1 Introduction
Let
$G \subset \mathbb {R}^2$
be a bounded and simply connected domain with smooth boundary
$\partial G$
, and g be a smooth map from
$\partial G$
to
$S^1$
satisfying
$d:=\deg (g,\partial G) \neq 0$
. Without loss of generality, we assume
$d>0$
. Bethuel et al. [Reference Bethuel, Brezis and Helein3] and Struwe [Reference Struwe21] well studied the asymptotic behavior of the Ginzburg–Landau functional
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu1.png?pub-status=live)
as
$\varepsilon \to 0^+$
, and established the
$C^k$
-convergence relation between the minimizer and some harmonic map
$u_*$
on G. Namely, if
$u_\varepsilon $
is the minimizer of
$E(u)$
in
$H_g^1(G,\mathbb {R}^2)$
, then there exists a subsequence
$u_{\varepsilon _k}$
such that when
$k \to \infty $
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu2.png?pub-status=live)
for any
$l \geq 1$
. Here,
$a_1,a_2,\ldots ,a_d$
are the singularities of
$u_*$
in G. In particular, [Reference Bethuel, Brezis and Helein3, Theorem VII.2] shows the following property of the energy concentration
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn1.png?pub-status=live)
These results come into play when studying the location of the vortices in phase transition problems occurring in superconductivity and superfluids. In addition, these results are also helpful to understand the regularity of harmonic maps and the distribution of the singularities.
In addition, 19 open problems were posed in [Reference Bethuel, Brezis and Helein3]. Comte and Mironescu gave positive answers to the 7th problem (cf. [Reference Comte and Mironescu8], [Reference Comte and Mironescu9], and [Reference Mironescu20]) on the global analysis of the Ginzburg–Landau energy. In particular, there exists
$C>0$
such that as
$\varepsilon \to 0$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn2.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn3.png?pub-status=live)
In this paper, we are concerned with the asymptotic behavior of the minimizer
$u_{\varepsilon }$
of the p-Ginzburg-Landau-type functional
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu3.png?pub-status=live)
in the space
$W=\{v \in W^{1,p}(G,\mathbb {R}^2) \cap L^4(G,\mathbb {R}^2); v|_{\partial G}=g\}$
.
Functional
$E_\varepsilon (u,G)$
can be used to study the partial regularity of p-harmonic maps and the location of the singularities when
$p \in (1,2)$
and p approaches the dimension 2 (cf. [Reference Hardt and Lin14], [Reference Wang24]). Different from the case
$p \in (1,2)$
,
$W_g^{1,p}(G, S^1)=\emptyset $
when
$p>2$
and
$d \neq 0$
. Therefore, there does not exist p-harmonic map from G to
$S^1$
. Thus, functional
$E_\varepsilon (u,G)$
is naturally used by the idea of penalization which is analogous to researching harmonic maps in [Reference Bethuel, Brezis and Helein3]. In fact, the same idea had been used in studying flow of p-harmonic maps (cf. [Reference Chen, Hong and Hungerbuhler6]).
In this paper, we investigate the global properties of functional
$E_\varepsilon (u,G)$
. In addition, the singularity properties of the functional is also interesting. When
$p=2$
, the results (1.1)–(1.3) describe the singularity and the global properties. We expect to generalize them to the case of
$p \neq 2$
.
By the direct methods, we know the existence of the minimizer
$u_\varepsilon $
of
$E_\varepsilon (u,B)$
in the space W. Clearly, the minimizer is a weak solution to the following system
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn4.png?pub-status=live)
By the regularity theory (cf. [Reference Tolksdorf22]),
$u_\varepsilon \in C^{\alpha }(\overline {G}) \cap C_{loc}^{1,\alpha }(G)$
for each
$\varepsilon $
. In addition, by [Reference Hong15, analogous proof of Theorem 2.2], we also have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn5.png?pub-status=live)
There may be several minimizers of
$E_\varepsilon (u,G)$
. One of them, denoted by
$\tilde {u}_{\varepsilon }$
, can be obtained as the limit of a subsequence
$u_{\varepsilon }^{\eta _k}$
of the minimizers
$u_{\varepsilon }^{\eta }$
of the regularized functional (if we follow Uhlenbeck’s idea in [Reference Uhlenbeck23])
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu4.png?pub-status=live)
in W (see also [Reference Giaquinta and Modica13] and [Reference Hong15]). Namely, there exists a subsequence
$\eta _k$
of
$\eta $
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn6.png?pub-status=live)
where
$\tilde {u}_\varepsilon $
is also a minimizer of
$E_\varepsilon (u,G)$
in W. Here,
$\tilde {u}_\varepsilon $
is called the regularized minimizer.
When
$p>2$
, [Reference Lei17, Theorem 6.3] shows a convergence result of the minimizer
$u_\varepsilon $
of
$E_\varepsilon (u,G)$
in W. Namely, there exists a subsequence
$u_{\varepsilon _k}$
of
$u_\varepsilon $
, such that when
$k \to \infty $
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn7.png?pub-status=live)
where
$u_p$
is a p-harmonic map on
$G \setminus \{a_1,a_2,\cdots ,a_N\}$
. In addition, [Reference Lei18, Theorem 1.1] shows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn8.png?pub-status=live)
where
$m_j>0$
for
$j=1,2,\ldots ,N$
.
The following theorem presents results similar to (1.2) and (1.3) when
$p> 2$
, which will be proved in Section 3.
Theorem 1.1. Assume
$p>2$
,
$u_\varepsilon $
is a minimizer of
$E_\varepsilon (u,G)$
in W. Then we can find a subsequence
$\varepsilon _k$
of
$\varepsilon $
, and
$P_j\geq 0$
which is independent of
$\varepsilon _k$
(
$j=1,2,\ldots ,N$
), such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn9.png?pub-status=live)
where
$\delta _{a_j}$
is the Dirac mass at
$a_j$
. In addition, for any
$\alpha \geq 2-\frac {4}{p}$
, there exists
$L_j> 0$
which is independent of
$\varepsilon _k$
(
$j=1,2,\ldots ,N$
), such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn10.png?pub-status=live)
When
$p \in (1,2)$
, [Reference Lei16, Theorem 1.3] implies a convergence result of the regularized minimizer. Namely,
$\tilde {u}_\varepsilon $
is a regularized minimizer. When
$p \in (2-t,2)$
for some
$t \in (0,1/2)$
, there is a subsequence
$\tilde {u}_k$
of
$\tilde {u}_\varepsilon $
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn11.png?pub-status=live)
where
$u_p$
is a p-harmonic map on G and
$a_1,a_2,\ldots ,a_N \in \overline {G}$
are singularities of
$u_p$
.
The following theorem shows a result similar to (1.1)–(1.3) in the case of
$p \in (1,2)$
, which will be proved in Section 5.
Theorem 1.2. Assume that
$p \in (1,2)$
approaches the dimension
$2$
, and
${u}_\varepsilon $
is a minimizer in W. Then we can find a subsequence
$\varepsilon _k$
of
$\varepsilon $
, and
$Q_j \geq 0$
which is independent of
$\varepsilon $
(
$j=1,2,\ldots ,N$
), such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn12.png?pub-status=live)
Moreover, if
$\tilde {u}_\varepsilon $
is a regularized minimizer, then we can find
$K_j>0$
which is independent of
$\varepsilon $
(
$j=1,2,\ldots ,N$
), such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn13.png?pub-status=live)
In addition, for any
$\alpha \geq 2-p$
, there exist
$M_j \geq 0$
which are independent of
$\varepsilon $
(
$j=1,2,\ldots ,N$
), such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn14.png?pub-status=live)
Here,
$M_j>0$
when
$a_j \in G$
, and
$M_j=0$
when
$a_j \in \partial G$
.
Remark 1.1. When
$p \neq 2$
, if
$u_\varepsilon $
has radial structure, that is,
$G=B_1(0)$
and
$u_\varepsilon (x) \in \{u \in W; u(x)=f(r)(\cos d\theta , \sin d\theta ), r=|x|, x=(\cos \theta , \sin \theta )$
}, then
$N=1$
. According to [Reference Lei and Xu19, Theorems 1.1 and 1.2],
$P_1$
in Theorem 1.1 and
$Q_1$
in Theorem 1.2 are positive. For a general minimizer
$u_\varepsilon $
(i.e.,
$u_\varepsilon $
without the radial structure), it seems difficult to determine the values of
$P_j$
and
$Q_j$
even if
$p=2$
(cf. [Reference Comte and Mironescu9]).
Remark 1.2. (i) Equations (1.8)–(1.10) and (1.12)–(1.14) generalize (1.1)–(1.3) in the cases of
$p>2$
and
$p \in (1,2)$
, respectively. Different from the case of
$p=2$
, the conformal invariant of the functional with
$p \neq 2$
is lost. So the results does not look concise. Namely, we need balance the energy functional by some proper weights to ensure the new energy integrals are globally bounded.
(ii) When
$p>2$
, (1.8) and (1.9) show the concentration properties of
$\varepsilon ^{p-2}E_\varepsilon (u_\varepsilon ,G)$
. For the regularized minimizer
$\tilde {u}_{\varepsilon }$
, [Reference Lei18, Theorem 1.1] shows that the first and the second terms of
$\varepsilon ^{p-2}E_\varepsilon (u_\varepsilon ,G)$
have the same convergence orders, and
$\varepsilon _k^{p-2}E_\varepsilon (\tilde {u}_{\varepsilon _k},G) \to \frac {p}{p-2} \Sigma _{j=1}^N m_j\delta _{a_j}$
when
$k \to \infty $
, where
$m_j$
is the positive coefficients in (1.8).
(iii) When
$p \in (1,2)$
, (1.13) shows the concentration property of the second term of
$\varepsilon ^{p-2}E_\varepsilon (\tilde {u}_\varepsilon ,G)$
. Moreover, when
$p \in ((\sqrt {17}-1)/2,2)$
, the first term of
$\varepsilon ^{p-2}E_\varepsilon (\tilde {u}_{\varepsilon },G)$
is blow-up if
$\tilde {u}_{\varepsilon }$
is radial (cf. [Reference Lei and Xu19, (1.20)]). So the convergence orders of the first and the second terms of
$\varepsilon ^{p-2}E_\varepsilon (\tilde {u}_{\varepsilon },G)$
are different.
To prove (1.12), we need the decay result of the gradient of
$|u_\varepsilon |-1$
in arbitrary compact subset of
$G\setminus (\cup _j\{a_j\})$
. For the regularized minimizer
$\tilde {u}_\varepsilon $
, it is clear in view of (1.11). For the general minimizer
$u_\varepsilon $
it is not easy to be obtained.
In Section 4, we will prove the following decay result, which does not only come into play to deduce (1.12), but also has its own meaning of independence.
Theorem 1.3. Let
$p \in (1,2)$
. Assume
${u}_\varepsilon $
is a minimizer in W. Then for any compact subset
$K \subset G \setminus \{a_j\}_{j=1}^N$
, there holds
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn15.png?pub-status=live)
Finally, we consider the finite energy solutions of
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn16.png?pub-status=live)
When
$p=2$
, Brezis et al. [Reference Brezis, Merle and Riviere5] gave a Liouville theorem by an idea of Cazenave. Namely, if
$\nabla u \in L^2(\mathbb {R}^2)$
, then either
$u(x) \equiv 0$
, or
$u(x) \equiv C$
with
$|C| =1$
. When
$p \neq 2$
, we have the following result which will be proved in Section 6.
Theorem 1.4. Let u be a classical solution of (1.16) with
$p>1$
and
$p \neq 2$
. If
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn17.png?pub-status=live)
then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn18.png?pub-status=live)
where C is a constant vector satisfying
$|C| \in \{0,1\}$
.
Remark 1.3. The Liouville theorem of the critical points of p-Ginzburg–Landau energy on the Riemannian manifold can be seen in [Reference Chong, Cheng, Dong and Zhang7]. In addition, the p-Ginzburg–Laudan functional on
$\mathbb {R}^2$
was well studied in [Reference Almog, Berlyand, Golovaty and Shafrir1] and [Reference Almog, Berlyand, Golovaty and Shafrir2].
2 Preliminaries
Besides (1.7), (1.8), and (1.11), we recall several results of the case
$p \neq 2$
.
Assume
$u_{\varepsilon }$
is a minimizer of
$E_{\varepsilon }(u,G)$
in W. Denote the disc with x as center and r as radius by
$B(x,r)$
or
$B_r(x)$
. Let
$\lambda , \mu $
be two positive constants which are independent of
$\varepsilon $
. If
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu5.png?pub-status=live)
then
$B(x^{\varepsilon },\lambda \varepsilon )$
is called a good disc. Otherwise
$B(x^{\varepsilon },\lambda \varepsilon )$
is called a bad disc. When
$p>2$
, [Reference Lei17, Remark 2.7] shows that the zeros of
$u_{\varepsilon }$
are included in finite nonintersecting bad discs
$B(x_i^{\varepsilon },h\varepsilon )$
(
$i=1,2,...,N_1$
), where
$N_1$
and
$h>0$
are independent of
$\varepsilon $
. As
$\varepsilon \to 0$
, there exists a subsequence
$x_i^{\varepsilon _k}$
of the center
$x_i^{\varepsilon }$
of bad discs such that
$x_i^{\varepsilon _k} \to a_i \in \overline {G} (i=1,2,...,N_1).$
Since there may be at least two subsequences that converge to the same point, we denote the limit points by
$a_1,a_2,...,a_N (N \leq N_1)$
. Write
$\Lambda _j:=\{i; x_i^{\varepsilon _k} \to a_j$
when
$k \to \infty \}$
for each j. We can choose
$\sigma>0$
suitably small such that
$B_\sigma (a_j) \subset G$
when
$a_j \in G$
, and
$B_\sigma (a_j) \cap B_\sigma (a_m) = \emptyset $
for
$j \neq m$
. When
$p \in (1,2)$
, [Reference Lei16, Section 3] also presents the same conclusions above. Clearly, these results still hold for the regularized minimizers.
2.1 Case of
$p>2$
We now introduce several results in [Reference Lei17] and [Reference Lei18] which will be used later.
Proposition 2.1. [Reference Lei17, Proposition 2.1]
Let
$u_{\varepsilon }$
be a minimizer of
$E_{\varepsilon }(u,G)$
in W. Then, there exists a constant
$C>0$
which is independent of
$\varepsilon \in (0,1)$
, such that
$E_{\varepsilon }(u_{\varepsilon },G) \leq C\varepsilon ^{2-p}$
.
Proposition 2.2. [Reference Lei17, Proposition 2.2]
There exists a constant
$C_0>0$
which is independent of
$\varepsilon \in (0,1)$
, such that for any
$x,y \in \overline {G}$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu6.png?pub-status=live)
Proposition 2.3. [Reference Lei17, Theorem 2.6]
All the zeros of
$u_{\varepsilon }$
are contained in finite, disjointed bad discs
$\{B(x_j^{\varepsilon },h\varepsilon );j=1,2,\ldots ,N_1\}$
. In addition,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu7.png?pub-status=live)
Proposition 2.4. [Reference Lei18, Proposition 2.4]
Write
$d_i:= \deg (u_\varepsilon , \partial B(x_i^{\varepsilon },h\varepsilon ))$
. Then for each i, there exists a subsequence
$\varepsilon _k$
of
$\varepsilon $
such that
$d_i$
is independent of
$\varepsilon _k$
as long as k is sufficiently large.
Proposition 2.5. [Reference Lei17, Theorem 3.1]
Let
$u_\varepsilon $
be a minimizer of
$E_{\varepsilon }(u,G)$
in W. Then for any compact subset K of
$G\setminus \{a_1,a_2,...,a_N\}$
, there exists a constant
$C>0$
which does not depend on
$\varepsilon $
, such that
$E_{\varepsilon }(u_{\varepsilon },K)\leq C$
.
2.2 Case of
$p \in (1,2)$
In [Reference Lei16], the following free energy functional was studied
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu8.png?pub-status=live)
where
$B_r=\{x \in \mathbb {R}^2;|x|<r\}$
,
$\varepsilon $
and
$\varrho $
are small positive parameters. It is associated with the model of superconductivity with normal impurity inclusion such as superconducting-normal junctions. There are two major differences between
$E_{\varepsilon ,\varrho }(u)$
and
$E_\varepsilon (u,G)$
. The former models an heterogenous superconductor and the latter models the homogenous case. In addition, the domain considered in [Reference Lei16] is the unit disk.
In fact, the domain considered in [Reference Lei16] can be replaced by the more general G and the purpose of using
$B_1$
there is for convenience (see also [Reference Ding, Liu and Yu10]). In addition, if
$\varrho =0$
, then
$E_{\varepsilon ,\varrho }(u)$
becomes
$E_\varepsilon (u,G)$
, and we can see the results from the corresponding conclusions of Case I (i.e.,
$\varrho =O(\varepsilon )$
) in [Reference Lei16], as long as we replace
$B_1$
by G and p approaches the dimension
$2$
.
First, by [Reference Lei16, (1–6) in Theorem 1.2], we have
Proposition 2.6. Let
$p\in(1,2),\; u_\varepsilon $
be a minimizer of
$E_\varepsilon (u,G)$
in W. Then there exists a constant
$C>0$
which is independent of
$\varepsilon $
, such that
$E_\varepsilon (u_\varepsilon ,G)\leq C.$
Next, by [Reference Lei16, Theorem 3.1 and Proposition 2.2], we have
Proposition 2.7. Assume that
$p\in(1,2),\;u_{\varepsilon }\in W$
satisfies the (1.4) in the weak sense. Then there is a constant
$\rho _0>0$
, such that for
$\rho \in (0,\rho _0)$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn19.png?pub-status=live)
Here,
$G^{\rho \varepsilon }:=\{x \in G; dist(x,\partial G)> \rho \varepsilon \}$
. In addition, for any
$\rho>0$
, there exists a positive constant
$C_1$
which is independent of
$\varepsilon $
, such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn20.png?pub-status=live)
By [Reference Lei16, (3-1) in Proposition 3.2], we have
Proposition 2.8. Let
$p\in(1,2),\;u_\varepsilon $
be a minimizer of
$E_\varepsilon (u,G)$
in W. Then, there exists a constant
$C>0$
which is independent of
$\varepsilon \in (0,\varepsilon _0)$
with
$\varepsilon _0$
sufficiently small, such that,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu9.png?pub-status=live)
By [Reference Lei16, (3-10)], we have
Proposition 2.9. Let
$p\in(1,2),\;u_\varepsilon $
be a minimizer of
$E_\varepsilon (u,G)$
in W. For any given
$\sigma>0$
, and
$0<\varepsilon \ll \sigma $
, there holds
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu10.png?pub-status=live)
The next proposition shows the reversed Hölder inequality, which is crucial in the proofs of (1.14) and (1.15). We now use the same ideas in [Reference Giaquinta11, Chapter 5] to prove this reversed Hölder inequality.
Proposition 2.10. Assume
$p \in [3/2,2)$
,
$u_{\varepsilon }$
is a minimizer of
$E_{\varepsilon }(u,G)$
in W. Then there exists a constant
$R_0 \in (0,1/2)$
which is independent of
$\varepsilon $
, such that for any
$B_R \subset G (2R<R_0)$
, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu11.png?pub-status=live)
where
$C>0$
depends on
$R_0,p,\tilde {q}$
, and
$t \in (0,1/2)$
only depends on
$R_0$
.
Proof .
Step 1. Let
$Q \subset \mathbb {R}^2$
be a square and
$m \in [3/2,2)$
. Suppose
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn21.png?pub-status=live)
for each
$x_0 \in Q$
and each
$0<R<\frac {1}{3}\min \{dist(x_0,\partial Q), R_0\}$
, where
$b>1$
and
$R_0>0$
are absolute constants. By the same argument of [Reference Giaquinta11, proof of Theorem 1.2], we claim that
$g \in L_{loc}^q(Q)$
for
$q \in [m,m(1+t))$
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn22.png?pub-status=live)
for
$Q_{2R} \subset Q$
,
$0<R<R_0$
, where t is a positive constant only depending on b, and
$C>0$
depends on
$b,m,q$
. In particular, C is blowing up when q approaches
$m(1+t)$
.
In fact, when we check [Reference Giaquinta and Modica12, Proposition 5.1], (2.3) implies
$\theta =0$
and
$f(x) \equiv 0$
. Set
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu12.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu13.png?pub-status=live)
As in [Reference Giaquinta and Modica12, proof of (5.4)], by the Calderon–Zygmund subdivision argument and an iteration, we still obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn23.png?pub-status=live)
for
$T \geq 1$
. According to the result of [Reference Giaquinta and Modica12] (see line 7 in page 167), a in (2.5) can be chosen as
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu14.png?pub-status=live)
In view of
$m \in [3/2,2)$
, a can be bounded by an absolute constant
$\tilde {a}$
(which is independent of m). Now, (2.5) with
$a=\tilde {a}$
is (1.6) in Chapter 5 of [Reference Giaquinta11], which implies that the conditions of [Reference Giaquinta11, Lemma 1.2 in Chapter 5] are satisfied if we write
$h(T)=\int _{E(\Phi ,T)}\Phi $
and
$H(T) \equiv 0$
. By applying Lemma 1.2 in Chapter 5 of [Reference Giaquinta11], we can deduce (2.4) for
$q \in [m,\frac {\tilde {a}}{\tilde {a}-1}m)$
. Set
$\frac {\tilde {a}}{\tilde {a}-1}=1+t$
, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu15.png?pub-status=live)
This implies that t is independent of m. In addition, C in (2.4) depends on
$m[\tilde {a}m- (\tilde {a}-1)q]^{-1}$
, which implies that C is blowing up when q approaches
$m(1+t)$
.
Step 2. Let
$y=x\varepsilon ^{-1}$
in
$E_{\varepsilon }(u,G)$
and denote
$ v_{\varepsilon }(y)=u_{\varepsilon }(x)$
,
$G_{\varepsilon }=\{y=x\varepsilon ^{-1};x \in G\}$
. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu16.png?pub-status=live)
It is clear that
$v_{\varepsilon }$
is also a minimizer of
$E(v,G_{\varepsilon })$
.
Let
$m=(p+2)/2$
, then
$m \in [3/2,2)$
when
$p \in [3/2,2)$
. Clearly,
$(A+B)^m \leq (2\max \{A,B\})^m \leq 2^m(A^m+B^m)$
as long as
$A,B$
are positive. Checking the proof of Theorem 3.1 in Chapter 5 of [Reference Giaquinta11], we find that
$c(m)$
in lines 13–14 of page 160 satisfies
$c(m) = 2^m \leq 4$
for
$p \in [3/2,2)$
. Therefore,
$c_4$
in (3.5) (see line 5 of page 161) is independent of p after an iteration (by Lemma 3.1). Next, the Sobolev–Poincare inequality shows that
$c_5$
can be chosen as a suitably large absolute constant in view of
$p \in [3/2,2)$
. Thus, we also derive a condition which satisfies (2.3) with
$b=c_5$
. Using the reversed Hölder inequality (2.4) with
$g=(\varepsilon +|\nabla v_\varepsilon |)^{\frac {2p}{2+p}}$
, we know that there exist constants
$t, R_0 \in (0,1/2)$
and
$C>0$
, such that for any
$B_R \subset B_{R_0/2} \subset G$
and
$q \in [m,m(1+t))$
, the inequality
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu17.png?pub-status=live)
holds, where
$B_{R/\varepsilon }=\{y=x\varepsilon ^{-1};x \in B_R\}$
. Letting
$x=y\varepsilon $
and multiplying by
$\varepsilon ^{-\frac {2p}{p+2}}$
, we obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu18.png?pub-status=live)
Let
$\tilde {q}=\frac {2pq}{p+2}$
. Noticing
$q \in [m,m(1+t))$
, we can see
$\tilde {q} \in [p,p(1+t))$
. And hence the proposition holds.
Clearly, the results above (Propositions 2.6–2.10) still hold for the regularized minimizers.
By [Reference Lei16, Proposition 5.3], we have
Proposition 2.11. Assume
$p \in (1, 2)$
approaches the dimension
$2$
, and
$\tilde {u}_\varepsilon $
is a regularized minimizer. Then, for any compact subset
$K \subset G \setminus (\cup _{j=1}^N\{a_j\})$
, there exists a positive constant
$C=C(K)$
which is independent of
$\varepsilon $
, such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu19.png?pub-status=live)
3 Proof of Theorem 1.1
In this section, we assume
$p> 2$
, and
$u_\varepsilon $
is the minimizer of
$E_\varepsilon (u,G)$
in W.
Proof of (1.10).
Noting
$\alpha \geq 2-\frac {4}{p}$
, using (1.5), the Hölder inequality and Proposition 2.1, we deduce that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu20.png?pub-status=live)
Namely,
$|\nabla u_\varepsilon |^2(1-|u_\varepsilon |^2)^{\alpha }$
is bounded in
$L^1(G)$
. Thus, there exists a Radon measure
$\omega _1$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu21.png?pub-status=live)
Next, using the Hölder inequality and Proposition 2.5, we see that as
$\varepsilon \to 0$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn24.png?pub-status=live)
Thus,
$supp(\omega _1) \subset \{a_j\}_{j=1}^N$
. Therefore, we can find
$L_j\geq 0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu22.png?pub-status=live)
We claim
$L_j>0$
for each j (and hence
$supp(\omega _1) = \{a_j\}_{j=1}^N$
). For convenience, we here drop k from
$\varepsilon _k$
.
Noting
$B_{h\varepsilon }(x_i)$
contains zeros of
$u_\varepsilon $
, by Propositions 2.3 we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu23.png?pub-status=live)
as long as
$h\varepsilon $
is suitably small. For each
$x_1 \in \partial B_{h\varepsilon }(x_i)$
, by Proposition 2.2, we get
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu24.png?pub-status=live)
Here,
$\hat {l}:=\min \{(8C_0)^{\frac {p}{2-p}},h\}$
. Therefore,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn25.png?pub-status=live)
As in [Reference Hong15, Theorem 3.9], by (3.2) we can write
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu25.png?pub-status=live)
and hence
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu26.png?pub-status=live)
Thus, by the Hölder inequality, there holds
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu27.png?pub-status=live)
Theorem 8.2 in [Reference Brezis, Coron and Lieb4] shows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu28.png?pub-status=live)
where
$d_i=\deg (u_\varepsilon ,\partial B_{h\varepsilon }(x_i))$
is independent of
$\varepsilon $
(see Proposition 2.4). Therefore,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu29.png?pub-status=live)
This implies
$L_j>0$
, and hence (1.10) is proved.
Proof of (1.9).
Denote
$u_\varepsilon $
by u. Clearly, by the Cauchy inequality,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn26.png?pub-status=live)
By Proposition 2.1, we obtain that for each j,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn27.png?pub-status=live)
Using Proposition 2.5, we get
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn28.png?pub-status=live)
Combining (3.4) and (3.5), we see that
$\varepsilon ^{p-2}|\det (\nabla u)|^{p/2}$
is bounded in
$L^1(G)$
. Thus, there exists a Radon measure
$\omega _2$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu30.png?pub-status=live)
By virtue of (3.5),
$supp(\omega _2) \subset \{a_j\}_{j=1}^N$
. Thus, we can find
$P_j\geq 0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu31.png?pub-status=live)
Equation (1.9) is proved.
4 Convergence rate of
$|u_\varepsilon |-1$
when
$p \in (1,2)$
In this section, we consider the case of
$p \in (1,2)$
. Proposition 2.8 implies that
$|{u}_{\varepsilon }|-1$
tends to zero and the decay rate is presented. Here, we will give a decay rate of the gradient of
$|{u}_{\varepsilon }|-1$
.
Proof of Theorem 1.3
Proof.
Step 1. Let
$R>0$
be a small constant such that
$B(x,2R) \subset \subset G\setminus \cup _{i=1}^N\{a_i\}$
. Applying (1.5) and Proposition 2.9, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn29.png?pub-status=live)
By the integral mean value theorem and Proposition 2.6, there is
$r \in [R,2R]$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn30.png?pub-status=live)
with
$C=C(r)>0$
independent of
$\varepsilon $
. Denote
$B(x,r)$
by B. If
$\rho _1$
is a minimizer of the functional
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu32.png?pub-status=live)
in
$W_{|{u}_{\varepsilon }|}^{1,p}(B,\mathbb {R}^+\cup \{0\})$
, then it solves
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn31.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn32.png?pub-status=live)
By the maximum principle, it follows from (4.1) that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn33.png?pub-status=live)
Applying Proposition 2.6 we see easily that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn34.png?pub-status=live)
Step 2. Multiplying (4.3) with
$\rho =\rho _1$
by
$(\nu \cdot \nabla \rho _1)$
, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn35.png?pub-status=live)
where
$\nu $
denotes the unit outside norm vector on
$\partial B$
and
$v=|\nabla \rho _1|^2+1$
. Integrating by parts yields
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn36.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu33.png?pub-status=live)
Substitute this result and (4.8) into (4.7). Noting div
$\nu =r^{-1}>0$
, we can use (4.5), (4.6), (4.4), and (4.2) to obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn37.png?pub-status=live)
Step 3. By the Jensen inequality
$(1+a^2+b^2)^{1/2} \leq 1+|a|+|b|$
and (4.4), there holds
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu34.png?pub-status=live)
where
$\tau $
denotes the unit tangent vector on
$\partial B$
. Using the Hölder inequality and (4.2), we deduce from the result above that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu35.png?pub-status=live)
Inserting (4.9) into this result and using the Young inequality, we obtain that for any
$\delta \in (0,1)$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu36.png?pub-status=live)
Therefore, by choosing
$\delta>0$
sufficiently small we get
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn38.png?pub-status=live)
Multiply (4.3) by
$(1-\rho _1)$
. In view of (4.4), applying the Hölder inequality, and using (4.2) and (4.10), we get
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn39.png?pub-status=live)
Step 4. Set
$U=\rho _1w$
on B;
$U={u}_{\varepsilon }$
on
$G\setminus B$
, where
$w={u}_{\varepsilon }/|{u}_{\varepsilon }|$
. Then
$U \in W$
. Since
${u}_{\varepsilon }$
is a minimizer of
$E_{\varepsilon }(u,G)$
, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn40.png?pub-status=live)
In view of
$p \in (1,2)$
, we get
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu37.png?pub-status=live)
Here, we use the fact
$\int _0^1s^{(p-2)/2}ds=2/p$
. Combining this with (4.12) leads to
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu38.png?pub-status=live)
Using (4.5) and (4.11), we can see from the result above that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn41.png?pub-status=live)
Step 5. Here, we denote
$|u_\varepsilon |$
by
$h_\varepsilon $
.
Clearly,
$(sa^2+b^2)^{(p-2)/2} \geq (a^2+b^2)^{(p-2)/2}$
when
$s \in (0,1)$
and
$p \in (1,2)$
. Therefore, according to the mean value theorem, it follows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu39.png?pub-status=live)
This and (4.13) imply
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn42.png?pub-status=live)
In view of (4.1), there holds
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu40.png?pub-status=live)
Applying the Hölder inequality and Propositions 2.10 and 2.6, we can obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu41.png?pub-status=live)
with
$t_0 \in (0,t)$
is suitably small. Combining this with (4.14), we can see
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn43.png?pub-status=live)
Using the Hölder inequality, by (4.15) and Proposition 2.6, we see that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu42.png?pub-status=live)
Combining with (4.15) and by an argument of finite coverings, we can see (1.15).
5 Proof of Theorem 1.2
Proof of (1.12).
By (3.3) and Proposition 2.6, we get
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn44.png?pub-status=live)
Therefore, we can find a Radon measure
$\omega _3$
and a subsequence
$\varepsilon _k$
of
$\varepsilon $
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn45.png?pub-status=live)
Proposition 2.9 implies that there exists
$\phi _\varepsilon $
such that when
$x \in G \setminus \cup _jB_\sigma (a_j)$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu43.png?pub-status=live)
where
$h_\varepsilon (x)=|u_\varepsilon (x)|$
. Thus, on
$G \setminus \cup _jB_\sigma (a_j)$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu44.png?pub-status=live)
Therefore, by the Hölder inequality, there holds
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn46.png?pub-status=live)
In view of Proposition 2.6 and (1.15),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu45.png?pub-status=live)
when
$\varepsilon \to 0$
. Therefore,
$supp(\omega _3) \subset \{a_j\}_{j=1}^N$
. Thus, there exists constants
$Q_j \geq 0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu46.png?pub-status=live)
Equation (1.12) is proved.
Proof of (1.14).
First we observe that
$2-p<pt$
since p is sufficiently close to
$2$
, where t is the constant in Proposition 2.10 (which implies that t is independent of p). Thus we can choose
$\gamma \in (2-p,pt)$
. By (1.5), the Hölder inequality and Propositions 2.10 and 2.6, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn47.png?pub-status=live)
when
$\varepsilon \to 0$
.
In view of (1.5), the right hand side of (1.4) with
$u=\tilde {u}_\varepsilon $
is bounded by
$\varepsilon ^{-p}$
. Thus, checking the proof of Proposition 5.1 in [Reference Tolksdorf22], and applying Proposition 2.6 we get
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu47.png?pub-status=live)
Therefore, by the Hölder inequality, we obtain that for any
$\gamma>0$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn48.png?pub-status=live)
We set
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu48.png?pub-status=live)
Then for any
$\alpha \geq 2-p$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn49.png?pub-status=live)
In addition,
$\gamma _0 \in (0,pt)$
since p is sufficiently close to
$2$
. Here, t is the constant in Proposition 2.10.
According to Proposition 2.10, and by Proposition 2.6, it follows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu49.png?pub-status=live)
Inserting this result into (5.5) with
$\gamma =\gamma _0$
yields
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn50.png?pub-status=live)
Using (5.6), Proposition 2.8, we can deduce from (5.7) that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn51.png?pub-status=live)
Next, using
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu50.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu51.png?pub-status=live)
which are implied by (1.11), we derive that when
$\varepsilon \to 0$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn52.png?pub-status=live)
Combining (5.4), (5.8) with (5.9), we obtain that
$(1-|\tilde {u}_\varepsilon |^2)^{\alpha } |\nabla \tilde {u}_\varepsilon |^2$
is bounded in
$L^1(G)$
, and hence
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu52.png?pub-status=live)
where
$\omega _4$
is a Radon measure. In addition, (5.9) implies
$supp(\omega _4) \subset \{a_j\}_{j=1}^N$
. Thus, there exists constants
$M_j \geq 0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu53.png?pub-status=live)
By (5.4), we see that
$M_j=0$
when
$a_j \in \partial G$
.
For the other
$a_j$
which are contained in G, using (2.2) instead of Proposition 2.2 in the proof of
$L_j>0$
, we also get
$M_j>0$
. Equation (1.14) is proved.
Proof of (1.13).
By Proposition 2.8,
$\frac {(1-|\tilde {u}_\varepsilon |^2)^2}{\varepsilon ^2}$
is bounded in
$L^1(G)$
. Thus, there exist a subsequence
$\varepsilon _k$
of
$\varepsilon $
and a Radon measure
$\omega _5$
, such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu54.png?pub-status=live)
In addition, according to Proposition 2.11,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu55.png?pub-status=live)
when
$\varepsilon _k \to 0$
. Therefore, we can see that
$supp(\omega _5) \subset \{a_j\}_{j=1}^N$
, and hence
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu56.png?pub-status=live)
where
$K_j \geq 0$
.
We claim
$K_j>0$
for each j. In fact, there exists
$x_j^\varepsilon $
which is the center of the bad disc tends to
$a_j$
when
$\varepsilon \to 0$
. Recalling the definition of the bad disc in Section 2, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu57.png?pub-status=live)
for each j. This implies
$K_j>0$
(and hence
$supp(\omega _5) = \{a_j\}_{j=1}^N$
). Equation (1.13) is proved.
6 Proof of Theorem 1.4
Step 1. First we claim
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn53.png?pub-status=live)
For convenience, sometimes we denote
$B_R(0)$
by
$B_R$
.
From (1.17), it follows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu58.png?pub-status=live)
Therefore, we can find a subsequence
$R_k$
of R such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn54.png?pub-status=live)
When
$p \in (1,2)$
, the Sobolev inequality implies
$u \in L^{\frac {2p}{2-p}}(\mathbb {R}^2)$
. By the same proof of (6.2), there also holds that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn55.png?pub-status=live)
Here,
$R_k$
is also a subsequence of R.
Set
$\Phi =u-u\min \{1,|u|\}/|u|$
and
$B_+=\{x \in \mathbb {R}^2; |u(x)|>1\}$
, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu59.png?pub-status=live)
Multiplying (1.16) by
$\Phi $
and integrating on
$B_{R_k}$
and then letting
$R_k \to \infty $
, we get
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn56.png?pub-status=live)
When
$R_k \to \infty $
, by the Hölder inequality and (6.2) and (6.3), there holds
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn57.png?pub-status=live)
which implies both the first and the second terms of the left hand side of (6.4) are equal to zero. This shows
$|B_+|=0$
and hence (6.1) is proved when
$p \in (1.2)$
.
When
$p>2$
, set
$\Phi :=(|u|-1)_+$
. Then,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu60.png?pub-status=live)
Obviously, (1.17) implies
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn58.png?pub-status=live)
Let
$\zeta \in C^{\infty }(\mathbb {R}^2,[0,1])$
be a cut-off function satisfying
$\zeta (y)=1$
for
$|y|\leq 1$
, and
$\zeta (y)=0$
for
$|y|\geq 2$
. Set
$\zeta _t(y)=\zeta (\frac {y}{t})$
. Multiply (1.16) by
$\xi $
, where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu61.png?pub-status=live)
Then,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu62.png?pub-status=live)
By calculating the left hand side, we can obtain that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn59.png?pub-status=live)
In view of
$|\nabla u|^2 \geq (u \cdot \nabla u)^2/|u|^2$
, the first and the second terms in the left hand side of (6.7) is nonnegative. Therefore, using (1.17) and (6.6), we can deduce that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu63.png?pub-status=live)
When
$t \to \infty $
, the right hand side converges to zero by virtue of
$p>2$
. And hence so is the left hand side. This means
$|B_+|=0$
or
$\Phi =0$
a.e. on
$\mathbb {R}^2$
. Thus, (6.1) is proved when
$p>2$
.
Step 2. Multiplying (1.16) by u and integrating on
$B_R(0)$
yield
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn60.png?pub-status=live)
When
$p \in (1,2)$
, we use (6.5) and (1.17) to get
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn61.png?pub-status=live)
When
$p>2$
, by (6.1) and (6.2), there holds
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu64.png?pub-status=live)
when
$R_k \to \infty $
. From (6.8) with
$R=R_k$
, we also deduce (6.9).
Multiply (1.16) by
$(x \cdot \nabla u)$
and integrate on
$B_R(0)$
. Integrating by parts, we can see the left hand side
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu65.png?pub-status=live)
Therefore,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn62.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn63.png?pub-status=live)
Step 3. We claim that there exists
$R_0>0$
such that either
$|u|<\frac {1}{4}$
or
$|u|>T$
on
$\mathbb {R}^2 \setminus B_{R_0}$
, where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu66.png?pub-status=live)
In fact, the following set is bounded
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu67.png?pub-status=live)
Otherwise, there exists a sequence
$x_m \to \infty $
(when
$m \to \infty $
) such that
$\frac {1}{4} \leq |u(x_m)| \leq T$
. In view of (1.17) and (6.1), by the Tolksdorf theorem (cf. [Reference Tolksdorf22]), we have
$|\nabla u(x)| \leq C$
for each
$x \in \mathbb {R}^2$
. Therefore, for
$\sigma \in (0,1-T)$
, we can find
$\delta \in (0,1)$
which is independent of m such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu68.png?pub-status=live)
Therefore,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn64.png?pub-status=live)
Clearly,
$M_*$
is independent of m. On the other hand, by (6.9), we can find
$R_*>0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn65.png?pub-status=live)
Noting
$B(x_m,\delta ) \subset \mathbb {R}^2 \setminus B_{R_*}$
for sufficiently large m, (6.13) contradicts with (6.12). This implies S is bounded. Namely, there exists
$R_0>0$
such that
$S \subset B_{R_0}$
. Since
$\mathbb {R}^2 \setminus B_{R_0}$
is connected and u is continuous, then either
$|u|<\frac {1}{4}$
or
$|u|>T$
on
$\mathbb {R}^2 \setminus B_{R_0}$
in view of the definition of S.
Step 4. When
$p \in (1,2)$
, we will prove Theorem 1.4.
When
$|u|<\frac {1}{4}$
on
$\mathbb {R}^2 \setminus B_{R_0}$
, (6.9) and (6.1) lead to
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn66.png?pub-status=live)
This implies
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu69.png?pub-status=live)
when
$R_k \to \infty $
. Inserting this and (6.2) into (6.11) with
$R=R_k$
, we get
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn67.png?pub-status=live)
Inserting (6.9) into (6.15) yields
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu70.png?pub-status=live)
This implies
$|u| \equiv 0$
.
When
$|u|>3/4$
on
$\mathbb {R}^2 \setminus B_{R_0}$
, (6.9) and (6.1) lead to
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn68.png?pub-status=live)
This implies
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu71.png?pub-status=live)
when
$R_k \to \infty $
. Inserting this and (6.2) into (6.10), we get
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqn69.png?pub-status=live)
In view of
$p \in (1,2)$
, (6.17) implies
$|\nabla u|=1-|u|^2=0$
on
$\mathbb {R}^2$
. Therefore,
$u \equiv C$
with
$|C|=1$
.
Step 5. When
$p>2$
, we will prove Theorem 1.4.
When
$|u|<\frac {1}{4}$
on
$\mathbb {R}^2 \setminus B_{R_0}$
, by (6.1) and (6.15) we get
$u \equiv 0$
.
When
$|u|>T$
on
$\mathbb {R}^2 \setminus B_{R_0}$
, (6.17) still holds. Combining with (6.9) leads to
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu72.png?pub-status=live)
Namely,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230217084857703-0009:S0027763021000106:S0027763021000106_eqnu73.png?pub-status=live)
By (6.1) and
$|u|>T=\sqrt {p/(3p-4)}$
, we have
$|u| \equiv 1$
on
$\mathbb {R}^2$
. Inserting this into (6.9) we see that
$u \equiv C$
with
$|C|=1$
.
Acknowledgements
The author thanks the unknown referees very much for useful suggestions. Those suggestions have greatly improved this article. This research was supported by NNSF (11871278) of China.