
Nagoya Math. J., 247 (2022), 494–515
DOI 10.1017/nmj.2021.10

ENERGY CONCENTRATION PROPERTIES OF A
p-GINZBURG–LANDAU MODEL

YUTIAN LEI

Abstract. This paper is concerned with the p-Ginzburg–Landau (p-GL)

type model with p �= 2. First, we obtain global energy estimates and energy

concentration properties by the singularity analysis. Next, we give a decay rate

of 1−|uε| in the domain away from the singularities when ε→ 0, where uε is

a minimizer of p-GL functional with p ∈ (1,2). Finally, we obtain a Liouville

theorem for the finite energy solutions of the p-GL equation on R
2.

§1. Introduction

Let G⊂R
2 be a bounded and simply connected domain with smooth boundary ∂G, and

g be a smooth map from ∂G to S1 satisfying d := deg(g,∂G) �=0. Without loss of generality,

we assume d > 0. Bethuel et al. [3] and Struwe [21] well studied the asymptotic behavior of

the Ginzburg–Landau functional

E(u) =
1

2

∫
G

|∇u|2+ 1

4ε2

∫
G

(1−|u|2)2

as ε→ 0+, and established the Ck-convergence relation between the minimizer and some

harmonic map u∗ on G. Namely, if uε is the minimizer of E(u) in H1
g (G,R2), then there

exists a subsequence uεk such that when k →∞,

uεk → u∗, in Cl
loc(G\{aj}dj=1)

for any l ≥ 1. Here, a1,a2, . . . ,ad are the singularities of u∗ in G. In particular, [3, Theorem

VII.2] shows the following property of the energy concentration

lim
εk→0

(1−|uεk |2)2
4ε2k

=
π

2

d∑
j=1

δaj , in the weak star topology of C(G).(1.1)

These results come into play when studying the location of the vortices in phase transition

problems occurring in superconductivity and superfluids. In addition, these results are

also helpful to understand the regularity of harmonic maps and the distribution of the

singularities.

In addition, 19 open problems were posed in [3]. Comte and Mironescu gave positive

answers to the 7th problem (cf. [8], [9], and [20]) on the global analysis of the Ginzburg–

Landau energy. In particular, there exists C > 0 such that as ε→ 0,∫
G

(1−|uε|2)α|∇uε|2 ≤ Cα−1, ∀α > 0,(1.2)

∫
G

|det(∇uε)| ≤ C.(1.3)
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In this paper, we are concerned with the asymptotic behavior of the minimizer uε of the

p-Ginzburg-Landau-type functional

Eε(u,G) =
1

p

∫
G

|∇u|p+ 1

4εp

∫
G

(1−|u|2)2 (p > 1 and p �= 2)

in the space W = {v ∈W 1,p(G,R2)∩L4(G,R2);v|∂G = g}.
Functional Eε(u,G) can be used to study the partial regularity of p-harmonic maps and

the location of the singularities when p ∈ (1,2) and p approaches the dimension 2 (cf. [14],

[24]). Different from the case p ∈ (1,2), W 1,p
g (G,S1) = ∅ when p > 2 and d �= 0. Therefore,

there does not exist p-harmonic map from G to S1. Thus, functional Eε(u,G) is naturally

used by the idea of penalization which is analogous to researching harmonic maps in [3]. In

fact, the same idea had been used in studying flow of p-harmonic maps (cf. [6]).

In this paper, we investigate the global properties of functional Eε(u,G). In addition, the

singularity properties of the functional is also interesting. When p = 2, the results (1.1)–

(1.3) describe the singularity and the global properties. We expect to generalize them to

the case of p �= 2.

By the direct methods, we know the existence of the minimizer uε of Eε(u,B) in the

space W. Clearly, the minimizer is a weak solution to the following system

−div(|∇u|p−2∇u) =
1

εp
u(1−|u|2), in G.(1.4)

By the regularity theory (cf. [22]), uε ∈ Cα(G)∩C1,α
loc (G) for each ε. In addition, by [15,

analogous proof of Theorem 2.2], we also have

|uε| ≤ 1 in G.(1.5)

There may be several minimizers of Eε(u,G). One of them, denoted by ũε, can be obtained

as the limit of a subsequence uηk
ε of the minimizers uη

ε of the regularized functional (if we

follow Uhlenbeck’s idea in [23])

Eη
ε (u,G) :=

1

p

∫
G

(|∇u|2+η)
p
2 +

1

4εp

∫
G

(1−|u|2)2 (η > 0, ε > 0)

in W (see also [13] and [15]). Namely, there exists a subsequence ηk of η such that

lim
ηk→0

uηk
ε = ũε, in W 1,p(G),(1.6)

where ũε is also a minimizer of Eε(u,G) in W. Here, ũε is called the regularized minimizer.

When p> 2, [17, Theorem 6.3] shows a convergence result of the minimizer uε of Eε(u,G)

in W. Namely, there exists a subsequence uεk of uε, such that when k →∞,

lim
k→∞

uεk = up, in C1,α
loc (G\{aj}Nj=1), ∀α ∈ (0,1),(1.7)

where up is a p-harmonic map on G\{a1,a2, · · · ,aN}. In addition, [18, Theorem 1.1] shows

that

lim
εk→0

(1−|ũεk |2)2
4ε2k

=
N∑
j=1

mjδaj , in the weak star topology of C(G),(1.8)

where mj > 0 for j = 1,2, . . . ,N .
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The following theorem presents results similar to (1.2) and (1.3) when p > 2, which will

be proved in Section 3.

Theorem 1.1. Assume p > 2, uε is a minimizer of Eε(u,G) in W. Then we can find a

subsequence εk of ε, and Pj ≥ 0 which is independent of εk (j = 1,2, . . . ,N), such that

lim
εk→0

εp−2
k |det(∇uεk)|p/2 =

N∑
j=1

Pjδaj , weakly* in C(G),(1.9)

where δaj is the Dirac mass at aj. In addition, for any α≥ 2− 4
p , there exists Lj > 0 which

is independent of εk (j = 1,2, . . . ,N), such that

lim
εk→0

(1−|uεk |2)α|∇uεk |2 =
N∑
j=1

Ljδaj , weakly* in C(G).(1.10)

When p ∈ (1,2), [16, Theorem 1.3] implies a convergence result of the regularized

minimizer. Namely, ũε is a regularized minimizer. When p ∈ (2− t,2) for some t ∈ (0,1/2),

there is a subsequence ũk of ũε such that

lim
k→∞

ũk = up, in C1,α
loc (G\{aj}Nj=1), ∀α ∈ (0,1),(1.11)

where up is a p-harmonic map on G and a1,a2, . . . ,aN ∈G are singularities of up.

The following theorem shows a result similar to (1.1)–(1.3) in the case of p∈ (1,2), which

will be proved in Section 5.

Theorem 1.2. Assume that p∈ (1,2) approaches the dimension 2, and uε is a minimizer

in W. Then we can find a subsequence εk of ε, and Qj ≥ 0 which is independent of ε

(j = 1,2, . . . ,N), such that

lim
εk→0

|det(∇uεk)|p/2 =
N∑
j=1

Qjδaj , weakly* in C(G).(1.12)

Moreover, if ũε is a regularized minimizer, then we can find Kj > 0 which is independent

of ε (j = 1,2, . . . ,N), such that

lim
εk→0

(1−|ũεk |2)2
4ε2k

=

N∑
j=1

Kjδaj , weakly* in C(G).(1.13)

In addition, for any α≥ 2−p, there exist Mj ≥ 0 which are independent of ε (j=1,2, . . . ,N),

such that

lim
εk→0

(1−|ũεk |2)α|∇ũεk |2 =
N∑
j=1

Mjδaj , weakly* in C(G).(1.14)

Here, Mj > 0 when aj ∈G, and Mj = 0 when aj ∈ ∂G.

Remark 1.1. When p �= 2, if uε has radial structure, that is, G = B1(0) and uε(x) ∈
{u ∈W ;u(x) = f(r)(cosdθ,sindθ), r = |x|,x = (cosθ,sinθ)}, then N = 1. According to [19,

Theorems 1.1 and 1.2], P1 in Theorem 1.1 and Q1 in Theorem 1.2 are positive. For a general

minimizer uε (i.e., uε without the radial structure), it seems difficult to determine the values

of Pj and Qj even if p= 2 (cf. [9]).
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Remark 1.2. (i) Equations (1.8)–(1.10) and (1.12)–(1.14) generalize (1.1)–(1.3) in the

cases of p > 2 and p ∈ (1,2), respectively. Different from the case of p = 2, the conformal

invariant of the functional with p �= 2 is lost. So the results does not look concise. Namely,

we need balance the energy functional by some proper weights to ensure the new energy

integrals are globally bounded.

(ii) When p > 2, (1.8) and (1.9) show the concentration properties of εp−2Eε(uε,G). For

the regularized minimizer ũε, [18, Theorem 1.1] shows that the first and the second terms

of εp−2Eε(uε,G) have the same convergence orders, and εp−2
k Eε(ũεk ,G)→ p

p−2Σ
N
j=1mjδaj

when k →∞, where mj is the positive coefficients in (1.8).

(iii) When p ∈ (1,2), (1.13) shows the concentration property of the second term of

εp−2Eε(ũε,G). Moreover, when p∈ ((
√
17−1)/2,2), the first term of εp−2Eε(ũε,G) is blow-

up if ũε is radial (cf. [19, (1.20)] ). So the convergence orders of the first and the second

terms of εp−2Eε(ũε,G) are different.

To prove (1.12), we need the decay result of the gradient of |uε|−1 in arbitrary compact

subset of G \ (∪j{aj}). For the regularized minimizer ũε, it is clear in view of (1.11). For

the general minimizer uε it is not easy to be obtained.

In Section 4, we will prove the following decay result, which does not only come into play

to deduce (1.12), but also has its own meaning of independence.

Theorem 1.3. Let p ∈ (1,2). Assume uε is a minimizer in W. Then for any compact

subset K ⊂G\{aj}Nj=1, there holds

∫
K

[|∇(1−|uε|)|p+
1

εp
(1−|uε|)2]→ 0, when ε→ 0.(1.15)

Finally, we consider the finite energy solutions of

−div(|∇u|p−2∇u) = u(1−|u|2), in R
2.(1.16)

When p = 2, Brezis et al. [5] gave a Liouville theorem by an idea of Cazenave. Namely,

if ∇u ∈ L2(R2), then either u(x) ≡ 0, or u(x) ≡ C with |C| = 1. When p �= 2, we have the

following result which will be proved in Section 6.

Theorem 1.4. Let u be a classical solution of (1.16) with p > 1 and p �= 2. If

∇u ∈ Lp(R2),(1.17)

then

u(x)≡ C,(1.18)

where C is a constant vector satisfying |C| ∈ {0,1}.

Remark 1.3. The Liouville theorem of the critical points of p-Ginzburg–Landau energy

on the Riemannian manifold can be seen in [7]. In addition, the p-Ginzburg–Laudan

functional on R
2 was well studied in [1] and [2].
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§2. Preliminaries

Besides (1.7), (1.8), and (1.11), we recall several results of the case p �= 2.

Assume uε is a minimizer of Eε(u,G) in W. Denote the disc with x as center and r

as radius by B(x,r) or Br(x). Let λ,μ be two positive constants which are independent

of ε. If ∫
G∩B(xε,2λε)

(1−|uε|2)2 ≤ με2,

then B(xε,λε) is called a good disc. Otherwise B(xε,λε) is called a bad disc. When p > 2,

[17, Remark 2.7] shows that the zeros of uε are included in finite nonintersecting bad discs

B(xε
i ,hε) (i= 1,2, ...,N1), where N1 and h > 0 are independent of ε. As ε→ 0, there exists

a subsequence xεk
i of the center xε

i of bad discs such that xεk
i → ai ∈G(i= 1,2, ...,N1). Since

there may be at least two subsequences that converge to the same point, we denote the limit

points by a1,a2, ...,aN (N ≤N1). Write Λj := {i;xεk
i → aj when k →∞} for each j. We can

choose σ > 0 suitably small such that Bσ(aj) ⊂ G when aj ∈ G, and Bσ(aj)∩Bσ(am) = ∅
for j �=m. When p∈ (1,2), [16, Section 3] also presents the same conclusions above. Clearly,

these results still hold for the regularized minimizers.

2.1 Case of p > 2

We now introduce several results in [17] and [18] which will be used later.

Proposition 2.1. [17, Proposition 2.1] Let uε be a minimizer of Eε(u,G) in W. Then,

there exists a constant C > 0 which is independent of ε∈ (0,1), such that Eε(uε,G)≤Cε2−p.

Proposition 2.2. [17, Proposition 2.2] There exists a constant C0 > 0 which is

independent of ε ∈ (0,1), such that for any x,y ∈G,

|uε(x)−uε(y)| ≤ C0ε
(2−p)/p|x−y|(p−2)/p.

Proposition 2.3. [17, Theorem 2.6] All the zeros of uε are contained in finite,

disjointed bad discs {B(xε
j ,hε);j = 1,2, . . . ,N1}. In addition,

|uε(x)| ≥
1

2
, ∀x ∈G\∪N1

j=1B(xε
j ,hε).

Proposition 2.4. [18, Proposition 2.4] Write di := deg(uε,∂B(xε
i ,hε)). Then for each

i, there exists a subsequence εk of ε such that di is independent of εk as long as k is

sufficiently large.

Proposition 2.5. [17, Theorem 3.1] Let uε be a minimizer of Eε(u,G) in W. Then for

any compact subset K of G \ {a1,a2, ...,aN}, there exists a constant C > 0 which does not

depend on ε, such that Eε(uε,K)≤ C.

2.2 Case of p ∈ (1,2)

In [16], the following free energy functional was studied

Eε,�(u) =
1

2

∫
B1

|∇u|2+ 1

4ε2

∫
B1\B�

(1−|u|2)2+ 1

2ε2

∫
B�

|u|2,

where Br = {x∈R
2; |x|< r}, ε and � are small positive parameters. It is associated with the

model of superconductivity with normal impurity inclusion such as superconducting-normal
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junctions. There are two major differences between Eε,�(u) and Eε(u,G). The former models

an heterogenous superconductor and the latter models the homogenous case. In addition,

the domain considered in [16] is the unit disk.

In fact, the domain considered in [16] can be replaced by the more general G and the

purpose of using B1 there is for convenience (see also [10]). In addition, if �=0, then Eε,�(u)

becomes Eε(u,G), and we can see the results from the corresponding conclusions of Case I

(i.e., �=O(ε)) in [16], as long as we replace B1 by G and p approaches the dimension 2.

First, by [16, (1–6) in Theorem 1.2], we have

Proposition 2.6. Let p ∈ (1,2), uε be a minimizer of Eε(u,G) in W. Then there exists

a constant C > 0 which is independent of ε, such that Eε(uε,G)≤ C.

Next, by [16, Theorem 3.1 and Proposition 2.2], we have

Proposition 2.7. Assume that p ∈ (1,2), uε ∈W satisfies the (1.4) in the weak sense.

Then there is a constant ρ0 > 0, such that for ρ ∈ (0,ρ0),

|uε(x)| ≥
1

2
, as x ∈G\G2ρε.(2.1)

Here, Gρε := {x ∈ G;dist(x,∂G) > ρε}. In addition, for any ρ > 0, there exists a positive

constant C1 which is independent of ε, such that

‖∇uε(x)‖L∞(B(x,ρε)) ≤ C1ε
−1, as x ∈Gρε.(2.2)

By [16, (3-1) in Proposition 3.2], we have

Proposition 2.8. Let p∈ (1,2), uε be a minimizer of Eε(u,G) in W. Then, there exists

a constant C > 0 which is independent of ε ∈ (0, ε0) with ε0 sufficiently small, such that,

1

ε2

∫
G

(1−|uε|2)2 ≤ C.

By [16, (3-10)], we have

Proposition 2.9. Let p ∈ (1,2), uε be a minimizer of Eε(u,G) in W. For any given

σ > 0, and 0< ε� σ, there holds

|uε(x)| ≥
1

2
, ∀x ∈G\ (∪CardJ

j=1 B(aj ,σ)).

The next proposition shows the reversed Hölder inequality, which is crucial in the proofs

of (1.14) and (1.15). We now use the same ideas in [11, Chapter 5] to prove this reversed

Hölder inequality.

Proposition 2.10. Assume p ∈ [3/2,2), uε is a minimizer of Eε(u,G) in W. Then

there exists a constant R0 ∈ (0,1/2) which is independent of ε, such that for any BR ⊂
G(2R <R0), we have

(∫
BR

|∇uε|q̃
)1/q̃

≤ C

(∫
B2R

(|∇uε|2+1)p/2
)1/p

, ∀q̃ ∈ [p,p(1+ t)),

where C > 0 depends on R0,p, q̃, and t ∈ (0,1/2) only depends on R0.
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Proof. Step 1. Let Q⊂ R
2 be a square and m ∈ [3/2,2). Suppose

1

|QR|

∫
QR(x0)

gm ≤ b

(
1

|Q2R|

∫
Q2R(x0)

g

)m

(2.3)

for each x0 ∈ Q and each 0 < R < 1
3 min{dist(x0,∂Q),R0}, where b > 1 and R0 > 0 are

absolute constants. By the same argument of [11, proof of Theorem 1.2], we claim that

g ∈ Lq
loc(Q) for q ∈ [m,m(1+ t)) and(

1

|QR|

∫
QR

gq
) 1

q

≤ C

(
1

|Q2R|

∫
Q2R

gm
) 1

m

(2.4)

for Q2R ⊂ Q, 0 < R < R0, where t is a positive constant only depending on b, and C > 0

depends on b,m,q. In particular, C is blowing up when q approaches m(1+ t).

In fact, when we check [12, Proposition 5.1], (2.3) implies θ = 0 and f(x)≡ 0. Set

E(h,s) = {x ∈Q;h(x)> s}, αk = (32 ·4k)1/m, G(x) = g(x)‖g‖−1
Lm(Q),

Φ(x) = α−1
k G(x) in Ck := {x ∈Q;2−k < dist(x,∂Q)≤ 2−k+1}.

As in [12, proof of (5.4)], by the Calderon–Zygmund subdivision argument and an iteration,

we still obtain ∫
E(Φ,T )

Φm ≤ aTm−1

∫
E(Φ,T )

Φ(2.5)

for T ≥ 1. According to the result of [12] (see line 7 in page 167), a in (2.5) can be

chosen as

a= b

(
5m

m−1

)m−1

(302 ·5m+22).

In view of m ∈ [3/2,2), a can be bounded by an absolute constant ã (which is independent

of m). Now, (2.5) with a= ã is (1.6) in Chapter 5 of [11], which implies that the conditions

of [11, Lemma 1.2 in Chapter 5] are satisfied if we write h(T ) =
∫
E(Φ,T )

Φ and H(T ) ≡ 0.

By applying Lemma 1.2 in Chapter 5 of [11], we can deduce (2.4) for q ∈ [m, ã
ã−1m). Set

ã
ã−1 = 1+ t, then

t=
1

ã−1
.

This implies that t is independent of m. In addition, C in (2.4) depends on m[ãm−
(ã−1)q]−1, which implies that C is blowing up when q approaches m(1+ t).

Step 2. Let y = xε−1 in Eε(u,G) and denote vε(y) = uε(x), Gε = {y = xε−1;x∈G}. Then

Eε(uε,G) = ε2−p

(
1

p

∫
Gε

|∇vε|pdy+
1

4

∫
Gε

(1−|vε|2)2dy
)

:= ε2−pE(vε,Gε).

It is clear that vε is also a minimizer of E(v,Gε).

Let m = (p + 2)/2, then m ∈ [3/2,2) when p ∈ [3/2,2). Clearly, (A + B)m ≤
(2max{A,B})m ≤ 2m(Am +Bm) as long as A,B are positive. Checking the proof of

https://doi.org/10.1017/nmj.2021.10 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2021.10


ENERGY CONCENTRATION PROPERTIES 501

Theorem 3.1 in Chapter 5 of [11], we find that c(m) in lines 13–14 of page 160 satisfies

c(m) = 2m ≤ 4 for p ∈ [3/2,2). Therefore, c4 in (3.5) (see line 5 of page 161) is independent

of p after an iteration (by Lemma 3.1). Next, the Sobolev–Poincare inequality shows that

c5 can be chosen as a suitably large absolute constant in view of p ∈ [3/2,2). Thus, we also

derive a condition which satisfies (2.3) with b = c5. Using the reversed Hölder inequality

(2.4) with g = (ε+ |∇vε|)
2p

2+p , we know that there exist constants t,R0 ∈ (0,1/2) and C > 0,

such that for any BR ⊂BR0/2 ⊂G and q ∈ [m,m(1+ t)), the inequality(
1

|BR/ε|

∫
BR/ε

|∇vε|
2pq
2+p dy

)1/q

≤
(

1

|BR/ε|

∫
BR/ε

(|∇vε|+ε)
2pq
2+p dy

)1/q

≤ C

(
1

|B2R/ε|

∫
B2R/ε

(|∇vε|+ε)pdy

) 2
p+2

holds, where BR/ε = {y = xε−1;x ∈ BR}. Letting x = yε and multiplying by ε−
2p

p+2 , we

obtain (∫
BR

|∇uε|
2pq
2+p dx

)p+2
2pq

≤ C

(∫
B2R

(|∇uε|2+1)pdx

)1/p

.

Let q̃= 2pq
p+2 . Noticing q ∈ [m,m(1+t)), we can see q̃ ∈ [p,p(1+t)). And hence the proposition

holds.

Clearly, the results above (Propositions 2.6–2.10) still hold for the regularized minimizers.

By [16, Proposition 5.3], we have

Proposition 2.11. Assume p ∈ (1,2) approaches the dimension 2, and ũε is a

regularized minimizer. Then, for any compact subset K ⊂ G \ (∪N
j=1{aj}), there exists a

positive constant C = C(K) which is independent of ε, such that

‖ 1

εp
(1−|ũε|2)‖L∞(K) ≤ C.

§3. Proof of Theorem 1.1

In this section, we assume p > 2, and uε is the minimizer of Eε(u,G) in W.

Proof of (1.10).

Noting α≥ 2− 4
p , using (1.5), the Hölder inequality and Proposition 2.1, we deduce that∫

G

|∇uε|2(1−|uε|2)α

≤ C

∫
G

|∇uε|2(1−|uε|2)2−
4
p

≤ C

(∫
G

(1−|uε|2)2
)1− 2

p
(∫

G

|∇uε|p
) 2

p

≤ Cε2(1−
2
p )+

2
p (2−p) = C.
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Namely, |∇uε|2(1− |uε|2)α is bounded in L1(G). Thus, there exists a Radon measure ω1

such that

lim
εk→0

|∇uεk |2(1−|uεk |2)α = ω1, weakly star in C(G).

Next, using the Hölder inequality and Proposition 2.5, we see that as ε→ 0,∫
G\∪N

j=1B(aj ,σ)

|∇uε|2(1−|uε|2)α

≤
[∫

G\∪jB(aj ,σ)

|∇uε|p
] 2

p

·
[∫

G\∪jB(aj ,σ)

(1−|uε|2)
pα
p−2

]p−2
p

→ 0.

(3.1)

Thus, supp(ω1)⊂ {aj}Nj=1. Therefore, we can find Lj ≥ 0 such that

ω1 =
N∑
j=1

Ljδaj .

We claim Lj > 0 for each j (and hence supp(ω1) = {aj}Nj=1). For convenience, we here

drop k from εk.

Noting Bhε(xi) contains zeros of uε, by Propositions 2.3 we have

1

2
≤ |uε| ≤

3

4
, on ∂Bhε(xi)

as long as hε is suitably small. For each x1 ∈ ∂Bhε(xi), by Proposition 2.2, we get

3

8
≤ |uε(y)| ≤

7

8
, ∀y ∈Bl̂ε(x1)∩Bhε(xi).

Here, l̂ := min{(8C0)
p

2−p ,h}. Therefore,

3

8
≤ |uε(y)| ≤

7

8
, ∀y ∈Bhε(xi)\B(h−l̂/2)ε(xi).(3.2)

As in [15, Theorem 3.9], by (3.2) we can write

uε(x) = |uε(x)|φ(r,τ), r = |x|, τ =
x

|x| ,

and hence

|∇uε|2 ≥ |uε|2r−2|∇τφ(r,τ)|2.

Thus, by the Hölder inequality, there holds∫
Bhε(xi)\B(h−l̂/2)ε(xi)

(1−|uε|2)α|∇uε|2

≥
(
1− 7

8

)α∫
Bhε(xi)\B(h−l̂/2)ε(xi)

|uε|2r−2|∇τφ(r,τ)|2
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≥
(
1

8

)α(
3

8

)2∫ hε

(h−l̂/2)ε

(∫
S1

|∇τφ|2ds
)
dr

r

≥
(
1

8

)α(
3

8

)2∫ hε

(h−l̂/2)ε

1

2π

(∫
S1

|∇τφ|ds
)2

dr

r
.

Theorem 8.2 in [4] shows that ∫
S1

|∇τφ|ds≥ 2π|di|,

where di = deg(uε,∂Bhε(xi)) is independent of ε (see Proposition 2.4). Therefore,

∫
Bhε(xi)\B(h−l̂/2)ε(xi)

(1−|uε|2)α|∇uε|2 ≥
(
1

8

)α(
3

8

)2

(2πd2i ) ·
(
log

h

h− l̂/2

)
.

This implies Lj > 0, and hence (1.10) is proved.

Proof of (1.9).

Denote uε by u. Clearly, by the Cauchy inequality,

|det(∇u)|= |u1x1u2x2 −u1x2u2x1 | ≤
1

2
|∇u|2.(3.3)

By Proposition 2.1, we obtain that for each j,

εp−2

∫
G∩B(aj ,σ)

|det(∇u)|p/2 ≤ εp−2

2

∫
G

|∇u|p ≤ C.(3.4)

Using Proposition 2.5, we get

εp−2

∫
G\∪jB(aj ,σ)

|det(∇u)|p/2 ≤ εp−2

2

∫
G\∪jB(aj ,σ)

|∇u|p ≤ Cεp−2.(3.5)

Combining (3.4) and (3.5), we see that εp−2|det(∇u)|p/2 is bounded in L1(G). Thus,

there exists a Radon measure ω2 such that

lim
εk→0

εp−2
k |det(∇uεk)|p/2 = ω2, weakly star in C(G).

By virtue of (3.5), supp(ω2)⊂ {aj}Nj=1. Thus, we can find Pj ≥ 0 such that

ω2 =
N∑
j=1

Pjδaj .

Equation (1.9) is proved.

§4. Convergence rate of |uε|−1 when p ∈ (1,2)

In this section, we consider the case of p ∈ (1,2). Proposition 2.8 implies that |uε| − 1

tends to zero and the decay rate is presented. Here, we will give a decay rate of the gradient

of |uε|−1.
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Proof of Theorem 1.3

Proof. Step 1. Let R > 0 be a small constant such that B(x,2R) ⊂⊂ G \ ∪N
i=1{ai}.

Applying (1.5) and Proposition 2.9, we have

1

2
≤ |uε| ≤ 1 in B(x,2R).(4.1)

By the integral mean value theorem and Proposition 2.6, there is r ∈ [R,2R] such that∫
∂B(x,r)

|∇|uε||pdξ+
1

εp

∫
∂B(x,r)

(1−|uε|2)2dξ ≤ C(4.2)

with C = C(r) > 0 independent of ε. Denote B(x,r) by B. If ρ1 is a minimizer of the

functional

E(ρ,B) =
1

p

∫
B

(|∇ρ|2+1)p/2+
1

2εp

∫
B

(1−ρ)2

in W 1,p
|uε|(B,R+∪{0}), then it solves

−div[(|∇ρ|2+1)(p−2)/2∇ρ] =
1

εp
(1−ρ),(4.3)

ρ|∂B = |uε|,(4.4)

By the maximum principle, it follows from (4.1) that

1

2
≤ ρ1 ≤ 1 on B.(4.5)

Applying Proposition 2.6 we see easily that

E(ρ1,B)≤ E(|uε|,B)≤ C(Eε(uε,B)+1)≤ C.(4.6)

Step 2. Multiplying (4.3) with ρ= ρ1 by (ν ·∇ρ1), we have

−
∫
∂B

v(p−2)/2|∂νρ1|2dξ +

∫
B

v(p−2)/2∇ρ1 ·∇(ν ·∇ρ1)

=
1

εp

∫
B

(1−ρ1)(ν ·∇ρ1),
(4.7)

where ν denotes the unit outside norm vector on ∂B and v = |∇ρ1|2+1. Integrating by

parts yields ∫
B

v(p−2)/2∇ρ1 ·∇(ν ·∇ρ1)

=

∫
B

v(p−2)/2|∇ρ1|2+
1

p

∫
B

ν ·∇(vp/2)

=

∫
B

v(p−2)/2|∇ρ1|2+
1

p

∫
∂B

vp/2dξ− 1

p

∫
B

vp/2(divν),

(4.8)

and

1

εp

∫
B

(1−ρ1)(ν ·∇ρ1) =
1

2εp

∫
B

(1−ρ1)
2(divν)− 1

2εp

∫
∂B

(1−ρ1)
2dξ.
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Substitute this result and (4.8) into (4.7). Noting divν = r−1 > 0, we can use (4.5), (4.6),

(4.4), and (4.2) to obtain∫
∂B

v(p−2)/2|∂νρ1|2dξ ≤ C+
1

p

∫
∂B

vp/2dξ.(4.9)

Step 3. By the Jensen inequality (1+a2+ b2)1/2 ≤ 1+ |a|+ |b| and (4.4), there holds∫
∂B

vp/2dξ ≤
∫
∂B

v(p−1)/2[(1+ |∂τ |uε||)+ |∂νρ1|]dξ,

where τ denotes the unit tangent vector on ∂B. Using the Hölder inequality and (4.2), we

deduce from the result above that∫
∂B

vp/2dξ ≤ C

(∫
∂B

v
p
2 dξ

)p−1
p

+

(∫
∂B

v
p−2
2 |∂νρ1|2dξ

) 1
2
(∫

∂B

v
p
2 dξ

) 1
2

.

Inserting (4.9) into this result and using the Young inequality, we obtain that for any

δ ∈ (0,1), ∫
∂B

vp/2dξ ≤ C(δ)+

(
δ+

1

2p
+

1

2

)∫
∂B

vp/2dξ,

Therefore, by choosing δ > 0 sufficiently small we get∫
∂B

(|∇ρ1|2+1)p/2dξ ≤ C.(4.10)

Multiply (4.3) by (1− ρ1). In view of (4.4), applying the Hölder inequality, and using

(4.2) and (4.10), we get∫
B

[(|∇ρ1|2+1)(p−2)/2|∇ρ1|2+
1

εp
(1−ρ1)

2]

≤
∣∣∣∣
∫
∂B

(1−ρ1)(|∇ρ1|2+1)(p−2)/2(ν ·∇ρ1)dξ

∣∣∣∣≤ Cε.

(4.11)

Step 4. Set U = ρ1w on B ; U = uε on G\B, where w = uε/|uε|. Then U ∈W . Since uε

is a minimizer of Eε(u,G), we have

Eε(uε,G)≤ Eε(U,G) = Eε(ρ1w,B)+Eε(uε,G\B).(4.12)

In view of p ∈ (1,2), we get∫
B

(|∇ρ1|2+ρ21|∇w|2)p/2−
∫
B

(ρ21|∇w|2)p/2

=
p

2

∫
B

∫ 1

0

(s|∇ρ1|2+ρ21|∇w|2)(p−2)/2|∇ρ1|2dsdx

≤ p

2

∫
B

|∇ρ1|pdx ·
∫ 1

0

s(p−2)/2ds=

∫
B

|∇ρ1|p.

Here, we use the fact
∫ 1

0
s(p−2)/2ds= 2/p. Combining this with (4.12) leads to

Eε(uε,B)≤ Eε(ρ1w,B)≤ 1

p

∫
B

(ρ21|∇w|2)p/2+Eε(ρ1,B).
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Using (4.5) and (4.11), we can see from the result above that

Eε(uε,B)≤ 1

p

∫
B

|∇w|p+Cε.(4.13)

Step 5. Here, we denote |uε| by hε.

Clearly, (sa2 + b2)(p−2)/2 ≥ (a2 + b2)(p−2)/2 when s ∈ (0,1) and p ∈ (1,2). Therefore,

according to the mean value theorem, it follows that

(|∇hε|2+h2
ε|∇w|2)p/2− (hε|∇w|2)p/2

=
p

2

(∫ 1

0

[s(|∇hε|2+h2
ε|∇w|2)+(1−s)(h2

ε|∇w|2)]
p−2
2 ds

)
· |∇hε|2

≥ p

2
|∇uε|p−2|∇hε|2.

This and (4.13) imply

1

2

∫
B

|∇uε|p−2|∇hε|2+
1

p

∫
B

(hp
ε −1)|∇w|p+ 1

4εp

∫
B

(1−h2
ε)

2

≤ Eε(uε,B)− 1

p

∫
B

|∇w|p ≤ Cε.(4.14)

In view of (4.1), there holds

1

p

∫
B

(1−hp
ε)|∇w|p ≤ 2p

p

∫
B

(1−h2
ε)|∇uε|p.

Applying the Hölder inequality and Propositions 2.10 and 2.6, we can obtain

1

p

∫
B

(1−hp
ε)|∇w|p ≤ Cε2t0/(1+t0)

with t0 ∈ (0, t) is suitably small. Combining this with (4.14), we can see

1

2

∫
B

|∇uε|p−2|∇hε|2+
1

4εp

∫
B

(1−h2
ε)

2 ≤ Cε2t0/(1+t0).(4.15)

Using the Hölder inequality, by (4.15) and Proposition 2.6, we see that

∫
B

|∇h|p ≤
(∫

B

|∇uε|p−2|∇hε|2
)p

2
(∫

B

|∇uε|p
) 2−p

2

≤ Cεpt0/(1+t0).

Combining with (4.15) and by an argument of finite coverings, we can see (1.15).

§5. Proof of Theorem 1.2

Proof of (1.12).

By (3.3) and Proposition 2.6, we get∫
G

|det(∇uε)|p/2 ≤
∫
G

|∇uε|p ≤ C.(5.1)
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Therefore, we can find a Radon measure ω3 and a subsequence εk of ε such that

lim
k→∞

|det(∇uεk)|p/2 = ω3, weakly star in C(G).(5.2)

Proposition 2.9 implies that there exists φε such that when x ∈G\∪jBσ(aj),

uε(x) = hε(x)(cosφε(x),sinφε(x)),

where hε(x) = |uε(x)|. Thus, on G\∪jBσ(aj),

|det(∇uε)|= hε|∂νhε∂τφε−∂τhε∂νφε|.

Therefore, by the Hölder inequality, there holds∫
G\∪jBσ(aj)

|det(∇uε)|p/2

≤
(∫

G\∪jBσ(aj)

|∇hε|p
) 1

2
(∫

G\∪jBσ(aj)

|hε∇φε|p
) 1

2

.

(5.3)

In view of Proposition 2.6 and (1.15),

∫
G\∪jBσ(aj)

|det(∇uε)|p/2 ≤ C

(∫
G\∪jBσ(aj)

|∇hε|p
) 1

2

→ 0

when ε→ 0. Therefore, supp(ω3)⊂ {aj}Nj=1. Thus, there exists constants Qj ≥ 0 such that

ω3 =
N∑
j=1

Qjδaj .

Equation (1.12) is proved.

Proof of (1.14).

First we observe that 2−p < pt since p is sufficiently close to 2, where t is the constant

in Proposition 2.10 (which implies that t is independent of p). Thus we can choose γ ∈
(2−p,pt). By (1.5), the Hölder inequality and Propositions 2.10 and 2.6, we have

∫
G\G2ρε

(1−|ũε|2)α|∇ũε|2 ≤
(∫

G\G2ρε

|∇ũε|p+γ

) 2
p+γ

|G\G2ρε|1− 2
p+γ → 0(5.4)

when ε→ 0.

In view of (1.5), the right hand side of (1.4) with u = ũε is bounded by ε−p. Thus,

checking the proof of Proposition 5.1 in [22], and applying Proposition 2.6 we get

‖∇ũε‖pL∞(Gρε∩Bσ(aj))
≤ Cσ−2ε−p

∫
G

(1+ |∇ũε|p)≤ Cε−p.
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Therefore, by the Hölder inequality, we obtain that for any γ > 0,∫
Gρε∩B(aj ,σ)

(1−|ũε|2)α|∇ũε|2

≤ Cεp−2

∫
Gρε∩B(aj ,σ)

(1−|ũε|2)α|∇ũε|p

≤ Cεp−2

(∫
Gρε∩B(aj ,σ)

|∇ũε|p+γ

) p
p+γ

·
(∫

Gρε∩B(aj ,σ)

(1−|ũε|2)(p+γ)α/γ

) γ
p+γ

.

(5.5)

We set

γ0 = 2−p.

Then for any α≥ 2−p,

(p+γ0)α

γ0
≥ 2.(5.6)

In addition, γ0 ∈ (0,pt) since p is sufficiently close to 2. Here, t is the constant in

Proposition 2.10.

According to Proposition 2.10, and by Proposition 2.6, it follows that

(∫
Gρε∩B(aj ,σ)

|∇ũε|p+γ0

) p
p+γ0

≤ C

∫
G

(|∇ũε|2+1)p/2 ≤ C.

Inserting this result into (5.5) with γ = γ0 yields∫
Gρε∩B(aj ,σ)

(1−|uε|2)α|∇ũε|2

≤ Cεp−2

(∫
Gρε∩B(aj ,σ)

(1−|ũε|2)(p+γ0)α/γ0

) γ0
p+γ0

.

(5.7)

Using (5.6), Proposition 2.8, we can deduce from (5.7) that∫
Gρε∩B(aj ,σ)

(1−|ũε|2)α|∇ũε|2 ≤ Cεp−2+
2γ0

p+γ0 = C.(5.8)

Next, using

sup
G\∪jB(aj ,σ)

|∇ũε| ≤ C

and

sup
G\∪jB(aj ,σ)

(1−|ũε|2)→ 0
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which are implied by (1.11), we derive that when ε→ 0,∫
Gρε\∪jB(aj ,σ)

(1−|ũε|2)α|∇ũε|2

≤
(

sup
G\∪jB(aj ,σ)

(1−|ũε|2)α
)(

sup
G\∪jB(aj ,σ)

|∇ũε|2
)
|G\∪jBσ(aj)|

→ 0.

(5.9)

Combining (5.4), (5.8) with (5.9), we obtain that (1−|ũε|2)α|∇ũε|2 is bounded in L1(G),

and hence

lim
εk→0

(1−|ũεk |2)α|∇ũεk |2 = ω4, weakly star in C(G),

where ω4 is a Radon measure. In addition, (5.9) implies supp(ω4) ⊂ {aj}Nj=1. Thus, there

exists constants Mj ≥ 0 such that

ω4 =

N∑
j=1

Mjδaj .

By (5.4), we see that Mj = 0 when aj ∈ ∂G.

For the other aj which are contained in G, using (2.2) instead of Proposition 2.2 in the

proof of Lj > 0, we also get Mj > 0. Equation (1.14) is proved.

Proof of (1.13).

By Proposition 2.8, (1−|ũε|2)2
ε2 is bounded in L1(G). Thus, there exist a subsequence εk

of ε and a Radon measure ω5, such that

lim
k→0

(1−|ũεk |2)2
ε2k

= ω5, weakly star in C(G).

In addition, according to Proposition 2.11,

1

ε2k

∫
G\∪jBσ(aj)

(1−|ũεk |2)2 ≤ Cε
2(p−1)
k → 0

when εk → 0. Therefore, we can see that supp(ω5)⊂ {aj}Nj=1, and hence

ω5 =
N∑
j=1

Kjδaj ,

where Kj ≥ 0.

We claim Kj > 0 for each j. In fact, there exists xε
j which is the center of the bad disc

tends to aj when ε→ 0. Recalling the definition of the bad disc in Section 2, we have

1

ε2

∫
B(xε

j ,hε)

(1−|ũε|2)2 ≥ μ > 0.

for each j. This implies Kj > 0 (and hence supp(ω5) = {aj}Nj=1). Equation (1.13) is proved.
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§6. Proof of Theorem 1.4

Step 1. First we claim

|u| ≤ 1 a.e. on R
2.(6.1)

For convenience, sometimes we denote BR(0) by BR.

From (1.17), it follows that

0 = lim
R→∞

∫
B2R\BR

|∇u|pdx

= lim
R→∞

∫ 2R

R

[
r

∫
∂Br

|∇u|pdξ
]
dr

r

≥ lim
R→∞

inf
r∈[R,2R]

[
r

∫
∂Br

|∇u|pdξ
]
· (log2).

Therefore, we can find a subsequence Rk of R such that

lim
Rk→∞

Rk

∫
∂BRk

(0)

|∇u|pdξ = 0.(6.2)

When p ∈ (1,2), the Sobolev inequality implies u ∈ L
2p

2−p (R2). By the same proof of (6.2),

there also holds that

lim
Rk→∞

Rk

∫
∂BRk

(0)

|u|
2p

2−p dξ = 0.(6.3)

Here, Rk is also a subsequence of R.

Set Φ = u−umin{1, |u|}/|u| and B+ = {x ∈ R
2; |u(x)|> 1}, then⎧⎨

⎩
∇Φ=∇u−|u|−1∇u+(u ·∇u)u/|u|3, on B+;

∇Φ= 0 on R
2 \B+.

Multiplying (1.16) by Φ and integrating on BRk
and then letting Rk →∞, we get

− lim
Rk→∞

∫
∂BRk

(0)

u|∇u|p−2∂νudξ

+ lim
Rk→∞

∫
∂BRk

(0)

u

|u|min{1, |u|}|∇u|p−2∂νudξ

+

∫
B+

(1−1/|u|)|∇u|p+
∫
B+

|∇u|p−2(u ·∇u)2/|u|3

+

∫
B+

|u|(|u|+1)(|u|−1)2 = 0.

(6.4)

When Rk →∞, by the Hölder inequality and (6.2) and (6.3), there holds∫
∂BRk

|u||∇u|p−1dξ

≤R
− 1

2

k

(
Rk

∫
∂BRk

|∇u|pdξ
)1− 1

p
(
Rk

∫
∂BRk

|u|
2p

2−p dξ

) 2−p
2p

|∂BRk
| 12

→ 0,

(6.5)
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which implies both the first and the second terms of the left hand side of (6.4) are equal to

zero. This shows |B+|= 0 and hence (6.1) is proved when p ∈ (1.2).

When p > 2, set Φ := (|u|−1)+. Then,⎧⎨
⎩

∇Φ= 0, on R
2 \B+;

∇Φ= u·∇u
|u| , on B+.

Obviously, (1.17) implies

‖∇Φ‖Lp(R2) <∞.(6.6)

Let ζ ∈ C∞(R2, [0,1]) be a cut-off function satisfying ζ(y) = 1 for |y| ≤ 1, and ζ(y) = 0

for |y| ≥ 2. Set ζt(y) = ζ(yt ). Multiply (1.16) by ξ, where⎧⎨
⎩

ξ = 0, on R
2 \B+;

ξ = u
|u|ζt, on B+.

Then, ∫
B+

|∇u|p−2∇u∇(
u

|u|ζt) =−
∫
B+

|u|(1+ |u|)Φζt.

By calculating the left hand side, we can obtain that∫
B+

|u|−1|∇u|pζt−
∫
B+

|u|−3|∇u|p−2(u ·∇u)2ζt

+

∫
B+

|u|(1+ |u|)Φζt+
∫
B+

|∇u|p−2∇Φ∇ζt = 0.

(6.7)

In view of |∇u|2 ≥ (u ·∇u)2/|u|2, the first and the second terms in the left hand side of

(6.7) is nonnegative. Therefore, using (1.17) and (6.6), we can deduce that∫
B+

|u|(1+ |u|)Φζt ≤ |
∫
B+

|∇u|p−2∇Φ∇ζt|

≤ 1

t

∫
B+∩{y;t≤|y|≤2t}

|∇u|p−2|∇Φ| ≤ 1

t
‖∇u‖p−2

p ‖∇Φ‖pt2/p.

When t→∞, the right hand side converges to zero by virtue of p > 2. And hence so is the

left hand side. This means |B+|= 0 or Φ = 0 a.e. on R
2. Thus, (6.1) is proved when p > 2.

Step 2. Multiplying (1.16) by u and integrating on BR(0) yield∫
BR(0)

|u|2(1−|u|2) =
∫
BR(0)

|∇u|p−
∫
∂BR(0)

u|∇u|p−2∂νudξ.(6.8)

When p ∈ (1,2), we use (6.5) and (1.17) to get∫
R2

|u|2(1−|u|2) =
∫
R2

|∇u|p <∞.(6.9)

When p > 2, by (6.1) and (6.2), there holds∣∣∣∣∣
∫
∂BRk

u|∇u|p−2∂νudξ

∣∣∣∣∣≤ CR
1
p−1

k

(
Rk

∫
∂BRk

|∇u|pdξ
)1− 1

p

|∂BRk
| 1p → 0

when Rk →∞. From (6.8) with R=Rk, we also deduce (6.9).
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Multiply (1.16) by (x ·∇u) and integrate on BR(0). Integrating by parts, we can see the

left hand side

−
∫
BR

div(|∇u|p−2∇u)(x ·∇u)

=−R

∫
∂BR

|∇u|p−2|∂νu|2dξ+
∫
BR

|∇u|p+ 1

p

∫
BR

x ·∇(|∇u|p)

=−R

∫
∂BR

|∇u|p−2|∂νu|2dξ+(1− 2

p
)

∫
BR

|∇u|p+ R

p

∫
∂BR

|∇u|pdξ.

Therefore, (
2

p
−1

)∫
BR

|∇u|p+ 1

2

∫
BR

(1−|u|2)2

=
R

4

∫
∂BR

(1−|u|2)2dξ−R

∫
∂BR

|∇u|p−2|∂νu|2dξ

+
R

p

∫
∂BR

|∇u|pdξ,

(6.10)

and (
1− 2

p

)∫
BR

|∇u|p+
∫
BR

(|u|2− 1

2
|u|4)

=
R

2

∫
∂BR

(|u|2− 1

2
|u|4)dξ+R

∫
∂BR

|∇u|p−2|∂νu|2dξ

− R

p

∫
∂BR

|∇u|pdξ.

(6.11)

Step 3. We claim that there exists R0 > 0 such that either |u|< 1
4 or |u|>T on R

2 \BR0 ,

where

T :=

{
3/4, when p ∈ (1,2);√
p/(3p−4), when p > 2.

In fact, the following set is bounded

S :=

{
x ∈ R

2;
1

4
≤ |u(x)| ≤ T

}
.

Otherwise, there exists a sequence xm →∞ (when m→∞) such that 1
4 ≤ |u(xm)| ≤ T . In

view of (1.17) and (6.1), by the Tolksdorf theorem (cf. [22]), we have |∇u(x)| ≤ C for each

x ∈ R
2. Therefore, for σ ∈ (0,1−T ), we can find δ ∈ (0,1) which is independent of m such

that

1

8
≤ |u(x)| ≤ T +σ, when x ∈B(xm, δ).

Therefore, ∫
B(xm,δ)

|u|2(1−|u|2)≥
(
1

8

)2

(1− (T +σ)2)πδ2 :=M∗.(6.12)
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Clearly, M∗ is independent of m. On the other hand, by (6.9), we can find R∗ > 0 such that

∫
|x|>R∗

|u|2(1−|u|2)<M∗.(6.13)

Noting B(xm, δ) ⊂ R
2 \BR∗ for sufficiently large m, (6.13) contradicts with (6.12). This

implies S is bounded. Namely, there exists R0 > 0 such that S ⊂ BR0 . Since R
2 \BR0 is

connected and u is continuous, then either |u| < 1
4 or |u| > T on R

2 \BR0 in view of the

definition of S.

Step 4. When p ∈ (1,2), we will prove Theorem 1.4.

When |u|< 1
4 on R

2 \BR0 , (6.9) and (6.1) lead to

u ∈ L2(R2)∩L4(R2).(6.14)

This implies

Rk

2

∫
∂BRk

(|u|2− 1

2
|u|4)dξ → 0

when Rk →∞. Inserting this and (6.2) into (6.11) with R=Rk, we get(
1− 2

p

)∫
R2

|∇u|p+
∫
R2

(|u|2− 1

2
|u|4) = 0.(6.15)

Inserting (6.9) into (6.15) yields(
3

2
− 2

p

)∫
R2

|u|4 =
(
2− 2

p

)∫
R2

|u|2 ≥
(
2− 2

p

)∫
R2

|u|4.

This implies |u| ≡ 0.

When |u|> 3/4 on R
2 \BR0 , (6.9) and (6.1) lead to

1−|u|2 ∈ L2(R2).(6.16)

This implies

Rk

4

∫
∂BRk

(1−|u|2)2dξ → 0

when Rk →∞. Inserting this and (6.2) into (6.10), we get(
2

p
−1

)∫
R2

|∇u|p+ 1

2

∫
R2

(1−|u|2)2 = 0.(6.17)

In view of p ∈ (1,2), (6.17) implies |∇u| = 1− |u|2 = 0 on R
2. Therefore, u ≡ C with

|C|= 1.

Step 5. When p > 2, we will prove Theorem 1.4.

When |u|< 1
4 on R

2 \BR0 , by (6.1) and (6.15) we get u≡ 0.

When |u|> T on R
2 \BR0 , (6.17) still holds. Combining with (6.9) leads to(

2− 4

p

)∫
R2

|u|2(1−|u|2) =
∫
R2

(1−|u|2)2.
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Namely, ∫
R2

(1−|u|2)[(3− 4

p
)|u|2−1] = 0.

By (6.1) and |u|> T =
√

p/(3p−4), we have |u| ≡ 1 on R
2. Inserting this into (6.9) we see

that u≡ C with |C|= 1.
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