ̇d,r : U̇K (B
+
r T )→S�0

K (n,d)r is J�0
d,r . A similar result holds

for S�0
K (n,d)r.
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Proof. Using an argument similar to the proof of Proposition 5.4, we can show that the

algebra T
�0
K (n,d)r is spanned as a K -module by the elements E(A)1λ+J�0

d,r for A∈Θ+(n)r,

λ ∈ Λ(n,d) and λ � σ(A). Furthermore, by Lemma 7.2, the set

{ζ̇ ′d,r(E(A)1λ+J�0
d,r ) |A ∈Θ+(n)r, λ ∈ Λ(n,d), λ � σ(A)},

forms a K -basis of S�0
K (n,d)r. Therefore, ζ̇

′
d,r is an algebra isomorphism.

§8. Irreducible SK (n,d)r-modules

In this section, we assume that K is a field, p > 0 and l′ = l is odd. Let X = Zn and

X+ = {λ ∈X | λ1 � λ2 � · · · � λn}. For λ ∈X+, let L(λ) be the simple integrable UK (gln)-

module of highest weight λ. Let IndU2

U1
(−) = H0(U2/U1,−) be the induction functor for

quantized enveloping algebras defined in [1], [2].

For λ ∈X, let

Ẑr(λ) = Ind
UK (GrT )
UK (BrT )λ, L̂r(λ) = socUK (GrT )Ẑr(λ).

Let Pr = {λ∈Nn | 0� λi−λi+1 < lpr−1 for 1� i� n}, where λn+1 = 0. The following result

was given in [12, Ths. 3.4.1 & 3.4.3].

Theorem 8.1. (1) The set {L̂r(λ) | λ ∈X} form a complete set of pairwise nonisomor-

phic irreducible integrable UK (GrT )-modules.

(2) For λ,μ ∈X, we have L̂r(λ+ lpr−1μ)∼= L̂r(λ)⊗ lpr−1μ.

(3) For λ ∈ Pr, we have L(λ)|UK (GrT )
∼= L̂r(λ).

If M is a UK (GrT )-module and λ ∈X let

Mλ = {w ∈M |Kiw = ελiw,

[
Ki;0

t

]
w =

[
λi

t

]
ε

w for 1 � i � n, t ∈ N}.

Let Γr = Pr + lpr−1Nn and Γd
r =

{
λ ∈ Γr

∣∣∑n
i=1λi = d

}
. For λ,μ ∈ Zn with

∑
1�i�nλi =∑

1�i�nμi we write λ � μ if
∑

1�s�iλs �
∑

1�s�iμs for 1 � i � n.

Lemma 8.2. For λ ∈ Γd
r we have L̂r(λ) =⊕μ∈Λ(n,d)L̂r(λ)μ.

Proof. We write λ = α+ lpr−1β with α ∈ Pr and β ∈ Nn. By Theorem 8.1, we have

L̂r(λ) ∼= L(α)⊗ lpr−1β. Hence, it suffices to show that L(α) = ⊕μ∈Λ(n,d′)L(α)μ, where

d′ =
∑

1�i�nαi. If L(α)μ �= 0 for some μ ∈ Zn with
∑

1�i�nμi = d′. We claim that

μ ∈ Nn. Otherwise, there exists some element w in the symmetric group Sn such that

γ = (μw(1), . . . ,μw(n)) and γn < 0. Since L(α)μ �= 0, we have L(α)γ �= 0 and hence γ�α. This

implies that
∑

1�i�n−1 γi �
∑

1�i�n−1αi � d′. Hence, since γn < 0, we have
∑

1�i�n γi <d′.

This is a contradiction. The assertion follows.

The irreducible modules for infinitesimal q-Schur algebras were classified in [4, Sec. 5.1].

We now use Theorem 4.10 to give a classification of irreducible SK (n,d)r-modules.

Theorem 8.3. The set {L̂r(λ) | λ ∈ Γd
r} forms a completed set of pairwise nonisomor-

phic irreducible SK (n,d)r-modules.

Proof. Let λ ∈ Γd
r . By Lemma 8.2, we have L̂r(λ) = ⊕μ∈Λ(n,d)L̂r(λ)μ. Let wμ be a

nonzero vector in L̂r(λ)μ for some μ∈Λ(n,d). Since μ∈Λ(n,d), we have Kαwμ =
[
μ
α

]
ε
wμ =
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δα,μwμ for α ∈ Λ(n,d). It follows that∑
β∈Λ(n,d)

Kβwμ =
∑

β∈Λ(n,d)

δβ,μwμ = wμ,

(Ki−εαi)Kαwμ = δα,μKiwμ−εαiδα,μwμ = 0,([
Ki;0

t

]
−
[
αi

t

])
Kαwμ = δα,μ

[
Ki;0

t

]
wμ−

[
αi

t

]
δα,μwμ = 0,

for α ∈ Λ(n,d), 1 � i � n and t ∈ N. Thus, by Theorem 4.10, we conclude that L̂r(λ) can

be regarded as a SK (n,d)r-module.

On the other hand, let L be an irreducible SK (n,d)r-module. By Theorem 8.1, we conclude

that L ∼= L̂r(ν + lpr−1δ) ∼= L(ν)⊗ lpr−1δ for some ν ∈ Pr and δ ∈ Zn. Hence, since L is

a SK (n,d)r-module, we have (νw(1),νw(2), . . . ,νw(n)) + lpr−1δ ∈ Λ(n,d) for any w in the

symmetric group Sn. It follows that νn + lpr−1δj � 0 for 1 � j � n. Furthermore, since

ν ∈ Pr, we have 0 � νn < lpr−1. Therefore, we have δj � 0 for 1 � j � n. Consequently, we

have ν+ lpr−1δ ∈ Γd
r . The proof is completed.
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