1 Introduction
For a number field K, the Euler–Kronecker constant
$\gamma _K$
is given by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqnu2.png?pub-status=live)
where
$\zeta _K(s)$
is the Dedekind zeta-function for
$K.$
The Euler–Mascheroni constant
$\gamma =0.5772\ldots \!$
is the
$K={\mathbb Q}$
case, where
$\zeta _{{\mathbb Q}}(s)=\zeta (s)$
is the Riemann zeta-function. We consider the constants
$\gamma _q=\gamma _{K_q}$
for cyclotomic fields
$K_q:={\mathbb Q}(\zeta _q)$
, where
$q\in {\mathbb Z}^{+}$
and
$\zeta _q$
is a primitive qth root of unity.
The recent interest in the distribution of the
$\gamma _q$
is inspired by work of Ihara [Reference Ihara and Ginzburg4, Reference Ihara and Rodier5]. He proposed, for every
$\varepsilon> 0$
, that there is a
$Q (\varepsilon )$
for which
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqnu3.png?pub-status=live)
for every integer
$q \ge Q (\epsilon )$
, where
$0 < c_1 \le c_2 < 2$
are absolute constants. This conjecture was disproved by Ford et al. in [Reference Ford, Luca and Moree2] assuming a strong form of the Hardy–Littlewood k-tuple conjecture. However, assuming the Elliott–Halberstam conjecture (see [Reference Elliott and Halberstam1]), these same authors also proved that the conjecture holds for almost all primes
$q,$
with
$c_1 = c_2 = 1.$
We recall the Elliott–Halberstam Conjecture as formulated in terms of the Von Mangoldt function
$\Lambda (n),$
the Chebyshev function
$\psi (x)$
and Euler’s totient function
$\varphi (n).$
Elliott–Halberstam Conjecture (EH).
If we let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqnu4.png?pub-status=live)
then for every
$\varepsilon>0$
and
$A>0$
, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqnu5.png?pub-status=live)
Assuming EH, Ford et al. proved (see [Reference Ford, Luca and Moree2, Theorem 6(i)]), for every
$\varepsilon> 0$
, that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqnu6.png?pub-status=live)
for almost all primes q (that is, the number of exceptional
$q \le x$
is
$o(\pi (x))$
as
$x\to \infty $
). Here we extend and refine this result to all integers
$q.$
Theorem 1.1. Under EH, for
$Q\rightarrow +\infty $
, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqnu7.png?pub-status=live)
where the sum is over integers q.
Remark 1.2. Theorem 1.1 shows that EH implies that the distribution of
$\gamma _q /\!\log q$
in
$[Q, 2Q]$
converges to the one point distribution supported on
$1$
.
To prove Theorem 1.1, we use the work of Fouvry [Reference Fouvry3] that allowed him to unconditionally prove that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqnu8.png?pub-status=live)
Our conditional result is a point-wise refinement of Fouvry’s asymptotic formula under EH.
2 Proof of Theorem 1.1
For brevity, we shall assume that the reader is familiar with Fouvry’s paper [Reference Fouvry3]. The key formula is (see (3) of [Reference Fouvry3]) the following expression for
$\gamma _q$
in terms of logarithmic derivatives of Dirichlet L-functions:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqn1.png?pub-status=live)
Here the inner sum runs over the primitive Dirichlet characters
$\chi ^*$
modulo
$q^*$
.
We follow the strategy and notation in [Reference Fouvry3], which makes use of the modified Chebyshev function
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqnu9.png?pub-status=live)
and the integral
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqnu10.png?pub-status=live)
However, we replace the sums
$\Gamma _i(Q)$
and
$\Gamma _{1,j}(Q)$
defined in [Reference Fouvry3] with the pointwise terms
$\gamma _i(q)$
and
$\gamma _{1,j}(q)$
. Following the approach in [Reference Fouvry3], which is based on (2.1), we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqnu11.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqnu12.png?pub-status=live)
To complete the proof, for
$\varepsilon>0$
, we let
$x := q^{100}$
and
$x_1 := q^{1 + \varepsilon }$
. Apart from
$\gamma _{1,1}(q),$
which gives the
$-\log q$
terms in Theorem 1.1, we shall show that these summands are all small.
Estimation of
$A(q)$
: By Proposition 1 and Remark (i) of [Reference Fouvry3],
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqnu13.png?pub-status=live)
Estimation of
$B(q)$
: For
$B(q)$
, by (26) and Lemma 3 of [Reference Fouvry3], we simplify
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqnu14.png?pub-status=live)
We note that the innermost sum
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqnu15.png?pub-status=live)
is always
$0$
or
$1$
, so we conclude that
$B(q) \leq 0$
for any q. Proposition 2 of [Reference Fouvry3] gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqnu16.png?pub-status=live)
and so we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqnu17.png?pub-status=live)
Estimation of
$\gamma _2(q)$
: By Lemma 8 of [Reference Fouvry3], uniformly in Q with
$u\geq 1,$
we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqnu18.png?pub-status=live)
Therefore,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqnu19.png?pub-status=live)
and so we conclude that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqnu20.png?pub-status=live)
Estimation of
$\gamma _3(q)$
: By definition,
$\gamma _3$
is positive, so by (36) of [Reference Fouvry3],
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqnu21.png?pub-status=live)
Estimation of
$\gamma _{1,1}(q)$
: Since
$\psi (u;q,1)=0$
for
$u<q$
, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqnu22.png?pub-status=live)
Dividing both sides of (41) of [Reference Fouvry3] by Q,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqnu23.png?pub-status=live)
Estimation of
$\gamma _{1,2}(q)$
: By the same proof as (42) of [Reference Fouvry3], we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqnu24.png?pub-status=live)
Summing the above estimates, we conclude unconditionally that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqnu25.png?pub-status=live)
Estimation of
$\gamma _{1,3}(q)$
: If we assume Conjecture EH holds, then we have (as in Lemma 7 of [Reference Fouvry3]) that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqnu26.png?pub-status=live)
Therefore,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqnu27.png?pub-status=live)
By combining these estimates, we obtain the main result
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128080323046-0808:S0004972722000521:S0004972722000521_eqnu28.png?pub-status=live)
Acknowledgements
The authors thank Pieter Moree for helpful discussions regarding his work with Ford and Luca. We thank the referee for suggestions that improved the exposition in this paper.