Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-02-09T12:51:54.126Z Has data issue: false hasContentIssue false

Geometric orbital integrals and the center of the enveloping algebra

Published online by Cambridge University Press:  11 August 2022

Jean-Michel Bismut
Affiliation:
Institut de Mathématique d'Orsay, Université Paris-Saclay, Bâtiment 307, 91405 Orsay, France jean-michel.bismut@universite-paris-saclay.fr
Shu Shen
Affiliation:
Institut de Mathématiques de Jussieu-Paris Rive Gauche, Sorbonne Université, Case Courrier 247, 4 place Jussieu, 75252 Paris Cedex 05, France shu.shen@imj-prg.fr
Rights & Permissions [Opens in a new window]

Abstract

The purpose of this paper is to extend the explicit geometric evaluation of semisimple orbital integrals for smooth kernels for the Casimir operator obtained by the first author to the case of kernels for arbitrary elements in the center of the enveloping algebra.

Type
Research Article
Copyright
© 2022 The Author(s). The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

1. Introduction

In [Reference BismutBis11, Chapter 6], the first author established a geometric formula for the semisimple orbital integrals of smooth kernels associated with the Casimir. The purpose of this paper is to extend this formula to the smooth kernels where more general elements of the center of the enveloping algebra also appear.

Let us briefly describe our main result in more detail. Let $G$ be a connected real reductive group, and let $\mathfrak g$ be its Lie algebra. Let $\theta \in \mathrm {Aut}(G)$ be a Cartan involution, and let $K \subset G$ be the corresponding maximal compact subgroup with Lie algebra $\mathfrak k$. Let $\mathfrak g= \mathfrak p \oplus \mathfrak k$ be the associated Cartan splitting. Let $B$ be a symmetric nondegenerate bilinear form on $\mathfrak g$ which is $G$ and $\theta$ invariant, positive on $\mathfrak p$ and negative on $\mathfrak k$. Let $X=G/K$ be the associated symmetric space, a Riemannian manifold with parallel nonpositive curvature.

Let $\rho ^{E}:K\to U(E)$ be a finite-dimensional unitary representation of $K$, and let $F=G\times _{K}E$ be the corresponding vector bundle on $X$. Then $G$ acts on the left on $C^{\infty }(X,F)$. Let $U(\mathfrak g)$ be the enveloping algebra of $\mathfrak g$, and let $Z(\mathfrak g)$ be the center of $U(\mathfrak g)$. Then $Z(\mathfrak g)$ acts on $C^{\infty }(X,F)$ and its action commutes with the left action of $G$. Among the elements of $Z(\mathfrak g)$, there is the Casimir $C^{\mathfrak g}$, whose action on $C^{\infty }(X,F)$ is denoted by $C^{\mathfrak g,X}$.

Let $\mathcal {S}^{\mathrm {even}}(\mathbf {R})$ denote the even real functions on $\mathbf {R}$ that lie in the Schwartz space $\mathcal {S}(\mathbf {R})$. Let $\mu \in \mathcal {S}^{\mathrm {even}}(\mathbf {R})$ be such that if $\widehat {\mu }\in \mathcal {S}^{\mathrm {even}}(\mathbf {R})$ is its Fourier transform, there is $C>0$, and for any $k\in \mathbf {N}$, there is $c_{k}>0$ such that

(1.1)\begin{equation} \vert \widehat{\mu}^{(k)}(y)\vert\le c_{k}\exp(-Cy^{2}). \end{equation}

If $A\in \mathbf {R}$, $\mu (\sqrt {C^{\mathfrak g,X}+A}\,)$ is a well-defined operator with a smooth kernel.

If $\gamma \in G$ is semisimple, as explained in [Reference BismutBis11, § 6.2], the orbital integral $\mathrm {Tr}^{[\gamma ]}[\mu (\sqrt {C^{\mathfrak g,X}+A}\,)]$ is well-defined, and it only depends on the conjugacy class of $\gamma$ in $G$. After conjugation, we can write $\gamma$ in the form $\gamma =e^{a}k^{-1}$, $a\in \mathfrak p$, $k\in K$, $\mathrm {Ad}(k^{-1})a=a$. If $Z(\gamma )\subset G$ is the centralizer of $\gamma$ with Lie algebra $\mathfrak z(\gamma )$, then $\theta$ acts on $Z(\gamma )$, and $Z(\gamma )$ is a possibly nonconnected reductive group.Footnote 1 Let $\mathfrak z(\gamma )= \mathfrak p(\gamma ) \oplus \mathfrak k(\gamma )$ be the associated Cartan splitting.

Let $I{{}^{\cdot }}(\mathfrak g)$ be the algebra of invariant polynomials on $\mathfrak g^{*}$, and let $\tau _{\mathrm {D}}: I{{}^{\cdot }}(\mathfrak g) \simeq Z(\mathfrak g)$ denote the Duflo isomorphism [Reference DufloDuf70, Théorème V.2]. If $\mathfrak h \subset \mathfrak g$ is a Cartan subalgebra, let $I{{}^{\cdot }}(\mathfrak h,\mathfrak g)$ denote the algebra of polynomials on $\mathfrak h^{*}$ that are invariant under the corresponding algebraic Weyl group, so that we have the canonical identification $I{{}^{\cdot }}(\mathfrak g) \simeq I{{}^{\cdot }}(\mathfrak h, \mathfrak g)$.Footnote 2 There is a Harish-Chandra isomorphism $\phi _{\mathrm {HC}}: Z(\mathfrak g) \simeq I{{}^{\cdot }}(\mathfrak h, \mathfrak g)$. By [Reference DufloDuf70, Lemme V.1], the Duflo and Harish-Chandra isomorphisms are known to be compatible.

There is a canonical projection $\mathfrak g\to \mathfrak z(\gamma )$,Footnote 3 that induces a corresponding projection $I{{}^{\cdot }}(\mathfrak g)\to I{{}^{\cdot }}(\mathfrak z(\gamma ))$. If $L\in Z(\mathfrak g)$, let $L^{\mathfrak z(\gamma )}$ denote the differential operator on $\mathfrak z(\gamma )$ canonically associated with the projection of $\tau _{\mathrm {D}}^{-1}L$ on $I{{}^{\cdot }}(\mathfrak z(\gamma ))$. In particular, up to a constant, $-(C^{\mathfrak g} ) ^{\mathfrak z(\gamma )}$ extends to the standard Laplacian on the Euclidean vector space $\mathfrak z_{i}(\gamma )= \mathfrak p(\gamma ) \oplus i \mathfrak k(\gamma )$, and $L^{\mathfrak z(\gamma )}$ also extends to a differential operator on $\mathfrak z_{i}(\gamma )$.

Following [Reference BismutBis11, Chapter 5], in Definition 2.6, we define a smooth function $\mathcal {J}_{\gamma }: i \mathfrak k(\gamma )\to \mathbf {C}$. Let us briefly explain the construction of $\mathcal {J}_{\gamma }$, more details being given in § 2.6. Recall that $\widehat {A}(x)=({x/2})/{\sinh (x/2)}$. We identify $\widehat {A}$ with the corresponding $\mathrm {ad}$-invariant function on endomorphisms of vector spaces. Let $Z(a) \subset G$ be the stabilizer of $a$, and let $\mathfrak z(a) \subset \mathfrak g$ be its Lie algebra. Then $\mathfrak z(\gamma ) \subset \mathfrak z(a)$. In addition, $\mathfrak z(a)$ splits as $\mathfrak z(a)= \mathfrak p(a) \oplus \mathfrak k(a)$. Let $\mathfrak z^{\perp }(a)$ be the orthogonal vector space to $\mathfrak z(a)$ in $\mathfrak g$. Let $\mathfrak z^{\perp }_{a}(\gamma )$ be the orthogonal vector space to $\mathfrak z(\gamma )$ in $\mathfrak z(a)$. This space splits as $\mathfrak z^{\perp }_{a}(\gamma )=\mathfrak p^{\perp }_{a}(\gamma ) \oplus \mathfrak k^{\perp }_{a}(\gamma )$.

If ${Y_{0}^{\mathfrak k}}\in i \mathfrak k(\gamma )$, set

(1.2)\begin{align} \begin{aligned}\mathcal{L}_{\gamma}({Y_{0}^{\mathfrak k}}) & =\frac{\det(1- \mathrm{Ad}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}})) \vert_{\mathfrak k^{\perp}_{a}(\gamma)}}{\det(1- \mathrm{Ad}(k^{-1} e^{-{Y_{0}^{\mathfrak k}}}))\vert_{\mathfrak p_{a}^{\perp}(\gamma)}},\\ \mathcal{M}_{\gamma}({Y_{0}^{\mathfrak k}}) &=\bigg[\frac{1}{\det(1-\mathrm{Ad}(k^{-1}))\vert_{ \mathfrak z^{\perp}_{a}(\gamma)} } \mathcal{L}_{\gamma}({Y_{0}^{\mathfrak k}})\bigg]^{1/2},\\ \mathcal{J}_{\gamma}(Y_{0}^{ \mathfrak k}) &= \frac{1}{\vert \det(1-\mathrm{Ad}(\gamma))\vert_{ \mathfrak z^{\perp}(a)} \vert^{1/2}}\frac{\widehat{A}(\mathrm{ad}({Y_{0}^{\mathfrak k}}) \vert _{ \mathfrak p(\gamma)})}{\widehat{A} (\mathrm{ad}({Y_{0}^{\mathfrak k}}) \vert_{\mathfrak k(\gamma)})} \mathcal{M}_{\gamma}({Y_{0}^{\mathfrak k}}). \end{aligned}\end{align}

The way square roots are taken in (1.2) is explained in § 2.6.

Let $\mathfrak h \subset \mathfrak g$ be a $\theta$-stable Cartan subalgebra, so that $\mathfrak h=\mathfrak h_{\mathfrak p} \oplus \mathfrak h_{\mathfrak k}$, and let $H \subset G$ be the corresponding Cartan subgroup. Let $R$ be a root system associated with $\mathfrak h$, and let $R^{\mathrm {re}},R^{\mathrm {im}} \subset R$ be the corresponding real and imaginary roots. Then $R^{\mathrm {im}}$ splits as $R^{\mathrm {im}}=R^{\mathrm {im}}_{ \mathfrak p} \cup R^{\mathrm {im}}_{\mathfrak k}$. If $\alpha \in R$, let $\xi _{\alpha }:H\to \mathbf {C}^{*}$ be the associated character. If $\alpha \in R^{\mathrm {im}}$, then $\vert \xi _{\alpha }\vert =1$. Then $\mathfrak h$ is still a Cartan subalgebra of $\mathfrak z(\gamma ), \mathfrak z(k)$. Let $R(\gamma ),R(k)$ denote the corresponding root system.

Let $R_{+} \subset R$ be a positive root system. Positive roots in $R^{\mathrm {re}}, R^{\mathrm {im}}$ are denoted in the obvious way. A factor $\epsilon _{D}(\gamma )=\pm 1$ is also defined in Definition 4.1.

In Theorem 4.7, we prove the following crucial formula, that plays a key role in our proof of the main result.

Theorem 1.1 For $h_{\mathfrak k}\in i \mathfrak h_{\mathfrak k}$, then

(1.3)\begin{align} \mathcal{J}_{\gamma}(h_{\mathfrak k}) &=\frac{(-1)^{\vert R^{\mathrm{im}}_{ \mathfrak p,+}{\setminus} R^{\mathrm{im}}_{\mathfrak p,+}(k)\vert}\epsilon_{D}(\gamma) \prod_{\alpha\in R_{+}^{\mathrm{re}}{\setminus} R_{+}^{\mathrm{re}}(\gamma)}\xi_{\alpha}^{1/2}(k^{-1})}{ \prod_{\alpha\in R_{+}{\setminus} R_{+}(\gamma)}(\xi^{1/2}_{\alpha}(\gamma)-\xi^{-1/2}_{\alpha}(\gamma))} \frac{\prod_{\alpha\in R_{ \mathfrak p,+}^{\mathrm{im}}(k)}\widehat{A} (\langle \alpha,h_{\mathfrak k}\rangle)}{ \prod_{\alpha\in R_{\mathfrak k,+}^{\mathrm{im}}(k)}\widehat{A}(\langle \alpha,h_{\mathfrak k}\rangle)}\nonumber\\ &\quad \times \frac{\prod_{\alpha\in R_{\mathfrak k,+}^{\mathrm{im}}{\setminus} R_{\mathfrak k,+}^{\mathrm{im}}(k)}( \xi_{\alpha}^{1/2}(k^{-1}e^{-h_{\mathfrak k}})- \xi^{-1/2}_{\alpha}(k^{-1}e^{-h_{\mathfrak k}}))}{ \prod_{\alpha\in R_{\mathfrak p,+}^{\mathrm{im}}{\setminus} R_{\mathfrak p,+}^{\mathrm{im}}(k)}( \xi_{\alpha}^{1/2}(k^{-1}e^{-h_{\mathfrak k}})- \xi^{-1/2}_{\alpha}(k^{-1}e^{-h_{\mathfrak k}}))}. \end{align}

Let $\delta _{a}$ be the Dirac mass at $a\in \mathfrak p(\gamma )$. Then

\[ \mathcal{J}_{\gamma}({Y_{0}^{\mathfrak k}})\mathrm{Tr}^{E}[\rho^{E}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}})] \otimes \delta_{a} \]

is a distribution on $\mathfrak z_{i}(\gamma )$.Footnote 4

Our main result, which is repeated as Theorem 9.1, is as follows.

Theorem 1.2 The following identity holds:

(1.4)\begin{align} &\mathrm{Tr}{}^{[\gamma]}[L\mu(\sqrt{C^{\mathfrak g,X}+A}\, )] =L^{\mathfrak z(\gamma)} \mu(\sqrt{( C^{\mathfrak g})^{\mathfrak z(\gamma)}+A}\,) [ \mathcal{J}_{\gamma}({Y_{0}^{\mathfrak k}})\mathrm{Tr}^{E}[\rho^{E} (k^{-1}e^{-{Y_{0}^{\mathfrak k}}})]\delta_{a}](0). \end{align}

When $L=1$, our theorem was already established in [Reference BismutBis11, Theorem 6.2.2].

The proofs in [Reference BismutBis11] used a construction of a new object, the hypoelliptic Laplacian. Here, we only need the results of [Reference BismutBis11].

Our proof is done in two steps. In a first step, using the results of [Reference BismutBis11], we prove Theorem 1.2 when $\gamma \in G$ is regular. In this case, using the properties of the Harish-Chandra isomorphism [Reference Harish-ChandraHar66], the proof is relatively easy.

When $\gamma$ is nonregular, we combine our result for $\gamma$ regular with limit arguments due to Harish-Chandra on the behavior of orbital integrals when $\gamma '$ regular converges to $\gamma$. In both steps, remarkable and nontrivial properties of the function $\mathcal {J}_{\gamma }$ are used.

This paper is organized as follows. In § 2, we describe the geometric setting, and we explain the formula for the semisimple orbital integrals that was obtained in [Reference BismutBis11]. In § 3, we recall some of the properties of Cartan subalgebras, Cartan subgroups, and of the corresponding root systems. In § 4, we express the restriction of the function $\mathcal {J}_{\gamma }$ to Cartan subalgebras in terms of a positive root system. This is a fundamental result, that is made explicit in Theorem 4.7. In § 5, we specialize the results of the previous section to the case where $\gamma$ is regular. We prove a crucial and unexpected smooth dependence of $\mathcal {J}_{\gamma }$ on $\gamma$. In § 6, we explain in some detail the Harish-Chandra isomorphism. In § 7, we establish Theorem 1.2 when $\gamma$ is regular. In § 8, when $\gamma$ is non-necessarily regular, we study the limit of $\mathcal {J}_{\gamma '}$, and the limit of our formula for regular orbital integrals as $\gamma '$ regular converges to $\gamma$ in a suitable sense. In § 9, using the results of the previous section, we establish Theorem 1.2 in full generality. Finally, in § 10, we prove that our formula is compatible to the index theory for Dirac operators, and also with known results on Dirac cohomology [Reference Huang and PandžićHP02].

The results contained in this paper were announced in [Reference Bismut and ShenBS19].

2. Geometric formulas for orbital integrals and the Casimir

In this section, we explain the geometric formula given in [Reference BismutBis11, Chapter 6] for the semisimple orbital integrals associated with the proper smooth kernels for the Casimir.

This section is organized as follows. In § 2.1, we introduce the real reductive group $G$, its maximal compact subgroup $K$, the Lie algebras $\mathfrak g, \mathfrak k$, and the symmetric space $X=G/K$. In § 2.2, we recall the definition of semisimple elements in $G$, and of the corresponding displacement function. In § 2.3, we introduce the enveloping algebra $U(\mathfrak g)$, and the Casimir element $C^{\mathfrak g}\in U(\mathfrak g)$. In § 2.4, given a unitary representation of $K$, we construct the corresponding vector bundle $F$ on $X$, and the elliptic operator $C^{\mathfrak g,X}$ which is just the action of $C^{\mathfrak g}$ on $C^{\infty }(X,F)$. In § 2.5, given $\mu \in \mathcal {S}^{\mathrm {even}}(\mathbf {R})$ such that its Fourier transform has the proper Gaussian decay, if $A\in \mathbf {R}$, we recall the definition of the semisimple orbital integrals associated with the smooth kernel for $\mu (\sqrt {C^{\mathfrak g,X}+A}\,)$. Among these kernels, there is the heat kernel for $C^{\mathfrak g,X}$. In § 2.6, if $\gamma \in G$ is semisimple, if $Z(\gamma )\subset G$ is its centralizer with Lie algebra $\mathfrak z(\gamma )$, if $\mathfrak k(\gamma )$ is the compact part of $\mathfrak z(\gamma )$, we recall the definition of the function $\mathcal {J}_{\gamma }$ on $i \mathfrak k(\gamma )$ given in [Reference BismutBis11, Theorem 5.5.1]. In § 2.7, we study the behavior of $\mathcal {J}_{\gamma }$ when replacing by $\gamma$ by $\gamma ^{-1}$, and also by complex conjugation. Finally, in § 2.8, we state the geometric formula obtained in [Reference BismutBis11] for the above orbital integrals, in which the function $\mathcal {J}_{\gamma }$ plays a key role.

2.1 Reductive groups and symmetric spaces

Let $G$ be a connected reductive real Lie group, and let $\mathfrak g$ be its Lie algebra. Let $\theta \in \mathrm {Aut}(G)$ be a Cartan involution. Then $\theta$ acts as an automorphism of $\mathfrak g$. Let $K \subset G$ be the fixed point set of $\theta$. Then $K$ is a compact connected subgroup of $G$, which is a maximal compact subgroup. If $\mathfrak k \subset \mathfrak g$ is the Lie algebra of $K$, then $\mathfrak k$ is the fixed point set of $\theta$ in $\mathfrak g$. Let $\mathfrak p \subset \mathfrak g$ be the eigenspace of $\theta$ corresponding to the eigenvalue $-1$, so that we have the Cartan decomposition

(2.1)\begin{equation} \mathfrak g= \mathfrak p \oplus \mathfrak k. \end{equation}

Put

(2.2)\begin{equation} m=\dim \mathfrak p, \quad n=\dim \mathfrak k, \end{equation}

so that

(2.3)\begin{equation} \dim \mathfrak g=m+n. \end{equation}

Let $B$ be a $G$ and $\theta$ invariant bilinear symmetric nondegenerate form on $\mathfrak g$. Then (2.1) is a $B$-orthogonal splitting. We assume that $B$ is positive on $\mathfrak p$ and negative on $\mathfrak k$. Let $\langle \,\,\rangle =-B(\cdot,\theta \cdot )$ be the corresponding scalar product on $\mathfrak g$. Let $B^{*}$ be the bilinear symmetric form on $\mathfrak g^{*}= \mathfrak p^{*} \oplus \mathfrak k^{*}$ which is dual to $B$.

Let $\omega ^{\mathfrak g}$ be the canonical left-invariant $1$-form on $G$ with values in $\mathfrak g$. By (2.1), $\omega ^{\mathfrak g}$ splits as

(2.4)\begin{equation} \omega^{\mathfrak g}=\omega^{\mathfrak p} + \omega^{\mathfrak k}. \end{equation}

Let $X=G/K$ be the corresponding symmetric space. Then $p:G\to X=G/K$ is a $K$-principal bundle, and $\omega ^{\mathfrak k}$ is a connection form. In addition, the tangent bundle $TX$ is given by

(2.5)\begin{equation} TX =G\times_{K}\mathfrak p. \end{equation}

Then $TX$ is equipped with the scalar product $\langle \,\,\rangle$ induced by $B$, so that $X$ is a Riemannian manifold. The connection $\nabla ^{TX}$ on $TX$ which is induced by $\omega ^{\mathfrak k}$ is the Levi-Civita connection of $TX$, and its curvature is parallel and nonpositive. In addition, $G$ acts isometrically on the left on $X$, and $\theta$ acts as an isometry of $X$.

By [Reference KnappKna86, Proposition 1.2], any element $\gamma \in G$ factorizes uniquely in the form

(2.6)\begin{equation} \gamma=e^{a}k^{-1}, \quad a\in \mathfrak p, k\in K. \end{equation}

If $\gamma,g\in G$, set

(2.7)\begin{equation} C(g)\gamma=g\gamma g^{-1}. \end{equation}

Then $C(g)$ is an automorphism of $G$. Its derivative at the identity is the adjoint representation $g\in G\to \mathrm {Ad}(g)\in \mathrm {Aut}(\mathfrak g)$. The derivative of this last map is given by $a\in \mathfrak g\to \mathrm {ad}(a)\in \mathrm {End}(\mathfrak g)$, with $\mathrm {ad}(a)b=[a,b]$. If $\gamma \in G$, the fixed point set of $C(\gamma )$ is the centralizer $Z(\gamma ) \subset G$, whose Lie algebra $\mathfrak z(\gamma )$ is given by

(2.8)\begin{equation} \mathfrak z(\gamma)=\ker (1-\mathrm{Ad}(\gamma)). \end{equation}

If $f\in \mathfrak g$, let $Z(f) \subset G$ be the stabilizer of $f$. Its Lie algebra $\mathfrak z(f) \subset \mathfrak g$ is given by

(2.9)\begin{equation} \mathfrak z(f)=\ker \mathrm{ad}(f). \end{equation}

In the following, if $M$ is a Lie group, we denote by $M^{0}$ the connected component of the identity.

2.2 Semisimple elements and their displacement function

Let $d$ be the Riemannian distance on $X$. By [Reference Ballmann, Gromov and SchroederBGS85, § 6.1], $d$ is a convex function on $X\times X$. If $\gamma \in G$, let $d_{\gamma }$ be the corresponding displacement function on $X$, i.e.

(2.10)\begin{equation} d_{\gamma}(x)=d(x,\gamma x). \end{equation}

If $g\in G$, then

(2.11)\begin{equation} d_{C(g)\gamma}(gx)=d_{\gamma}(x). \end{equation}

Moreover,

(2.12)\begin{equation} d_{\theta(\gamma)}(\theta x)=d_{\gamma}(x). \end{equation}

Set

(2.13)\begin{equation} m_{\gamma}=\inf d_{\gamma}. \end{equation}

Let $X(\gamma ) \subset X$ be the closed subset where $d_{\gamma }$ reaches its minimum. By [Reference Ballmann, Gromov and SchroederBGS85, p. 78 and § 1.2], $X(\gamma )$ is a closed convex subset, $d_{\gamma }$ is smooth on $X{\setminus} X(\gamma )$ and has no critical points on $X{\setminus} X(\gamma )$. In addition, by (2.11) and (2.12),

(2.14)\begin{equation} \begin{array}{l} X(C(g)\gamma)=gX(\gamma), \\ m_{C(g)\gamma}=m_{\gamma}, \end{array} \quad \begin{array}{l} X(\theta\gamma)=\theta X(\gamma),\\ m_{\theta(\gamma)}=m_{\gamma}. \end{array} \end{equation}

By [Reference EberleinEbe96, Definition 2.19.21], $\gamma$ is said to be semisimple if $X(\gamma )$ is nonempty. If $\gamma$ is semisimple, then $C(g)\gamma$ and $\theta (\gamma )$ are semisimple. In addition, $\gamma$ is said to be elliptic if it is semisimple and $m_{\gamma }=0$. Elliptic elements are exactly the group elements that are conjugate to elements of $K$. Finally, $\gamma$ is said to be hyperbolic if it is conjugate to $e^{a}, a\in \mathfrak p$.

By [Reference KostantKos73, Proposition 2.1], [Reference Ballmann, Gromov and SchroederBGS85, Theorems 2.19.23 and 2.19.24], $\gamma \in G$ is semisimple if and only if it factorizes as $\gamma =he=eh$, with commuting hyperbolic $h$ and elliptic $e$. In addition, $e$ and $h$ are uniquely determined by $\gamma$, and

(2.15)\begin{equation} Z(\gamma)=Z(h)\cap Z(e). \end{equation}

Set

(2.16)\begin{equation} x_{0}=p1. \end{equation}

Theorem 2.1 Let $\gamma \in G$ be semisimple. If $g\in G,x=p g\in X$, then $x\in X(\gamma )$ if and only if there exist $a\in \mathfrak p$, $k\in K$ such that $\mathrm {Ad}(k)a=a$, and

(2.17)\begin{equation} \gamma=C(g)(e^{a}k^{-1}).\end{equation}

In addition, $C(g)e^{a}\in G, \ C(g)k\in G$ are uniquely determined by $\gamma$. If $g_{t}=ge^{ta}$, then $t\in [0,1]\to y_{t}=pg_{t}$ is the unique geodesic connecting $x$ and $\gamma x$. Moreover,

(2.18)\begin{equation} m_{\gamma}=\vert a\vert.\end{equation}

If $\gamma \in G$ is semisimple, then $x_{0}\in X(\gamma )$ if and only if there exist $a\in \mathfrak p,\ k\in K$ such that

(2.19)\begin{equation} \gamma=e^{a}k^{-1}, \quad a\in \mathfrak p, \mathrm{Ad}(k)a=a. \end{equation}

In addition, $a$ and $k$ are uniquely determined by (2.19).

Proof. The first part of our theorem was established in [Reference BismutBis11, Theorem 3.1.2]. By taking $g=1$ in the first part, we obtain the second part.

Let $\gamma \in G$ be a semisimple element written as in (2.19). By [Reference BismutBis11, Proposition 3.2.8, (3.3.4), and (3.3.6)],

(2.20)\begin{equation} Z(e^{a})=Z(a), \quad Z(\gamma)=Z(a)\cap Z(k),\quad \mathfrak z(\gamma)=\mathfrak z(a)\cap \mathfrak z(k). \end{equation}

By (2.19), $a\in \mathfrak z(\gamma )$, and by (2.20), $\mathfrak z(\gamma ) \subset \mathfrak z(a)$, so that $a$ is an element of the center of $\mathfrak z(\gamma )$.

Clearly,

(2.21)\begin{equation} \theta(\gamma)=e^{-a}k^{-1}. \end{equation}

Therefore, $\theta (\gamma )\in Z(\gamma )$, so that the above centralizers and Lie algebras are preserved by $\theta$. Set

(2.22)\begin{equation} K(\gamma)=Z(\gamma)\cap K. \end{equation}

By [Reference BismutBis11, Theorem 3.3.1], we have the identity

(2.23)\begin{equation} K^{0}(\gamma)=Z^{0}(\gamma)\cap K, \end{equation}

and $K^{0}(\gamma )$ is a maximal compact subgroup of $Z^{0}(\gamma )$.

Put

(2.24)\begin{equation} \mathfrak p(\gamma)= \mathfrak p\cap \mathfrak z(\gamma), \quad \mathfrak k(\gamma)=\mathfrak k\cap \mathfrak z(\gamma). \end{equation}

Then $\mathfrak k(\gamma )$ is the Lie algebra of $K(\gamma )$. We use similar notation for the Lie algebras $\mathfrak z(k)$ and $\mathfrak z(a)$. We have the Cartan decompositions of Lie algebras,

(2.25)\begin{equation} \mathfrak z(\gamma)= \mathfrak p(\gamma) \oplus \mathfrak k(\gamma), \quad \mathfrak z(k)= \mathfrak p(k) \oplus \mathfrak k(k),\quad \mathfrak z(a)= \mathfrak p(a) \oplus \mathfrak k(a). \end{equation}

Then $B$ restricts to a nondegenerate form on $\mathfrak z(\gamma )$, $\mathfrak z(k)$, and $\mathfrak z(a)$, so that $Z(\gamma )$, $Z(k)$, and $Z(a)$ are possibly nonconnected reductive subgroups of $G$. By [Reference BismutBis11, Theorem 3.3.1], we have the identification of finite groups,

(2.26)\begin{equation} Z^{0}(\gamma){\setminus} Z(\gamma)=K^{0}(\gamma){\setminus} K(\gamma). \end{equation}

Let $\mathfrak z^{\perp }(\gamma )$ and $\mathfrak z^{\perp }(a)$ be the orthogonal spaces to $\mathfrak z(\gamma )$ and $\mathfrak z(a)$ in $\mathfrak g$ with respect to $B$. We have splittings

(2.27)\begin{equation} \mathfrak z^{\perp}(\gamma)= \mathfrak p^{\perp}(\gamma) \oplus \mathfrak k^{\perp}(\gamma), \quad \mathfrak z^{\perp}(a)= \mathfrak p^{\perp}(a) \oplus \mathfrak k^{\perp}(a). \end{equation}

Let $\mathfrak z^{\perp }_{a}(\gamma )$ denote the orthogonal to $\mathfrak z(\gamma )$ in $\mathfrak z(a)$. We still have a splitting

(2.28)\begin{equation} \mathfrak z^{\perp}_{a}(\gamma)= \mathfrak p^{\perp}_{a}(\gamma) \oplus \mathfrak k^{\perp}_{a}(\gamma). \end{equation}

Now we recall a result established in [Reference BismutBis11, Theorem 3.3.1].

Theorem 2.2 The set $X(\gamma )$ is preserved by $\theta$. Moreover,

(2.29)\begin{equation} X(\gamma)=X(e^{a})\cap X(k).\end{equation}

In addition, $X(\gamma )$ is a totally geodesic submanifold of $X$. In the geodesic coordinate system centered at $x_{0}=p1$, then

(2.30)\begin{equation} X(\gamma)= \mathfrak p(\gamma). \end{equation}

The actions of $Z^{0} (\gamma ), Z(\gamma )$ on $X(\gamma )$ are transitive. More precisely the maps $g\in Z^{0}(\gamma ) \to p g\in X ,\ g\in Z(\gamma )\to pg\in X$ induce the identification of $Z^{0}(\gamma )$-manifolds,

(2.31)\begin{equation} X(\gamma) = Z^{0}(\gamma)/K^{0}(\gamma)=Z(\gamma)/K(\gamma). \end{equation}

We now establish a simple important consequence of Theorem 2.2.

Theorem 2.3 Let $\gamma$ be a semisimple element of $G$ as in (2.19). Let $\gamma '$ be another semisimple element of $G$ such that

(2.32)\begin{equation} \gamma'=e^{a'}k^{\prime -1}, \quad a'\in \mathfrak p, \quad \mathrm{Ad}(k')a'=a'. \end{equation}

Then there exists $g\in G$ such that $\gamma '=C(g)\gamma$ if and only if there exists $k''\in K$ such that $C(k'')\gamma =\gamma '$, in which case

(2.33)\begin{equation} a'=\mathrm{Ad}(k^{\prime \prime })a, \quad k'=C(k^{\prime \prime })k. \end{equation}

Proof. Assume that $\gamma '=C(g)\gamma$. By (2.14), we obtain

(2.34)\begin{equation} X(\gamma')=gX(\gamma). \end{equation}

By Theorem 2.1, $x_{0}\in X(\gamma )\cap X(\gamma ')$. By (2.34), $gx_{0}\in X(\gamma ')$. By Theorem 2.2, there exists $h\in Z(\gamma ')$ such that

(2.35)\begin{equation} hgx_{0}=x_{0}, \end{equation}

which is equivalent to

(2.36)\begin{equation} k''=hg\in K. \end{equation}

As $h\in Z(\gamma ')$, we conclude that $C(k'')\gamma =\gamma '$. Using the uniqueness of decomposition in (2.32) established in Theorem 2.1, (2.33) follows. The proof of our theorem is complete.

2.3 Enveloping algebra and the Casimir

We identify $\mathfrak g$ with the Lie algebra of left-invariant vector fields on $G$. Let $U(\mathfrak g)$ be the enveloping algebra of $\mathfrak g$. Then $U(\mathfrak g)$ can be identified with the algebra of left-invariant differential operators on $G$. Let $ Z(\mathfrak g) \subset U(\mathfrak g)$ denote the center of $U(\mathfrak g)$.

If $E$ is a finite-dimensional real or complex vector space, and if $\rho ^{E}: \mathfrak g\to \mathrm {End}(E)$ is a morphism of Lie algebras, the map $\rho ^{E}$ extends to a morphism $U(\mathfrak g)\to \mathrm {End}(E)$.

Among the elements of $Z (\mathfrak g)$, there is the Casimir element $C^{\mathfrak g}$. If $e_{1},\ldots,e_{m+n}$ is a basis of $\mathfrak g$, and if $e^{*}_{1},\ldots,e_{m+n}^{*}$ is the dual basis of $\mathfrak g$ with respect to $B$, thenFootnote 5

(2.37)\begin{equation} C^{\mathfrak g}=-\sum_{i=1}^{m+n}e_{i}^{*}e_{i}. \end{equation}

If we consider instead the Lie algebra $(\mathfrak k, B\vert _{\mathfrak k})$, $C^{\mathfrak k}\in Z(\mathfrak k)$ denotes the associated Casimir element.

If $e_{1},\ldots, e_{m}$ is a basis of $\mathfrak p$, and if $e^{*}_{1},\ldots,e^{*}_{m}$ is the dual basis of $\mathfrak p$ with respect to $B\vert _{\mathfrak p}$, set

(2.38)\begin{equation} C^{\mathfrak p}=-\sum_{i=1}^{m}e^{*}_{i}e_{i}. \end{equation}

Then $C^{\mathfrak p}\in U(\mathfrak g)$. Using (2.37) and (2.38), we obtain

(2.39)\begin{equation} C^{\mathfrak g}=C^{\mathfrak p}+C^{\mathfrak k}. \end{equation}

In addition, $C^{\mathfrak p}$ and $C^{\mathfrak k}$ commute.

If $\rho ^{E}: \mathfrak g\to \mathrm {End}(E)$ is taken as previously, put

(2.40)\begin{equation} C^{\mathfrak g,E}=\rho^{E}(C^{\mathfrak g}). \end{equation}

Under the above conditions, we can define $C^{\mathfrak p, E}, C^{\mathfrak k,E}$.

As $\mathfrak g$ is itself a representation of $\mathfrak g$, $C^{\mathfrak g, \mathfrak g}$ is the action of $C^{\mathfrak g}$ on $\mathfrak g$. Since $\mathfrak k$ acts on $\mathfrak p, \mathfrak k$, $C^{\mathfrak k, \mathfrak p}, C^{\mathfrak k, \mathfrak k}$ are also well-defined.

Proposition 2.4 The following identity holds:

(2.41)\begin{equation} \mathrm{Tr}[C^{\mathfrak g, \mathfrak g}]=3\mathrm{Tr} [C^{\mathfrak k, \mathfrak p}]+\mathrm{Tr} [C^{\mathfrak k, \mathfrak k}]. \end{equation}

Proof. By (2.39), we obtain

(2.42)\begin{equation} \mathrm{Tr}[C^{\mathfrak g,\mathfrak g}]=\mathrm{Tr} [C^{\mathfrak p,\mathfrak g}]+\mathrm{Tr}[C^{\mathfrak k,\mathfrak g}]. \end{equation}

Let $e_{1},\ldots,e_{m}$ be an orthonormal basis of $\mathfrak p$, and let $e_{m+1},\ldots,e_{n}$ be an orthonormal basis of $\mathfrak k$. Then

(2.43)\begin{equation} \begin{aligned} & \mathrm{Tr}[C^{\mathfrak p, \mathfrak g}]=- \sum_{\substack{1\le i\le m\\ 1\le j\le m+n}} \vert [e_{i},e_{j}]\vert^{2},\\ & \mathrm{Tr}[C^{\mathfrak k, \mathfrak p}]= -\sum_{\substack{1\le i\le m\\ m+1\le j\le m+n}}\vert [e_{i},e_{j}]\vert^{2} = -\sum_{1\le i,j\le m}\vert [e_{i},e_{j}]\vert^{2}. \end{aligned} \end{equation}

By (2.43), we deduce that

(2.44)\begin{equation} \mathrm{Tr}[C^{\mathfrak p, \mathfrak g}]=2\mathrm{Tr} [C^{\mathfrak k, \mathfrak p}]. \end{equation}

In addition,

(2.45)\begin{equation} \mathrm{Tr}[C^{\mathfrak k,\mathfrak g}]=\mathrm{Tr} [C^{\mathfrak k, \mathfrak p}]+\mathrm{Tr} [C^{\mathfrak k, \mathfrak k}]. \end{equation}

By (2.42), (2.44), and (2.45), we obtain (2.41). The proof of our proposition is completed.

Let $\mathfrak h \subset \mathfrak g$ be a $\theta$-stable Cartan subalgebra. Then we have the splitting $\mathfrak h= \mathfrak h_{\mathfrak p} \oplus \mathfrak h_{\mathfrak k}$.Footnote 6 Let $R \subset \mathfrak h_{\mathbf {C}}^{*}$ be the corresponding root system. Let $R_{+}$ be a positive root system. Set $R_{-}=-R_{+}$. Then $R$ is the disjoint union of $R_{+}$ and $R_{-}$. Let $\rho ^{\mathfrak g}\in \mathfrak h^{*}_{\mathbf {C}}$ be the half sum of the positive roots. Here $\rho ^{\mathfrak g}\in \mathfrak h_{\mathfrak p}^{*} \oplus i \mathfrak h_{\mathfrak k}^{*}$. By Kostant's strange formula [Reference KostantKos76], we have the identity

(2.46)\begin{equation} B^{*}(\rho^{\mathfrak g},\rho^{\mathfrak g})=-\tfrac{1}{24}\mathrm{Tr} [C^{\mathfrak g, \mathfrak g}]. \end{equation}

By (2.41) and (2.46), we obtain

(2.47)\begin{equation} B^{*}(\rho^{\mathfrak g}, \rho^{\mathfrak g})=-\tfrac{1}{8}\mathrm{Tr} [C^{\mathfrak k, \mathfrak p}]-\tfrac{1}{24}\mathrm{Tr} [C^{\mathfrak k, \mathfrak k}]. \end{equation}

Using the notation in [Reference BismutBis11, (2.6.11)],Footnote 7 by (2.47), we obtain

(2.48)\begin{equation} B^{*}(\rho^{\mathfrak g},\rho^{\mathfrak g})=-\tfrac{1}{4}B^{*}(\kappa^{\mathfrak g}, \kappa^{\mathfrak g}). \end{equation}

2.4 The elliptic operator $C^{\mathfrak g,X}$

Let $E$ be a finite-dimensional Hermitian vector space, and let $\rho ^{E}:K\to U(E)$ denote a unitary representation of $K$. The Casimir $C^{\mathfrak k,E}$ is a self-adjoint nonpositive endomorphism of $E$. If $\rho ^{E}$ is irreducible, then $C^{\mathfrak k,E}$ is a scalar.

Let $F$ be the vector bundle on $X$,

(2.49)\begin{equation} F=G\times_{K}E. \end{equation}

Then $F$ is a Hermitian vector bundle on $X$, which is equipped with a canonical connection $\nabla ^{F}$. In addition, $C^{\mathfrak k,E}$ descend to a parallel section $C^{\mathfrak k,F}$ of $\mathrm {End}(F)$. Moreover, $G$ acts on $C^{ \infty }(X,F)$, so that if $g\in G, s\in C^{\infty }(X,F)$, if $g_{*}$ denotes the lift of the action of $g$ to $F$,

(2.50)\begin{equation} gs(x)=g_{*}s(g^{-1}x). \end{equation}

The Casimir operator $C^{\mathfrak g}$ descends to a second-order elliptic operator $C^{\mathfrak g,X}$ acting on $C^{ \infty }(X,F)$, which commutes with $G$. Let $\Delta ^{X}$ denote the classical Bochner Laplacian acting on $C^{\infty }(X,F)$. By [Reference BismutBis11, (2.13.2)], the splitting (2.39) of $C^{\mathfrak g}$ descends to the splitting of $C^{\mathfrak g,X}$,

(2.51)\begin{equation} C^{\mathfrak g,X}=-\Delta^{X}+C^{\mathfrak k,F}. \end{equation}

2.5 Orbital integrals and the Casimir

Let $\mu \in \mathcal {S}^{\mathrm {even}}(\mathbf {R})$. Let $\widehat {\mu } \in \mathcal {S}^{\mathrm {even}}(\mathbf {R})$ be its Fourier transform, i.e.

(2.52)\begin{equation} \widehat{\mu}(y)=\int_{\mathbf{R}}e^{-2i\pi yx}\mu(x) \, d x. \end{equation}

We assume that there exists $C>0$ such that for any $k\in \mathbf {N}$, there is $c_{k}>0$ such that

(2.53)\begin{equation} \vert \widehat{\mu}^{(k)}(y)\vert\le c_{k}\exp(-Cy^{2}). \end{equation}

This condition is verified if $\widehat {\mu }$ has compact support. For $t>0$, it is also verified by the Gaussian function $e^{-tx^{2}}$.

If $A\in \mathbf {R}$, the operator $\mu (\sqrt {C^{\mathfrak g,X}+A}\,)$ is self-adjoint with a smooth kernel $\mu (\sqrt {C^{\mathfrak g,X}+A}\,) (x,x')$ with respect to the Riemannian volume $d x'$ on $X$. As explained in [Reference BismutBis11, § 6.2], using finite propagation speed for the wave equation, condition (2.53) implies that there exist $C>0,c>0$ such that if $x,x'\in X$, then

(2.54)\begin{equation} \vert \mu(\sqrt{C^{\mathfrak g,X}+A}\,)(x,x')\vert \le Ce^{-cd^{2}(x,x')}. \end{equation}

If $\widehat {\mu }$ has compact support, then $\mu (\sqrt {C^{\mathfrak g,X}+A}\,)(x,x')$ vanishes when $d(x,x')$ is large enough.

As explained in [Reference BismutBis11, § 6.2], the above condition guarantees that if $\gamma \in G$ is semisimple, the orbital integral $\mathrm {Tr}^{[\gamma ]}[\mu (\sqrt {C^{\mathfrak g,X}+A}\,)]$ is well-defined. Let us give more details on our conventions.

Let $\gamma \in G$ be taken as in (2.19). Let $N_{X(\gamma )/X}$ be the orthogonal bundle to $TX(\gamma )$ in $TX$. By [Reference BismutBis11, (3.4.1)], we have the identity

(2.55)\begin{equation} N_{X(\gamma)/X}=Z^{0}(\gamma)\times_{K^{0}(\gamma)} \mathfrak p^{\perp}(\gamma). \end{equation}

Let $\mathcal {N}_{X(\gamma )/X}$ be the total space of $N_{X(\gamma )/X}$. By [Reference BismutBis11, Theorem 3.4.1], the normal geodesic coordinate system based at $X(\gamma )$ gives a smooth identification of $\mathcal {N}_{X(\gamma )/X}$ with $X$. Let $dx,dy,df$ be the Riemannian volumes on $X,X(\gamma ), N_{X(\gamma )/X}$. Then $dydf$ is a volume on $\mathcal {N}_{X(\gamma )/X}$. Let $r(f)$ denote the corresponding Jacobian, so that we have the identity of volumes on $X$,

(2.56)\begin{equation} dx=r(f)dydf. \end{equation}

By [Reference BismutBis11, (3.4.36)], there are constants $C>0,C'>0$ such that

(2.57)\begin{equation} r(f)\le Ce^{C'\vert f\vert}. \end{equation}

By [Reference BismutBis11, Theorem 3.4.1], there exists $C_{\gamma }>0$ such that for $f\in \mathfrak p^{\perp }(\gamma ),\ \vert f\vert \ge 1$,

(2.58)\begin{equation} d_{\gamma}(e^{f}x_{0})\ge \vert a\vert+C_{\gamma}\vert f\vert. \end{equation}

As explained in [Reference BismutBis11, (4.2.6)], by (2.54) and (2.58), there exist $C_{\gamma }>0$ and $c_{\gamma }>0$ such that if $f\in \mathfrak p^{\perp }(\gamma )$, then

(2.59)\begin{equation} \vert \mu(\sqrt{C^{\mathfrak g,X}+A}\,)(\gamma^{-1}e^{f}x_{0},e^{f}x_{0} )\vert\le C_{\gamma}\exp(-c_{\gamma}\vert f\vert^{2}). \end{equation}

We denote by $\gamma _{*}$ the action of $\gamma$ on $F$. More precisely, if $x\in X$, $\gamma _{*}$ maps $F_{x}$ into $F_{\gamma x}$.

In [Reference BismutBis11, Definition 4.2.2], the orbital integral

\[ \mathrm{Tr}^{[\gamma]} [\mu(\sqrt{C^{\mathfrak g,X}+A}\,)] \]

is defined by the formula

(2.60)\begin{align} \mathrm{Tr}^{[\gamma]} [\mu(\sqrt{C^{\mathfrak g,X}+A}\,)] =\int_{\mathfrak p^{\perp}(\gamma)}\mathrm{Tr}[\gamma_{*} \mu(\sqrt{C^{\mathfrak g,X}+A}\,)(\gamma^{-1}e^{f}x_{0}, e^{f}x_{0}) ]r(f) \, df. \end{align}

Equations (2.57) and (2.59) guarantee that the integral in (2.60) converges.

Let $dk$ be the Haar measure on $K$ such that $\mathrm {Vol}(K)=1$. Then $dg=dxdk$ is a Haar measure on $G$. Let $dy$ be the Riemannian volume on $X(\gamma )$. Let $dk^{\prime 0}$ be the Haar measure on $K^{0}(\gamma )$ such that $\mathrm {Vol}(K^{0}(\gamma ))=1$. Then $dz^{0}=dydk^{\prime 0}$ is a Haar measure on $Z^{0}(\gamma )$. Let $dv^{0}$ be the volume on $Z^{0}(\gamma ){\setminus} G$ such that $dg=dz^{0}dv^{0}$.

As explained in [Reference BismutBis11, § 4.2], the smooth kernel

\[ \mu(\sqrt{C^{\mathfrak g,X}+A}\,)(x,x') \]

lifts to a smooth function on $G$ with values in $\mathrm {End}(E)$, denoted by

\[ \mu^{E}(\sqrt{C^{\mathfrak g,X}+A}\,)(g), \]

and by [Reference BismutBis11, (4.2.11)], we have the identity

(2.61)\begin{align} \mathrm{Tr}^{[\gamma]} [\mu(\sqrt{C^{\mathfrak g,X}+A}\,)] =\int_{Z^{0}(\gamma){\setminus} G}\mathrm{Tr}^{E} [\mu(\sqrt{C^{\mathfrak g,X}+A}\,)((v^{0})^{-1}\gamma v^{0})] \, dv^{0}. \end{align}

This definition of orbital integrals coincides with the definition given by Selberg [Reference SelbergSel56, p. 66].

2.6 The function $\mathcal {J}_{\gamma }$

We use the assumptions in § 2.2 and the corresponding notation. In particular, $\gamma \in G$ is a semisimple element as in (2.19).

Then $\mathrm {Ad}(\gamma )$ preserves $\mathfrak z(a), \mathfrak z^{\perp }(a)$. In addition, $\mathrm {Ad}(k^{-1})$ preserves $\mathfrak z_{a}^{\perp }(\gamma )$. If ${Y_{0}^{\mathfrak k}}\in \mathfrak k(\gamma )$, $\mathrm {ad}({Y_{0}^{\mathfrak k}})$ preserves $\mathfrak z_{a}^{\perp }(\gamma )$. The splitting (2.28) is preserved by $\mathrm {Ad}(k^{-1})$ and $\mathrm {ad}({Y_{0}^{\mathfrak k}})$.

If $x\in \mathbf {R}$, put

(2.62)\begin{equation} \widehat{A}(x)=\frac{x/2}{\sinh(x/2)}. \end{equation}

If ${Y_{0}^{\mathfrak k}}\in \mathfrak k(\gamma )$, $\mathrm {ad}({Y_{0}^{\mathfrak k}})$ acts as an antisymmetric endomorphism of $\mathfrak p(\gamma ), \mathfrak k(\gamma )$, so that its eigenvalues are either $0$, or they come by nonzero conjugate imaginary pairs. If ${Y_{0}^{\mathfrak k}}\in i \mathfrak k(\gamma )$, putFootnote 8

(2.63)\begin{equation} \begin{aligned} & \widehat{A}(\mathrm{ad}({Y_{0}^{\mathfrak k}})\vert _{ \mathfrak p(\gamma)})= [\det(\widehat{A}(\mathrm{ad}({Y_{0}^{\mathfrak k}})\vert_{\mathfrak p(\gamma)}) ) ]^{1/2},\\ & \widehat{A}(\mathrm{ad}({Y_{0}^{\mathfrak k}})\vert _{ \mathfrak k(\gamma)})=[\det(\widehat{A}(\mathrm{ad}({Y_{0}^{\mathfrak k}})\vert _{ \mathfrak k(\gamma)}))]^{1/2}. \end{aligned} \end{equation}

The square root in (2.63) is the positive square root of a positive real number.

We follow [Reference BismutBis11, Theorem 5.5.1], while slightly changing the notation.

Definition 2.5 If ${Y_{0}^{\mathfrak k}}\in i \mathfrak k(\gamma )$, put

(2.64)\begin{equation} \mathcal{L}_{\gamma}({Y_{0}^{\mathfrak k}})=\frac{\det(1- \mathrm{Ad}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}}))\vert_{\mathfrak k^{\perp}_{a}(\gamma)}}{\det(1- \mathrm{Ad}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}}))\vert_{\mathfrak p_{a}^{\perp}(\gamma)}}. \end{equation}

Set

(2.65)\begin{equation} \mathcal{M}_{\gamma}({Y_{0}^{\mathfrak k}}) =\bigg[\frac{1}{\det(1-\mathrm{Ad}(k^{-1}))\vert_{ \mathfrak z^{\perp}_{a}(\gamma)} }\mathcal{L}_{\gamma}({Y_{0}^{\mathfrak k}})\bigg]^{1/2}. \end{equation}

The fact that the square root in (2.65) is unambiguously defined is established in [Reference BismutBis11, § 5.5]. Let us explain the details. First we make ${Y_{0}^{\mathfrak k}}=0$. Then

(2.66)\begin{align} \frac{1}{\det(1-\mathrm{Ad}(k^{-1}))\vert_{ \mathfrak z^{\perp}_{a}(\gamma)} }\frac{\det(1-\mathrm{Ad}(k^{-1}))\vert_{\mathfrak k^{\perp}_{a}(\gamma)}}{\det(1- \mathrm{Ad}(k^{-1}))\vert_{\mathfrak p_{a}^{\perp}(\gamma)}} =\bigg[\frac{1}{\det(1-\mathrm{Ad}(k^{-1}))\vert_{\mathfrak p_{a}^{\perp}(\gamma)}} \bigg]^{2}. \end{align}

The conventions in [Reference BismutBis11] say that the square root of (2.66) is the obvious positive square root, i.e.

(2.67)\begin{equation} \mathcal{M}_{\gamma}(0) =\frac{1}{\det(1-\mathrm{Ad}(k^{-1}))\vert_{\mathfrak p_{a}^{\perp}(\gamma)}}. \end{equation}

Using analyticity in the variable ${Y_{0}^{\mathfrak k}}\in i \mathfrak k(\gamma )$, the choice of the square root in (2.67) determines a choice of the square root in (2.65). This point is discussed at length in § 4. No choice of a Cartan subalgebra or of a positive root system is needed at this stage.

Definition 2.6 Let $\mathcal {J}_{\gamma }({Y_{0}^{\mathfrak k}})$ be the smooth function of ${Y_{0}^{\mathfrak k}}\in i\mathfrak k(\gamma )$,

(2.68)\begin{equation} \mathcal{J}_{\gamma}(Y_{0}^{ \mathfrak k})=\frac{1}{\vert \det(1-\mathrm{Ad}(\gamma))\vert_{ \mathfrak z^{\perp}(a)}\vert^{1/2}} \frac{\widehat{A}(\mathrm{ad}({Y_{0}^{\mathfrak k}})\vert _{ \mathfrak p(\gamma)})}{\widehat{A}(\mathrm{ad}({Y_{0}^{\mathfrak k}}) \vert_{\mathfrak k(\gamma)})}\mathcal{M}_{\gamma}({Y_{0}^{\mathfrak k}}). \end{equation}

With the conventions in [Reference BismutBis11, Chapter 5], where instead a function $J_{\gamma }({Y_{0}^{\mathfrak k}})$ is defined on $\mathfrak k(\gamma )$, we have

(2.69)\begin{equation} J_{\gamma}({Y_{0}^{\mathfrak k}})=\mathcal{J}_{\gamma}(i{Y_{0}^{\mathfrak k}}). \end{equation}

By [Reference BismutBis11, (5.5.11)] or by (2.68), if ${Y_{0}^{\mathfrak k}}\in i\mathfrak k$, then

(2.70)\begin{equation} \mathcal{J}_{1}({Y_{0}^{\mathfrak k}})=\frac{\widehat{A}(\mathrm{ad}({Y_{0}^{\mathfrak k}})\vert _{ \mathfrak p})}{\widehat{A}(\mathrm{ad}({Y_{0}^{\mathfrak k}}) \vert_{\mathfrak k})}. \end{equation}

2.7 Some properties of the function $\mathcal {J}_{\gamma }$

Let $\rho ^{E^{*}}: K\to U(E^{*})$ denote the representation of $K$ which is dual to the representation $\rho ^{E}$.

Proposition 2.7 If ${Y_{0}^{\mathfrak k}}\in i \mathfrak k(\gamma )$, then

(2.71)\begin{equation} \begin{aligned} & \mathcal{J}_{\gamma^{-1}}({Y_{0}^{\mathfrak k}})=\mathcal{J}_{\gamma}(-{Y_{0}^{\mathfrak k}}), \quad \mathrm{Tr}^{E^{*}} [\rho^{E^{*}}(ke^{-{Y_{0}^{\mathfrak k}}}) ]= \mathrm{Tr}^{E}[\rho^{E}(k^{-1}e^{{Y_{0}^{\mathfrak k}}})],\\ & \overline{\mathcal{J}_{\gamma}({Y_{0}^{\mathfrak k}})}=\mathcal{J}_{\gamma}(-{Y_{0}^{\mathfrak k}}), \quad \overline{\mathrm{Tr}^{E}[\rho^{E} ( k^{-1}e^{-{Y_{0}^{\mathfrak k}}} ) ]}=\mathrm{Tr}^{E^{*}}[\rho^{E^{*}}(k^{-1}e^{{Y_{0}^{\mathfrak k}}})]. \end{aligned} \end{equation}

Proof. If $f\in \mathrm {End}(\mathfrak g)$, let $\widetilde f\in \mathrm {End}(\mathfrak g)$ denote the adjoint of $f$ with respect to $B$. We have the identity

(2.72)\begin{equation} \mathrm{Ad}(\gamma^{-1})=\widetilde {\mathrm{Ad}(\gamma)}. \end{equation}

By (2.72), we deduce that

(2.73)\begin{equation} \det(1-\mathrm{Ad}(\gamma^{-1})) \vert_{\mathfrak z^{\perp}(a)}=\det(1-\mathrm{Ad}(\gamma))\vert_{\mathfrak z^{\perp}(a)}. \end{equation}

A similar argument shows that

(2.74)\begin{equation} \begin{aligned} & \det(1-\mathrm{Ad}(ke^{-{Y_{0}^{\mathfrak k}}}))\vert_{\mathfrak p_{a}^{\perp}(\gamma)} =\det(1-\mathrm{Ad}(k^{-1}e^{{Y_{0}^{\mathfrak k}}}))\vert_{\mathfrak p_{a}^{\perp}(\gamma)},\\ & \det(1-\mathrm{Ad}(ke^{-{Y_{0}^{\mathfrak k}}}))\vert_{\mathfrak k_{a}^{\perp}(\gamma)} =\det(1-\mathrm{Ad}(k^{-1}e^{{Y_{0}^{\mathfrak k}}}))\vert_{\mathfrak k_{a}^{\perp}(\gamma)}. \end{aligned} \end{equation}

By (2.64), (2.65), (2.68), (2.73), and (2.74), we obtain the first identity in (2.71). The second identity in (2.71) is trivial.

If ${Y_{0}^{\mathfrak k}}\in i\mathfrak k(\gamma )$,

(2.75)\begin{equation} \begin{aligned} & \overline{\det(1-\mathrm{Ad}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}}))\vert_{\mathfrak p_{a}^{\perp}(\gamma)}}=\det(1-\mathrm{Ad}(k^{-1}e^{{Y_{0}^{\mathfrak k}}}))\vert_{\mathfrak p_{a}^{\perp}(\gamma)},\\ & \overline{\det(1-\mathrm{Ad}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}}))\vert_{\mathfrak k_{a}^{\perp}(\gamma)}}=\det(1-\mathrm{Ad}(k^{-1}e^{{Y_{0}^{\mathfrak k}}}))\vert_{\mathfrak k_{a}^{\perp}(\gamma)}. \end{aligned} \end{equation}

By (2.75), we obtain the third identity in (2.71). As ${Y_{0}^{\mathfrak k}}\in i\mathfrak k(\gamma )$, the fourth identity is trivial. The proof of our proposition is complete.

2.8 A geometric formula for the orbital integrals associated with the Casimir

Note that $i \mathfrak k(\gamma )$ is naturally an Euclidean vector space. If ${Y_{0}^{\mathfrak k}}\in i\mathfrak k(\gamma )$, we denote by $\vert {Y_{0}^{\mathfrak k}}\vert$ its Euclidean norm. More precisely, if ${Y_{0}^{\mathfrak k}}\in i\mathfrak k(\gamma )$, then

(2.76)\begin{equation} \vert {Y_{0}^{\mathfrak k}}\vert^{2}=B({Y_{0}^{\mathfrak k}},{Y_{0}^{\mathfrak k}}). \end{equation}

By [Reference BismutBis11, (6.1.1)], there exist $c>0,C>0$ such that if ${Y_{0}^{\mathfrak k}} \in i \mathfrak k(\gamma )$,

(2.77)\begin{equation} \vert \mathcal{J}_{\gamma}({Y_{0}^{\mathfrak k}})\vert\le c \exp(C\vert {Y_{0}^{\mathfrak k}}\vert). \end{equation}

In the following, $\int _{i \mathfrak k(\gamma )}$ denotes integration on the real vector space $i \mathfrak k(\gamma )$.

Let $d{Y_{0}^{\mathfrak k}}$ be the Euclidean volume on $i \mathfrak k(\gamma )$. Set $p=\dim \mathfrak p(\gamma ), q=\dim \mathfrak k(\gamma )$. Now we state the result obtained in [Reference BismutBis11, Theorem 6.1.1]. Our reformulation takes (2.48) into account.

Theorem 2.8 For $t>0$, the following identity holds:

(2.78)\begin{align} \mathrm{Tr}^{[\gamma]}[\exp(-tC^{\mathfrak g,X}/2) ]&=\exp(-tB^{*}(\rho^{\mathfrak g},\rho^{\mathfrak g})/2) \frac{\exp(-\vert a\vert^{2}/2t)}{(2\pi t)^{p/2}}\nonumber\\ &\quad \times \int_{i\mathfrak k(\gamma)} \mathcal{J}_{\gamma}(Y_{0}^{ \mathfrak k})\mathrm{Tr}^{E} [\rho^{E}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}})] \exp(-\vert Y_{0}^{ \mathfrak k}\vert^{2}/2t)\frac{dY_{0}^{ \mathfrak k}}{ (2\pi t)^{q/2}}. \end{align}

Let $B\vert _{\mathfrak z(\gamma )}$ be the restriction of $B$ to $\mathfrak z(\gamma )$, and let $B^{*}\vert _{\mathfrak z(\gamma )}$ be the corresponding quadratic form on $\mathfrak z^{*}(\gamma )$. Let $\Delta ^{\mathfrak z(\gamma )}$ denote the associated generalized LaplacianFootnote 9 on $\mathfrak z(\gamma )$. We can extend $\Delta ^{\mathfrak z(\gamma )}$ to an operator acting via constant holomorphic vector fields on $\mathfrak z(\gamma )_{\mathbf {C}}$.

Put

(2.79)\begin{equation} \mathfrak z_{i}(\gamma)=\mathfrak p(\gamma) \oplus i \mathfrak k(\gamma). \end{equation}

Then $B\vert _{\mathfrak z_{i}(\gamma )}$ is a scalar product on $\mathfrak z_{i}(\gamma )$. The generalized Laplacian $\Delta ^{\mathfrak z(\gamma )}$ restricts on $\mathfrak z_{i}(\gamma )$ to the standard Euclidean Laplacian of $\mathfrak z_{i}(\gamma )$.

We take $\mu \in \mathcal {S}^{\mathrm {even}}(\mathbf {R})$ as in § 2.5. If $f\in \mathfrak z_{i}(\gamma )$, let

\[ \mu ( \sqrt{-\Delta^{ \mathfrak z(\gamma)}+B^{*}(\rho^{\mathfrak g},\rho^{\mathfrak g})+A}\,)(f) \]

be the smooth convolution kernel for $\mu ( \sqrt {-\Delta ^{ \mathfrak z(\gamma )}+B^{*}(\rho ^{\mathfrak g},\rho ^{\mathfrak g})+A}\, )$ on $\mathfrak z_{i}(\gamma )$ with respect to the volume associated with the scalar product of $\mathfrak z_{i}(\gamma )$. Using (2.53) and finite propagation speed for the wave equation, there exist $C>0$ and $c>0$ such that if $f\in \mathfrak z_{i}(\gamma )$, then

(2.80)\begin{equation} \vert \mu ( \sqrt{-\Delta^{ \mathfrak z(\gamma)}+B^{*}(\rho^{\mathfrak g},\rho^{\mathfrak g})+A}\, ) (f)\vert\le Ce^{-c\vert f\vert^{2}}. \end{equation}

Let $\delta _{a}$ be the Dirac mass at $a\in \mathfrak p(\gamma )$. Then

\[ \mathcal{J}_{\gamma}({Y_{0}^{\mathfrak k}})\mathrm{Tr}^{E}[\rho^{E}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}} )]\delta_{a} \]

is a distribution on $\mathfrak z_{i}(\gamma )$, to which the smooth convolution kernel

\[ \mu ( \sqrt{-\Delta^{ \mathfrak z(\gamma)}+B^{*}(\rho^{\mathfrak g},\rho^{\mathfrak g})+A}\, ) \]

can be applied. By definition,

(2.81)\begin{align} &\mu(\sqrt{-\Delta^{ \mathfrak z(\gamma)} +B^{*}(\rho^{\mathfrak g},\rho^{\mathfrak g})+A}\, ) [\mathcal{J}_{\gamma}({Y_{0}^{\mathfrak k}})\mathrm{Tr}^{E}[\rho^{E}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}} )]\delta_{a}](0)\nonumber\\ &\quad =\int_{i \mathfrak k(\gamma)}\mu(\sqrt{-\Delta^{ \mathfrak z(\gamma)} +B^{*}(\rho^{\mathfrak g},\rho^{\mathfrak g})+A}\, ) (-{Y_{0}^{\mathfrak k}},-a) \mathcal{J}_{\gamma}({Y_{0}^{\mathfrak k}})\mathrm{Tr}^{E}[\rho^{E}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}} )] \,d{Y_{0}^{\mathfrak k}}. \end{align}

In the right-hand side of (2.81), $(-{Y_{0}^{\mathfrak k}},-a)$ can also be replaced by $({Y_{0}^{\mathfrak k}},a)$.

In [Reference BismutBis11, Theorem 6.2.2], the following extension of Theorem 2.8 was established.

Theorem 2.9 The following identity holds:

(2.82)\begin{align} \mathrm{Tr}{}^{[\gamma]}[\mu(\sqrt{C^{\mathfrak g,X}+A}\,)] =\mu(\sqrt{-\Delta^{ \mathfrak z(\gamma)} +B^{*}(\rho^{\mathfrak g},\rho^{\mathfrak g})+A}\, ) [\mathcal{J}_{\gamma}({Y_{0}^{\mathfrak k}})\mathrm{Tr}^{E}[\rho^{E}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}} )]\delta_{a}](0). \end{align}

3. Cartan subalgebras, Cartan subgroups, and root systems

The purpose of this section is to recall basic facts on Cartan subalgebras, on Cartan subgroups, and on root systems.

This section is organized as follows. In § 3.1, we state some elementary facts of linear algebra. In § 3.2, we recall the definition of Cartan subalgebras. In § 3.3, we introduce the corresponding root system, and the associated algebraic Weyl group. In § 3.4, we define the real and the imaginary roots. In § 3.5, we construct a positive root system. In § 3.6, when the Cartan subalgebra is fundamental, we compare the root system of $\mathfrak k$ with the root system of $\mathfrak g$. In § 3.7, we introduce the Cartan subgroups, and the corresponding regular elements. In § 3.8, we relate semisimple elements in $G$ to Cartan subgroups. In § 3.9, we describe the characters of Cartan subgroups associated with a root system. In § 3.10, we give some properties of the real and imaginary roots with respect to semisimple elements in $G$. Finally, in § 3.11, we give a well-known formula that relates the action of invariant differential operators on the Lie algebra $\mathfrak g$ and on a Cartan subalgebra $\mathfrak h$.

We make the same assumptions as in § 2, and we use the corresponding notation.

3.1 Linear algebra

Let $V$ be a finite-dimensional real vector space. The symmetric algebras $S{{}^{\cdot }} (V), S{{}^{\cdot }} (V^{*})$ are the algebras of polynomials on $V^{*},V$. If $v\in V$, $v$ acts as a derivation of $S{{}^{\cdot }}(V^{*})$. More generally, $S{{}^{\cdot }}(V)$ acts on $S{{}^{\cdot }}(V^{*})$, and this action identifies $S{{}^{\cdot }}(V)$ with the algebra $D{{}^{\cdot }}(V)$ of real partial differential operators on $V$ with constant coefficients. In particular, if $B^{*}\in S^{2}(V)$ is a bilinear symmetric form on $V^{*}$, the associated element in $D{{}^{\cdot }}(V)$ is the corresponding Laplacian $\Delta ^{V}$. If $B^{*}$ is positive, $\Delta ^{V}$ is just a classical Laplacian. If $B^{*}$ is negative, then $\Delta ^{V}$ is the negative of a classical Laplacian on $V$.

Let $V_{\mathbf {C}}=V \otimes _{\mathbf {R}}\mathbf {C}$ be the complexification of $V$, a complex vector space. Its complex dual is given by $V^{*}_{\mathbf {C}}=V^{*} \otimes _{\mathbf {R}}\mathbf {C}$. The algebras $S{{}^{\cdot }}(V_{\mathbf {C}})$ and $S{{}^{\cdot }}(V^{*}_{\mathbf {C}})$ are the algebras of complex polynomials on $V^{*},V$. Note that

(3.1)\begin{equation} S{{}^{\cdot}}(V_{\mathbf{C}})=S{{}^{\cdot}}(V) \otimes _{\mathbf{R}}\mathbf{C}, \quad S{{}^{\cdot}}(V^{*}_{\mathbf{C}})=S{{}^{\cdot}}(V^{*}) \otimes _{\mathbf{R}}\mathbf{C}. \end{equation}

Put

(3.2)\begin{equation} D{{}^{\cdot}}(V_{\mathbf{C}})=D(V) \otimes _{\mathbf{R}}\mathbf{C}, \quad D{{}^{\cdot}}(V^{*}_{\mathbf{C}})=D{{}^{\cdot}}(V^{*}) \otimes _{\mathbf{R}}\mathbf{C}. \end{equation}

Then $D{{}^{\cdot }}(V_{\mathbf {C}})$ and $D{{}^{\cdot }}(V^{*}_{\mathbf {C}})$ are the complexifications of $D{{}^{\cdot }}(V)$ and $D{{}^{\cdot }}(V^{*})$, and also the spaces of complex holomorphic differential operators with constant coefficients on $V_{\mathbf {C}}$ and $V^{*}_{\mathbf {C}}$.

In particular, if $B^{*}\in S^{2}(V)$, $\Delta ^{V}$ is now viewed as a holomorphic operator on $V_{\mathbf {C}}$, that coincides with the corresponding Laplacian $\Delta ^{V}$ on $V$, and with $-\Delta ^{V}$ on $iV \simeq V$.Footnote 10

In addition, $S{{}^{\cdot }}(V^{*}) \subset C^{ \infty }(V,\mathbf {R})$, and the action of $D{{}^{\cdot }}(V)$ extends to $C^{ \infty }(V,\mathbf {R})$.

Let $S[[V^{*}]]$ be the algebra of formal power series $s=\sum _{i=0}^{+ \infty }s^{i}, s^{i}\in S^{i}(V^{*})$. Then $S[[V^{*}]]$ can be identified with the algebra $D[[V^{*}]]$ of differential operators of infinite order with constant coefficients on $V^{*}$. In particular, $S[[V^{*}]]$ acts on $S{{}^{\cdot }}(V)$.

3.2 The Cartan subalgebras of $\mathfrak g$

By [Reference WallachWal88, § 0.2], a Lie subalgebra $\mathfrak h \subset \mathfrak g$ is said to be a Cartan subalgebra if $\mathfrak h$ is maximal among the abelian subalgebras of $\mathfrak g$ whose elements act as semisimple endomorphisms of $\mathfrak g$. Cartan subalgebras are known to exist and have the same dimension $r$, which is called the complex rank of $G$. By [Reference KnappKna02, Proposition 6.64], there is a finite family of nonconjugate Cartan subalgebras in $\mathfrak g$. By [Reference WallachWal88, Lemma 2.3.3], in every conjugacy class of Cartan subalgebras, there is a unique $\theta$-stable Cartan algebra, up to conjugation by $K$. Therefore, there is a finite family of nonconjugate $\theta$-stable Cartan subalgebras, up to conjugation by $K$. By [Reference KnappKna02, Theorem 2.15], the Cartan subalgebras of $\mathfrak g_{\mathbf {C}}$ are unique up to automorphisms induced by the adjoint group $\mathrm {Ad}(\mathfrak g_{\mathbf {C}})$.

Let $\mathfrak h \subset \mathfrak g$ be a $\theta$-stable Cartan subalgebra. To the Cartan splitting of $\mathfrak g$ in (2.1) corresponds the splitting

(3.3)\begin{equation} \mathfrak h= \mathfrak h_{\mathfrak p} \oplus \mathfrak h_{\mathfrak k}. \end{equation}

In particular, the restriction $B\vert _{\mathfrak h}$ of $B$ to $\mathfrak h$ is nondegenerate. This is also the case if $\mathfrak h$ is any Cartan subalgebra.

Up to conjugation by $K$, there is a unique $\theta$-stable Cartan subalgebra $\mathfrak h$, which is called fundamental, such that $\mathfrak h_{\mathfrak k}$ is a Cartan subalgebra of $\mathfrak k$. Let us give more details on its construction [Reference KnappKna86, pp. 129 and 131]. Let $\mathfrak t \subset \mathfrak k$ be a Cartan subalgebra of $\mathfrak k$. Let $\mathfrak z(\mathfrak t) \subset \mathfrak g$ be the centralizer of $\mathfrak t$, i.e.

(3.4)\begin{equation} \mathfrak z(\mathfrak t)=\{f\in \mathfrak g, [\mathfrak t,f]=0\}. \end{equation}

Then $\mathfrak h= \mathfrak z(\mathfrak t)$ is a $\theta$-stable fundamental Cartan subalgebra of $\mathfrak g$, and $\mathfrak h_{\mathfrak k}= \mathfrak t$.

An element $f\in \mathfrak g$ is said to be semisimple if $\mathrm {ad}(f)\in \mathrm {End}(\mathfrak g)$ is semisimple. If $\mathfrak h$ is a Cartan subalgebra, elements of $\mathfrak h$ are semisimple. Any semisimple element of $\mathfrak g$ lies in a Cartan subalgebra.

If $\mathfrak h \subset \mathfrak g$ is a Cartan subalgebra, let $\mathfrak h^{\perp }$ be the orthogonal to $\mathfrak h$ in $\mathfrak g$. We have the $B$-orthogonal splitting,

(3.5)\begin{equation} \mathfrak g= \mathfrak h \oplus \mathfrak h^{\perp}, \end{equation}

and $B$ is also nondegenerate on $\mathfrak h^{\perp }$. If $\mathfrak h$ is $\theta$-stable, then $\mathfrak h^{\perp }$ is also $\theta$-stable, and so it splits as

(3.6)\begin{equation} \mathfrak h^{\perp}=\mathfrak h^{\perp}_{\mathfrak p} \oplus \mathfrak h^{\perp}_{\mathfrak k}. \end{equation}

Let $\mathfrak u= i \mathfrak p \oplus \mathfrak k$ be the compact form of $\mathfrak g$. Then $\mathfrak h_{\mathfrak u}=i \mathfrak h_{\mathfrak p}\oplus \mathfrak h_{\mathfrak k}$ is a Cartan subalgebra of $\mathfrak u$. If $\mathfrak h$ is $\theta$-stable, then $\mathfrak h_{\mathfrak u}$ is also $\theta$-stable.

An element $f\in \mathfrak g$ is said to be regular if $\mathfrak z(f)$ is a Cartan subalgebra. Regular elements in $\mathfrak g$ are semisimple.

If $\mathfrak h$ is a Cartan subalgebra, if $f\in \mathfrak h$, $\mathrm {ad}(f)$ acts as an endomorphism of $\mathfrak g/\mathfrak h$. Then $f\in \mathfrak h$ is regular if and only if $\det \mathrm {ad}(f)\vert _{\mathfrak g/\mathfrak h}\neq 0$.

3.3 A root system and the Weyl group

Let $\mathfrak h$ be a $\theta$-stable Cartan subalgebra.

Let $R \subset \mathfrak h^{*}_{\mathbf {C}}$ be the root system associated with $\mathfrak h, \mathfrak g$ [Reference KnappKna02, § II.4]. If $\alpha \in R$, then $-\alpha \in R,\overline {\alpha }\in R$. If $\alpha \in R$, let $\mathfrak g_{\alpha } \subset \mathfrak g_{\mathbf {C}}$ be the weight space associated with $\alpha$, which is of dimension one. Then we have the splitting

(3.7)\begin{equation} \mathfrak g_{\mathbf{C}}= \mathfrak h_{\mathbf{C}} \oplus \bigoplus_{\alpha\in R} \mathfrak g_{\alpha}. \end{equation}

If $\alpha \in R$, then

(3.8)\begin{equation} \mathfrak g_{\overline{\alpha}}=\overline{\mathfrak g}_{\alpha}. \end{equation}

If $f\in \mathfrak h$, $\mathrm {ad}(f)\in \mathrm {End}(\mathfrak g)$ is antisymmetric with respect to $B$, so that the $\mathfrak g_{\alpha }\vert _{\alpha \in R}$ are $B$-orthogonal to $\mathfrak h_{\mathbf {C} }$. If $\alpha,\beta \in R$, then $\mathfrak g_{\alpha }, \mathfrak g_{\beta }$ are $B$-orthogonal except when $\beta =-\alpha$, and the pairing between $\mathfrak g_{\alpha }, \mathfrak g_{-\alpha }$ is nondegenerate, so that if $\alpha \in R$, the form $B$ induces the identification

(3.9)\begin{equation} \mathfrak g_{-\alpha} \simeq \mathfrak g_{\alpha}^{*}. \end{equation}

Also

(3.10)\begin{equation} \mathfrak h^{\perp}_{\mathbf{C}}=\bigoplus_{\alpha\in R}\mathfrak g_{\alpha}. \end{equation}

If $\alpha \in R$, $\alpha$ takes real values on $\mathfrak h_{\mathfrak p}$, and imaginary values on $\mathfrak h_{\mathfrak k}$, i.e. $\alpha \in \mathfrak h^{*}_{\mathfrak p} \oplus i \mathfrak h^{*}_{\mathfrak k}$. In addition, $\theta$ preserves the splitting (3.5) of $\mathfrak g$, and it maps $R$ into itself. More precisely, if $\alpha \in R$,

(3.11)\begin{equation} \theta \alpha=-\overline{\alpha}, \quad \mathfrak g_{\theta\alpha}=\theta \mathfrak g_{\alpha}. \end{equation}

Let $W(\mathfrak h_{\mathbf {C}}:\mathfrak g_{\mathbf {C}}) \subset \mathrm {Aut}(\mathfrak h_{\mathbf {C}})$ be the algebraic Weyl group [Reference KnappKna86, p. 131]. Then $R \subset i \mathfrak h^{*}_{\mathfrak u}$, and $W(\mathfrak h_{\mathbf {C}}:\mathfrak g_{\mathbf {C}}) \subset \mathrm {Aut}(\mathfrak h_{\mathfrak u})$, i.e. $W(\mathfrak h_{\mathbf {C}}:\mathfrak g_{\mathbf {C}})$ preserves the real vector space $\mathfrak h_{\mathfrak u}$. In addition, $\theta$ acts as an automorphism of the Lie algebras $\mathfrak g,\mathfrak u$, and $W(\mathfrak h_{\mathbf {C}}: \mathfrak g_{\mathbf {C}})$ is preserved by conjugation by $\theta$.

In general, $W(\mathfrak h_{\mathbf {C}}: \mathfrak g_{\mathbf {C}})$ does not preserve the real vector space $\mathfrak h$. Recall that if $h\in \mathfrak h_{\mathbf {C}}$, we can define its complex conjugate $\overline {h}\in \mathfrak h_{\mathbf {C}}$. If $u\in \mathrm {End}(\mathfrak h_{\mathbf {C}})$, its complex conjugate $\overline {u}\in \mathrm {End}(\mathfrak h_{\mathbf {C}})$ is such that if $h\in \mathfrak h_{\mathbf {C}}$, then

(3.12)\begin{equation} \overline{u}(h)=\overline{u(\overline{h})}. \end{equation}

Proposition 3.1 If $w\in W(\mathfrak h_{\mathbf {C}}: \mathfrak g_{\mathbf {C}})$, then

(3.13)\begin{equation} \overline{w}=\theta w\theta^{-1}. \end{equation}

In particular, the group $W(\mathfrak h_{\mathbf {C}}:\mathfrak g_{\mathbf {C}})$ is preserved by complex conjugation.

Proof. The group $W(\mathfrak h_{\mathbf {C}}:\mathfrak g_{\mathbf {C}})$ is generated by the symmetries $s_{\alpha }, \alpha \in R$ with respect to the vanishing locus of the $\alpha \in R$. By (3.11), we deduce that if $\alpha \in R$,

(3.14)\begin{equation} \overline{s_{\alpha}}= \theta s_{\alpha}\theta^{-1}, \end{equation}

from which we obtain (3.13). As $W(\mathfrak h_{\mathbf {C}}: \mathfrak g_{\mathbf {C}})$ is stable by conjugation by $\theta$, the group $W(\mathfrak h_{\mathbf {C}}:\mathfrak g_{\mathbf {C}})$ is preserved by complex conjugation.

Another proof is as follows. Observe that there is a canonical identification of complex vector spaces $\varphi : \mathfrak h_{\mathbf {C}} \simeq \mathfrak h_{\mathfrak u,\mathbf {C}}$, but the complex conjugations on $\mathfrak h_{\mathbf {C}}$ and on $\mathfrak h_{\mathfrak u,\mathbf {C}}$ are not the same. More precisely, if $h\in \mathfrak h_{\mathbf {C}}$,

(3.15)\begin{equation} \overline{\varphi h}=\varphi\theta\overline{h}=\theta\varphi\overline{h}. \end{equation}

If $w\in W(\mathfrak h_{\mathbf {C}}:\mathfrak g_{\mathbf {C}})$, then

(3.16)\begin{equation} w\vert_{\mathfrak h_{\mathbf{C}}}=\varphi^{-1}w\vert_{\mathfrak h_{\mathfrak u,\mathbf{C}}}\varphi. \end{equation}

Recall that $w$ is a real automorphism of the real vector space $\mathfrak h_{\mathfrak u}$. By (3.15) and (3.16), we obtain

(3.17)\begin{equation} \overline{w}\vert_{\mathfrak h_{\mathbf{C}}}=\overline{\varphi}^{-1}w\vert_{\mathfrak h_{\mathfrak u,\mathbf{C}}}\overline{\varphi}. \end{equation}

By (3.15)–(3.17), we obtain (3.13). The proof of our proposition is complete.

3.4 Real roots and imaginary roots

Let $R^{\mathrm {re}} \subset R$ be the roots $\alpha \in R$ such that $\theta \alpha =-\alpha$, let $R^{\mathrm {im}}$ be the roots $\alpha \in R$ such that $\theta \alpha =\alpha$. These are the real roots and the imaginary roots, respectively. Imaginary roots vanish on $\mathfrak h_{\mathfrak p}$, real roots vanish on $\mathfrak h_{\mathfrak k}$. By [Reference KnappKna86, p. 349], the set of complex roots $R^{\mathrm {c}} \subset R$ is defined to be

(3.18)\begin{equation} R^{\mathrm{c}}=R{\setminus}(R^{\mathrm{re}}\cup R^{\mathrm{im}}). \end{equation}

Proposition 3.2 If $\alpha \in R$, the map $f\in \mathfrak g_{\mathbf {C}}\to \overline {f}\in \mathfrak g_{\mathbf {C}}$ induces an antilinear isomorphism from $\mathfrak g_{\alpha }$ into $\mathfrak g_{-\theta \alpha }$, and the map $f\in \mathfrak g_{\mathbf {C}} \to \theta \overline {f}\in \mathfrak g_{\mathbf {C}}$ induces an antilinear isomorphism from $\mathfrak g_{\alpha }$ into $\mathfrak g_{-\alpha }$. If $\alpha \in R^{\mathrm {re}}$, $\mathfrak g_{\alpha }$ is the complexification of a real vector subspace of $\mathfrak h^{\perp }$.

Proof. If $b\in \mathfrak h,f\in \mathfrak g_{\alpha }$, then

(3.19)\begin{equation} [b,f]=\langle \alpha,b\rangle f. \end{equation}

Using (3.11) and taking the conjugate of (3.19), we obtain

(3.20)\begin{equation} [b,\overline{f}]=\langle -\theta \alpha,b\rangle\overline{f}. \end{equation}

By (3.20), we get the first part of our proposition. By composing this isomorphism with $\theta$, we obtain the second part. If $\alpha \in R^{\mathrm {re}}$, then $-\theta \alpha =\alpha$, so that $\mathfrak g_{\mathfrak \alpha }$ is real. The proof of our proposition is complete.

Definition 3.3 Put

(3.21)\begin{equation} \mathfrak i=\ker \mathrm{ad}(\mathfrak h_{\mathfrak p})\cap \mathfrak h^{\perp}, \quad \mathfrak r=\ker \mathrm{ad}(\mathfrak h_{\mathfrak k})\cap \mathfrak h^{\perp}. \end{equation}

Then $\theta$ acts on $\mathfrak i, \mathfrak r$, so that we have the splittings,

(3.22)\begin{equation} \mathfrak i= \mathfrak i_{\mathfrak p} \oplus \mathfrak i_{\mathfrak k}, \quad \mathfrak r= \mathfrak r_{\mathfrak p} \oplus \mathfrak r_{\mathfrak k}. \end{equation}

Proposition 3.4 The vector spaces $\mathfrak i$ and $\mathfrak r$ are orthogonal in $\mathfrak h^{\perp }$. Moreover,

(3.23)\begin{equation} \mathfrak i_{\mathbf{C}}=\bigoplus_{\alpha\in R^{\mathrm{im}}}\mathfrak g_{\alpha}, \quad \mathfrak r_{\mathbf{C}}= \bigoplus_{\alpha\in R^{\mathrm{re}}}\mathfrak g_{\alpha}. \end{equation}

If $\alpha \in R^{\mathrm {im}}$, then either $\mathfrak g_{\alpha } \subset \mathfrak p_{\mathbf {C}}$, or $\mathfrak g_{\alpha } \subset \mathfrak k_{\mathbf {C}}$.

Proof. If $f\in \mathfrak h^{\perp }$ and $f\in \mathfrak i \cap \mathfrak r$, then $f$ commutes with $\mathfrak h$. As $\mathfrak h$ is a Cartan subalgebra, $f=0$, so that $\mathfrak i\cap \mathfrak r=0$. If $\alpha \in R{\setminus} R^{\mathrm {im}}$, $\alpha$ does not vanish identically on $\mathfrak h_{\mathfrak p}$, and its vanishing locus in $\mathfrak h_{\mathfrak p}$ is a hyperplane. Thus, one can find $b_{\mathfrak p}\in \mathfrak h_{\mathfrak p}{\setminus} 0$ such that for any $\alpha \in R{\setminus} R^{\mathrm {im}}$, $\langle \alpha,b_{\mathfrak p}\rangle \neq 0$. Then

(3.24)\begin{equation} \mathfrak i=\ker \mathrm{ad}(b_{ \mathfrak p})\cap \mathfrak h^{\perp}. \end{equation}

As $\mathfrak i\cap \mathfrak r=0$, $\mathrm {ad}(b_{\mathfrak p})$ acts as an invertible morphism of $\mathfrak r$. Therefore, any element of $\mathfrak r$ lies in the image of $\mathrm {ad}(b_{\mathfrak p})$. As $\mathrm {ad}(b_{\mathfrak p})$ is symmetric in the classical sense, $\mathfrak i$ and $\mathfrak r$ are orthogonal. Equation (3.23) is elementary. If $\alpha \in R^{\mathrm {im}}$, the action of $\mathfrak h$ on $\mathfrak g_{\alpha }$ factors through $\mathfrak h_{\mathfrak k}$. In addition, $\mathrm {ad}(\mathfrak h_{\mathfrak k})$ preserves the splitting $\mathfrak g = \mathfrak p \oplus \mathfrak k$. Therefore, if $\alpha \in R^{\mathrm {im}}$, either $\mathfrak g_{\alpha } \subset \mathfrak p_{\mathbf {C}}$, or $\mathfrak g_{\alpha }\subset \mathfrak k_{\mathbf {C}}$. The proof of our proposition is complete.

Definition 3.5 Put

(3.25)\begin{equation} R^{\mathrm{im}}_{\mathfrak p}=\{\alpha\in R^{\mathrm{im}}, \mathfrak g_{\alpha}\subset \mathfrak p_{\mathbf{C}}\}, \quad R^{\mathrm{im}}_{\mathfrak k}=\{\alpha\in R^{\mathrm{im}},\mathfrak g_{\alpha}\subset \mathfrak k_{\mathbf{C}}\}. \end{equation}

By Proposition 3.4, we obtain

(3.26)\begin{equation} R^{\mathrm{im}}=R^{\mathrm{im}}_{\mathfrak p}\cup R^{\mathrm{im}}_{\mathfrak k}. \end{equation}

Let $\mathfrak c$ denote the orthogonal to $\mathfrak i \oplus \mathfrak r$ in $\mathfrak h^{\perp }$. Again $\mathfrak c$ splits as

(3.27)\begin{equation} \mathfrak c=\mathfrak c_{\mathfrak p} \oplus \mathfrak c_{\mathfrak k}. \end{equation}

Moreover, we have the orthogonal splitting

(3.28)\begin{equation} \mathfrak h^{\perp}=\mathfrak i \oplus \mathfrak r \oplus \mathfrak c. \end{equation}

Proposition 3.6 The following identity holds:

(3.29)\begin{equation} \mathfrak c_{\mathbf{C}}=\bigoplus _{\alpha\in R^{\mathrm{c}}}\mathfrak g_{\alpha}. \end{equation}

Proof. This follows from (3.10), (3.23), and (3.28).

Now we give a result taken from [Reference WallachWal88, Lemma 2.3.5].

Proposition 3.7 A $\theta$-stable Cartan subalgebra $\mathfrak h$ is fundamental if and only if there are no real roots.

Proof. If $\alpha \in R$, then $\alpha \in R^{\mathrm {re}}$ if and only if when $f\in \mathfrak g_{\alpha }$,

(3.30)\begin{equation} [\mathfrak h_{\mathfrak k},f]=0. \end{equation}

If $\mathfrak h$ is fundamental, by (3.4), then $f\in \mathfrak h_{\mathbf {C}}$, so that $f=0$, which proves there are no real roots. Put

(3.31)\begin{equation} \mathfrak z(\mathfrak h_{\mathfrak k})=\{f\in \mathfrak g, [\mathfrak h_{\mathfrak k},f]=0\}. \end{equation}

Then $\mathfrak z(\mathfrak h_{\mathfrak k})$ is a Lie subalgebra of $\mathfrak g$ such that $\mathfrak h \subset \mathfrak z(\mathfrak h_{\mathfrak k})$. If $\mathfrak h$ is not fundamental, $\mathfrak z(\mathfrak h_{\mathfrak k})$ is strictly larger than $\mathfrak h$, and there is a real root. The proof of our proposition is complete.

If $\mathfrak h$ is a Cartan subalgebra, the associated Cartan subgroup $H \subset G$ is the stabilizer of $\mathfrak h$. Then $H$ is a Lie subgroup of $G$, with Lie algebra $\mathfrak h$.

Proposition 3.8 The vector spaces $\mathfrak i_{\mathfrak p}, \mathfrak i_{\mathfrak k}, \mathfrak c_{\mathfrak p}, \mathfrak c_{\mathfrak k}$ have even dimension. In addition, $H\cap K$ preserves these vector spaces, and the corresponding determinants are equal to 1. Also $\mathfrak r_{\mathfrak p}, \mathfrak r_{\mathfrak k}$ (respectively, $\mathfrak c_{\mathfrak p}, \mathfrak c_{\mathfrak k}$) have the same dimension, and the actions of $H\cap K$ on these two vector spaces are equivalent. In particular, we have the identity

(3.32)\begin{equation} \dim \mathfrak p-\dim \mathfrak h_{\mathfrak p}= \dim \mathfrak i_{\mathfrak p}+\tfrac{1}{2}\dim \mathfrak r+\tfrac{1}{2}\dim \mathfrak c. \end{equation}

Proof. If $\alpha \in R{\setminus} R^{\mathrm {re}}$, the vanishing locus of $\alpha$ in $\mathfrak h_{\mathfrak k}$ is a hyperplane. Therefore, we can find $f_{\mathfrak k}\in \mathfrak h_{\mathfrak k}{\setminus} 0$ such for any $\alpha \in R{\setminus} R^{\mathrm {re}}$, $\langle \alpha,f_{\mathfrak k}\rangle \neq 0$, which just says that $\mathrm {ad}(f_{\mathfrak k})$ acts as an invertible endomorphism of $\mathfrak i, \mathfrak c$. This endomorphism preserves their $\mathfrak p$ and $\mathfrak k$ components, and it is classically antisymmetric. This is only possible if these vector spaces are even-dimensional. If $k\in H\cap K$, $\mathrm {Ad}(k^{-1})$ preserves these vector spaces and commutes with $\mathrm {ad}(f_{\mathfrak k})$. Therefore, the eigenspaces associated with the eigenvalue $-1$ are preserved by $\mathrm {ad}(f_{\mathfrak k})$, so they are even-dimensional. This forces the determinant of $\mathrm {Ad}(k^{-1})$ to be equal to 1 on each of these vector spaces.

We choose $b_{\mathfrak p}\in \mathfrak h_{\mathfrak p}{\setminus} 0$ such that for any $\alpha \in R{\setminus} R^{\mathrm {im}}$, $\langle \alpha,b_{\mathfrak p}\rangle \neq 0$. Therefore, $\mathrm {ad}(b_{\mathfrak p})$ acts as an automorphism of $\mathfrak r, \mathfrak c$ that exchanges the corresponding $\mathfrak p$ and $\mathfrak k$ parts, and commutes with $\mathrm {Ad}(k^{-1})$.

By (3.28), we obtain

(3.33)\begin{equation} \mathfrak h_{\mathfrak p}^{\perp}= \mathfrak i_{\mathfrak p} \oplus \mathfrak r_{\mathfrak p} \oplus \mathfrak c_{\mathfrak p}. \end{equation}

Using the results we already established and (3.33), we obtain (3.32). The proof of our proposition is complete.

3.5 A positive root system

Let $\mathfrak h$ be a $\theta$-stable Cartan subalgebra, and let $R$ denote the corresponding root system. Let $R_{+} \subset R$ be a positive root system. Set

(3.34)\begin{equation} R_{+}^{\mathrm{re}}=R_{+}\cap R^{\mathrm{re}}, \quad R_{+}^{\mathrm{im}}=R_{+}\cap R^{\mathrm{im}}, \quad R^{\mathrm{c}}_{+}=R_{+}\cap R^{\mathrm{c}}, \end{equation}

so that

(3.35)\begin{equation} R_{+}=R^{\mathrm{re}}_{+}\cup R_{+}^{\mathrm{im}}\cup R_{+}^{\mathrm{c}}. \end{equation}

In the whole paper, we choose $R_{+}$ such that $-\theta$ preserves $R_{+}{\setminus} R^{\mathrm {im}}_{+}$. Equivalently, we assume that if $\alpha \in R_{+}{\setminus} R^{\mathrm {im}}_{+}$, then $\overline {\alpha }\in R_{+}$.

Let us explain how to do this. If $\alpha \in R{\setminus} R^{\mathrm {im}}$, the vanishing locus of $\alpha$ in $\mathfrak h_{\mathfrak p}$ is a hyperplane, and so there is $b_{\mathfrak p}\in \mathfrak h_{\mathfrak p}, \vert b_{\mathfrak p}\vert =1$ such that for any $\alpha \in R{\setminus} R^{\mathrm {im}}$, $\langle \alpha,b_{\mathfrak p}\rangle \neq 0$. The same argument shows that there is $b_{\mathfrak k}\in h_{\mathfrak k}, \vert b_{\mathfrak k}\vert =1$ such that for $\alpha \in R^{\mathrm {im}}$, $\langle \alpha,b_{\mathfrak k}\rangle \neq 0$. For $\epsilon >0$, $b_{\pm }=\pm b_{\mathfrak p}+ i\epsilon b_{\mathfrak k}\in \mathfrak h_{\mathfrak p} \oplus i \mathfrak h_{\mathfrak k}$, and $\theta$ interchanges $b_{+}$ and $b_{-}$. Also for $\epsilon >0$ small enough, for $\alpha \in R$, the real numbers $\langle \alpha,b_{\pm }\rangle$ do not vanish, and if $\alpha \in R{\setminus} R^{\mathrm {im}}$, they have opposite signs. Put

(3.36)\begin{equation} R_{+}=\{\alpha\in R,\langle \alpha,b_{+}\rangle>0\}. \end{equation}

Then $R_{+}$ is a positive root system such that $-\theta$ preserves $R_{+}{\setminus} R_{+}^{\mathrm {im}}$.

Note that $-\theta$ acts without fixed points on $R^{\mathrm {c}}_{+}$, so that $\vert R^{\mathrm {c}}_{+} \vert$ is even.

Definition 3.9 Put

(3.37)\begin{equation} \mathfrak c_{+,\mathbf{C}}=\bigoplus_{\alpha\in R^{\mathrm{c}}_{+}} \mathfrak g_{\alpha}, \quad \mathfrak c_{-,\mathbf{C}}=\bigoplus_{\alpha\in -R^{\mathrm{c}}_{+}} \mathfrak g_{\alpha}. \end{equation}

Proposition 3.10 The vector spaces $\mathfrak c_{+,\mathbf {C}}$ and $\mathfrak c_{-,\mathbf {C}}$ are the complexifications of real Lie subalgebras $\mathfrak c_{+}$ and $\mathfrak c_{-}$ of $\mathfrak g$, which have the same even dimension, and are such that

(3.38)\begin{equation} \mathfrak c= \mathfrak c_{+} \oplus \mathfrak c_{-}, \quad \mathfrak c_{-}=\theta \mathfrak c_{+}. \end{equation}

In addition, $B$ vanishes on $\mathfrak c_{+}, \mathfrak c_{-}$ and induces the identification,

(3.39)\begin{equation} \mathfrak c_{-} \simeq \mathfrak c_{+}^{*}. \end{equation}

The projections on $\mathfrak p$ and $\mathfrak k$ map $\mathfrak c_{\pm }$ into $\mathfrak c_{\mathfrak p}$ and $\mathfrak c_{\mathfrak k}$ isomorphically. Finally, the actions of $H\cap K$ on $\mathfrak c_{+}$, $\mathfrak c_{-}$, $\mathfrak c_{\mathfrak p}$, and $\mathfrak c_{\mathfrak k}$ are equivalent.

Proof. By Proposition 3.2, $\mathfrak c_{+,\mathbf {C}}$ and $\mathfrak c_{-,\mathbf {C}}$ are stable by conjugation, and so they are complexifications of real vector spaces $\mathfrak c_{+}, \mathfrak c_{-}$. The fact that these are Lie subalgebras is obvious. As $\vert R_{+}^{\mathrm {c}}\vert$ is even, these vector spaces are even-dimensional, and also they have the same dimension. By Proposition 3.2, $\theta$ induces an isomorphism of $\mathfrak c_{+}$ into $\mathfrak c_{-}$. Using the considerations that follow (3.9), we find that $B$ vanishes on $\mathfrak c_{+}$ and $\mathfrak c_{-}$, and we obtain (3.39). By Proposition 3.8, $\mathfrak c_{+}$, $\mathfrak c_{-}$, $\mathfrak c_{\mathfrak p}$, and $\mathfrak c_{\mathfrak k}$ have the same even dimension. The projections on $\mathfrak p$ and $\mathfrak k$ are given by $\frac {1}{2}(1\mp \theta )$, respectively. As $\theta$ exchanges $\mathfrak c_{+}$ and $\mathfrak c_{-}$, they restrict to isomorphisms on $\mathfrak c_{+}$ and $\mathfrak c_{-}$. By Proposition 3.8, we know that the actions $H\cap K$ on $\mathfrak c_{\mathfrak p}$ and $\mathfrak c_{\mathfrak k}$ are equivalent. As the adjoint action of $H\cap K$ commutes with $\theta$, the corresponding representations of $H\cap K$ on these vector spaces are equivalent. The proof of our proposition is complete.

If $f\in \mathfrak h$, then

(3.40)\begin{equation} \det\mathrm{ad}(f)_{\mathfrak h^{\perp}}=\prod_{\alpha\in R}\langle \alpha,f\rangle. \end{equation}

Definition 3.11 Let $\pi ^{\mathfrak h, \mathfrak g}\in S{{}^{\cdot }}(\mathfrak h^{*}_{\mathbf {C}})$ be such that if $h\in \mathfrak h_{\mathbf {C}}$, then

(3.41)\begin{equation} \pi^{\mathfrak h, \mathfrak g}(h)=\prod_{\alpha\in R_{+}}\langle \alpha,h\rangle. \end{equation}

By (3.40), if $f\in \mathfrak h$,

(3.42)\begin{equation} \det \mathrm{ad}(f)_{\vert_{\mathfrak h^{\perp}}}=\pi^{\mathfrak h,\mathfrak g}(f) \pi^{\mathfrak h, \mathfrak g}(-f). \end{equation}

In addition, $f\in \mathfrak h$ is regular if and only if $\pi ^{\mathfrak h, \mathfrak g}(f)\neq 0$.

Proposition 3.12 The function $\pi ^{\mathfrak h,\mathfrak g}$ vanishes identically on $\mathfrak h_{\mathfrak k}$ if and only if $\mathfrak h$ is not fundamental.

Proof. Assume that $\mathfrak h$ is not fundamental. By Proposition 3.7, there are real roots, and so there are real positive roots. If $\alpha \in R^{\mathrm {re}}_{+}$, then $\alpha$ vanishes on $\mathfrak h_{\mathfrak k}$, and so $\pi ^{\mathfrak h, \mathfrak g}$ vanishes on $\mathfrak h_{\mathfrak k}$. Conversely, if $\pi ^{\mathfrak h,\mathfrak g}$ vanishes on $\mathfrak h_{\mathfrak k}$, one of the $\alpha \in R_{+}$ has to vanish identically on $\mathfrak h_{\mathfrak k}$, so that $\alpha \in R^{\mathrm {re}}_{+}$, and $\mathfrak h$ is not fundamental. The proof of our proposition is complete.

3.6 The case when $\mathfrak h$ is fundamental and the root system of $(\mathfrak h_{\mathfrak k},\mathfrak k)$

In this subsection, we assume that $\mathfrak h$ is a $\theta$-stable fundamental Cartan subalgebra of $\mathfrak g$. By Proposition 3.7 and by (3.18), we obtain

(3.43)\begin{equation} R^{\mathrm{c}}=R{\setminus} R^{\mathrm{im}}. \end{equation}

By Proposition 3.4, $\mathfrak r=0$. By (3.28), we have the orthogonal splitting,

(3.44)\begin{equation} \mathfrak h^{\perp}_{\mathfrak p}=\mathfrak i_{\mathfrak p} \oplus \mathfrak c_{\mathfrak p}, \quad \mathfrak h^{\perp}_{\mathfrak k}=\mathfrak i_{\mathfrak k} \oplus \mathfrak c_{\mathfrak k}. \end{equation}

In addition, $\mathfrak i_{\mathfrak p}, \mathfrak i_{\mathfrak k}$ have even dimension, $\mathfrak c_{\mathfrak p}, \mathfrak c_{\mathfrak k}$ have the same even dimension, and the action of $H\cap K$ on these last two vector spaces are conjugate.

The roots in $R$ do not vanish identically on $\mathfrak h_{\mathfrak k}$. We now reinforce the choice of positive roots made in § 3.5. We may and we will assume that $b_{\mathfrak k}\in \mathfrak h_{\mathfrak k}, \vert b_{\mathfrak k}\vert =1$ has been chosen so that if $\alpha \in R$, $\langle \alpha,b_{\mathfrak k}\rangle\neq 0$.

As we saw in § 3.5, $-\theta$ acts without fixed points on $R^{\mathrm {c}}_{+}$. In addition, if $\alpha \in R^{\mathrm {c}}_{+}$, $-\theta \alpha \vert _{\mathfrak h_{\mathfrak k}}=-\alpha \vert _{\mathfrak h_{\mathfrak k}}$, so that the nonzero real numbers $\langle \alpha, ib_{\mathfrak k}\rangle$ and $\langle -\theta \alpha,ib_{\mathfrak k}\rangle$ have opposite signs.

Set

(3.45)\begin{equation} R^{\mathrm{im}}_{\mathfrak k,+}=R^{\mathrm{im}}_{\mathfrak k}\cap R_{+}, \quad R^{\mathrm{c}}_{++}=\{\alpha\in R^{\mathrm{c}}_{+}, \langle \alpha,ib_{\mathfrak k}\rangle>0 \}. \end{equation}

Definition 3.13 Let $R(\mathfrak h_{\mathfrak k}, \mathfrak k)$ be the root system associated with the pair $(\mathfrak h_{\mathfrak k}, \mathfrak k)$. If $R_{+}(\mathfrak h_{\mathfrak k}, \mathfrak k)$ is a positive root system for $(\mathfrak h_{\mathfrak k}, \mathfrak k)$, if $h_{\mathfrak k}\in \mathfrak h_{\mathfrak k,\mathbf {C}}$, put

(3.46)\begin{equation} \pi^{\mathfrak h_{\mathfrak k}, \mathfrak k}(h_{\mathfrak k})=\prod_{\beta\in R_{+}(\mathfrak h_{\mathfrak k}, \mathfrak k)}\langle \beta, h_{\mathfrak k}\rangle. \end{equation}

Then $[\pi ^{\mathfrak h_{\mathfrak k}, \mathfrak k}]^{2}(h_{\mathfrak k})$ does not depend on the choice of $R_{+}(\mathfrak h_{\mathfrak k}, \mathfrak k)$. The arguments above (3.45) show that if $h_{\mathfrak k}\in \mathfrak h_{\mathfrak k}$, then

(3.47)\begin{equation} \prod_{\alpha\in R_{+}^{\mathrm{c}}}\langle \alpha,h_{\mathfrak k}\rangle\ge 0. \end{equation}

Proposition 3.14 The map $\alpha \in R_{\mathfrak k}^{\mathrm {im}}\cup R^{\mathrm {c}}_{+} \to \alpha \vert _{\mathfrak h_{\mathfrak k}}$ is injective, and gives the identification

(3.48)\begin{equation} R(\mathfrak h_{\mathfrak k}, \mathfrak k)=R^{\mathrm{im}}_{\mathfrak k} \cup R^{\mathrm{c}}_{+}. \end{equation}

A positive root system $R_{+}(\mathfrak h_{\mathfrak k}, \mathfrak k)$ for $(\mathfrak h_{\mathfrak k}, \mathfrak k)$ is given by

(3.49)\begin{equation} R_{+}(\mathfrak h_{\mathfrak k}, \mathfrak k)=R_{\mathfrak k,+}^{\mathrm{im}} \cup R_{++}^{\mathrm{c}}. \end{equation}

If $h_{\mathfrak k}\in \mathfrak h_{\mathfrak k,\mathbf {C}}$, then

(3.50)\begin{equation} [\pi^{h_{\mathfrak k}, \mathfrak k}(h_{\mathfrak k})]^{2}=(-1)^{({1}/{2})\vert R_{+}^{\mathrm{c}}\vert}\biggl[\prod_{\alpha\in R^{\mathrm{im}}_{\mathfrak k,+}}\langle \alpha,h_{\mathfrak k}\rangle\biggr]^{2} \prod_{\alpha\in R_{+}^{\mathrm{c}}}\langle \alpha,h_{\mathfrak k}\rangle. \end{equation}

Proof. By (3.28), we obtain

(3.51)\begin{equation} \mathfrak h_{\mathfrak k}^{\perp}= \mathfrak i_{\mathfrak k} \oplus \mathfrak c_{\mathfrak k}, \end{equation}

and the above splitting is preserved by $\mathfrak h_{\mathfrak k}$. The weights for this action on $\mathfrak i_{\mathfrak k}$ are given by $R^{\mathrm {im}}_{\mathfrak k}$. By Proposition 3.10, $\mathfrak c_{\mathfrak k}$ and $\mathfrak c_{+}$ are equivalent under the action of $\mathfrak h_{\mathfrak k}$. By the first equation in (3.37), the weights for the action of $\mathfrak h_{\mathfrak k}$ on $\mathfrak c_{+}$ are given by the restriction of $R_{+}^{\mathrm {c}}$ to $\mathfrak h_{\mathfrak k}$. As the weights for the action of $\mathfrak h_{\mathfrak k}$ on $\mathfrak c_{\mathfrak k}$ are nonzero and of multiplicity $1$, the map $\alpha \in R_{\mathfrak k}^{\mathrm {im}}\cup R_{+}^{\mathrm {c}} \to \alpha \vert _{\mathfrak h_{\mathfrak k}}$ gives the identification in (3.48). By (3.48), we obtain (3.49). Using (3.46) and the above results, we obtain (3.50). The proof of our proposition is complete.

Remark 3.15 The results contained in Proposition 3.14 play an important role in the proof of the limit results of § 8.1.

3.7 Cartan subgroups and regular elements

Assume that $\mathfrak h$ is $\theta$-stable. Then $\theta$ restricts to an involution of $H$, and (3.3) is the corresponding Cartan splitting of $\mathfrak h$. In addition, $B$ restricts to a $H$ and $\theta$ invariant symmetric nondegenerate bilinear form $B\vert _{\mathfrak h}$ on $\mathfrak h$, so that $H$ is a reductive subgroup of $G$.

We still assume $\mathfrak h$ to be $\theta$-stable. Let $Z_{G}(H) \subset G$ be the centralizer of $H$, and let $N_{G}(H) \subset G$ be its normalizer. Then $Z_{G}(H)$ is included in $H$, it is just the center $Z(H)$ of $H$. As in [Reference KnappKna86, p. 131], the analytic Weyl group $W(H:G)$ is defined as the quotient

(3.52)\begin{equation} W(H:G)=N_{G}(H)/Z_{G}(H). \end{equation}

Put

(3.53)\begin{equation} Z_{K}(H)=Z_{G}(H) \cap K, \quad N_{K}(H)=N_{G}(H)\cap K. \end{equation}

Then $N_{K}(H)/Z_{K}(H)$ embeds in $W(H:G)$. By [Reference KnappKna86, p. 131], this embedding is an isomorphism, i.e.

(3.54)\begin{equation} W(H:G)=N_{K}(H)/Z_{K}(H). \end{equation}

By [Reference KnappKna86, (5.6)], $W(H:G) \subset W(\mathfrak h_{\mathbf {C}}:\mathfrak g_{\mathbf {C}})$.

By [Reference KnappKna86, p. 130], an element $\gamma \in G$ is said to be regular if $\mathfrak z(\gamma )$ is a Cartan subalgebra. If $H$ is the corresponding Cartan subgroup, then $\gamma \in H$. By [Reference KnappKna86, Theorem 5.22], the set $G^{\mathrm {reg}} \subset G$ of regular elements is open and conjugation invariant. More precisely, if $H_{1},\ldots,H_{\ell }$ denotes the finite family of nonconjugate Cartan subgroups, by [Reference KnappKna86, Theorem 5.22], $G^{\mathrm {reg}}$ splits as the disjoint union of open sets

(3.55)\begin{gather} G^{\mathrm{reg}}=\bigcup_{i=1}^{\ell}G^{\mathrm{reg}}_{H_{i}}, \end{gather}

where $G^{\mathrm {reg}}_{H_{i}}$ denote the open set of elements of $G^{\mathrm {reg}}$ that are conjugate to an element of $H_{i}$.

If $\gamma \in H$, $\mathrm {Ad}(\gamma )$ acts on $\mathfrak g$ and fixes $\mathfrak h$. As $\mathrm {Ad}(\gamma )$ preserves $B$, it also acts on $\mathfrak h^{\perp }$, so that $1-\mathrm {Ad}(\gamma )$ acts on $\mathfrak h^{\perp }$. Then $\gamma$ is regular if and only this endomorphism is invertible, i.e. $\det ( 1-\mathrm {Ad}(\gamma ))\vert _{\mathfrak h^{\perp }}\neq 0$.

3.8 Cartan subgroups and semisimple elements

The following result is established in [Reference VaradarajanVar77, Part I, § 2.3, Theorem 4].

Proposition 3.16 A group element $\gamma \in G$ is semisimple if and only if it lies in a Cartan subgroup.

Let us give a direct classical proof of part of our proposition. Let $\mathfrak h$ be a $\theta$-stable Cartan subalgebra, and let $H$ be the corresponding Cartan subgroup. If $\gamma \in H$, then $\mathfrak h \subset \mathfrak z(\gamma )$. Moreover, $\gamma$ can be written uniquely in the form

(3.56)\begin{equation} \gamma=e^{a}k^{-1}, \quad a\in \mathfrak p, k\in H. \end{equation}

As $H$ is $\theta$-stable, $\gamma (\theta (\gamma ))^{-1}\in H$, i.e. $e^{2a}\in H$. By [Reference BismutBis11, Proposition 3.2.8], $Z(e^{2a})=Z(a)$, so that $\mathfrak h \subset Z(a)$. As $\mathfrak h$ is a Cartan subalgebra, $a\in \mathfrak h_{\mathfrak p}$. Therefore, (3.56) can be rewritten in the form,

(3.57)\begin{equation} \gamma=e^{a}k^{-1}, \quad a\in \mathfrak h_{\mathfrak p}, k\in H\cap K. \end{equation}

As $a\in \mathfrak h_{\mathfrak p}, k\in H$, then $\mathrm {Ad}(k)a=a$, which guarantees that $\gamma$ is semisimple in $G$.

Let $\mathfrak h \subset \mathfrak g$ be a Cartan subalgebra, and let $H \subset G$ be the associated Cartan subgroup. If $\gamma \in H$, then $\mathfrak h \subset \mathfrak z(\gamma )$, so that $\mathfrak h$ is a Cartan subalgebra of $\mathfrak z(\gamma )$. In particular, $G$ and $Z^{0}(\gamma )$ have the same complex rank.

Proposition 3.17 Any $\theta$-stable Cartan subalgebra $\mathfrak h_{0}$ of $\mathfrak z(\gamma )$ is also a Cartan subalgebra of $\mathfrak g$.

Proof. As we saw in § 2.2, $Z^{0}(\gamma )$ is a connected reductive group and $\theta$ induces on $Z^{0}(\gamma )$ a corresponding Cartan involution. As $\mathfrak h_{0}$ is commutative and $\theta$-stable, and because its action on $\mathfrak g$ preserves $B$, it acts on $\mathfrak g$ by semisimple endomorphisms of $\mathfrak g$. As $G$ and $Z^{0}(\gamma )$ have the same complex rank, $\mathfrak h_{0}$ is a Cartan subalgebra of $\mathfrak g$. The proof of our proposition is complete.

3.9 Root systems and their characters

Let $\mathfrak h \subset \mathfrak g$ be a $\theta$-stable Cartan subalgebra. We use the notation of the previous subsections.

Take $\gamma \in H$. As we saw after Proposition 3.16, if $\gamma \in H$, we can write $\gamma$ uniquely in the form

(3.58)\begin{equation} \gamma=e^{a}k^{-1}, \quad a\in \mathfrak h_{\mathfrak p},\quad k\in H\cap K, \end{equation}

so that

(3.59)\begin{equation} \mathrm{Ad}(k)a=a. \end{equation}

Let $R(\gamma ),R(a)$ be the root systems associated with $(\mathfrak h, \mathfrak z(\gamma )), (\mathfrak h, \mathfrak z(a))$. We will denote with extra subscripts the corresponding real, imaginary, and complex roots. Note that

(3.60)\begin{equation} R^{\mathrm{im}} \subset R(a). \end{equation}

Theorem 3.18 If $\gamma \in H$, for any $\alpha \in R$, $\mathrm {Ad}(\gamma )$ preserves the $1$-dimensional complex line $\mathfrak g_{\alpha }$. For every $\alpha \in R$, there is a character $\xi _{\alpha }: H\to \mathbf {C}^{*}$ such that $\mathrm {Ad}(\gamma )$ acts on $\mathfrak g_{\alpha }$ by multiplication by $\xi _{\alpha }(\gamma )$. If $\alpha \in R$,

(3.61)\begin{equation} \xi_{\alpha}\xi_{-\alpha}=1. \end{equation}

If $\alpha \in R$, if $f\in \mathfrak h, k\in H\cap K$, then

(3.62)\begin{equation} \xi_{\alpha}(e^{f})=e^{\langle \alpha,f\rangle}, \quad \vert \xi_{\alpha}(k)\vert=1. \end{equation}

In particular, if $\gamma \in H$ is taken as in (3.58), then

(3.63)\begin{equation} \xi_{\alpha}(\gamma)=e^{\langle \alpha,a\rangle}\xi_{\alpha}(k^{-1}), \quad \xi_{-\theta\alpha}(\gamma)=\overline{\xi_{\alpha}(\gamma)}. \end{equation}

If $\alpha \in R^{\mathrm {re}}$, then $\xi _{\alpha }(\gamma )\in \mathbf {R}^{*}$, if $\alpha \in R^{\mathrm {im}}$, then $\vert \xi _{\alpha }(\gamma )\vert =1$. If $\alpha \in R^{\mathrm {re}}$, the restriction of $\xi _{\alpha }$ to $H\cap K$ takes its values in $\{-1,+1\}$.

In addition,

(3.64)\begin{equation} \det(1-\mathrm{Ad}(\gamma))\vert_{\mathfrak h^{\perp}}=\prod_{\alpha\in R}(1-\xi_{\alpha}(\gamma)), \end{equation}

and $\gamma$ is regular if and only if for any $\alpha \in R$, $\xi _{\alpha }(\gamma ) \neq 1$.

The following identities hold:

(3.65)\begin{gather} R(\gamma)=\{\alpha\in R, \xi_{\alpha}(\gamma)=1\},\quad R(a)=\{\alpha\in R, \langle\alpha,a\rangle=0\},\nonumber\\ R^{\mathrm{re}}(\gamma)=R(\gamma)\cap R^{\mathrm{re}}, \quad R^{\mathrm{im}}(\gamma)=R(\gamma)\cap R^{\mathrm{im}}, \quad R^{\mathrm{c}}(\gamma)=R(\gamma)\cap R^{\mathrm{c}}, \nonumber\\ R^{\mathrm{re}}(a)=R(a)\cap R^{\mathrm{re}}, \quad R^{\mathrm{im}}(a) = R^{\mathrm{im}}, \quad R^{\mathrm{c}}(a)=R(a)\cap R^{\mathrm{c}}. \end{gather}

In addition, $R_{+}(\gamma )=R(\gamma ) \cap R_{+}$ and $R_{+}(a)=R(a)\cap R_{+}$ are positive root systems for $(\mathfrak h, \mathfrak z(\gamma ))$ and $(\mathfrak h, \mathfrak z(a))$.

Proof. If $\gamma \in H$, then $\mathrm {Ad}(\gamma )$ fixes $\mathfrak h$, and so if $h\in \mathfrak h$, we have the commutation relation in $\mathrm {End}(\mathfrak g)$,

(3.66)\begin{equation} [\mathrm{Ad}(\gamma), \mathrm{ad}(h)]=0. \end{equation}

By (3.7) and (3.66), we deduce that for any $\alpha \in R$, $\mathrm {Ad}(\gamma )$ preserves $\mathfrak g_{\alpha }$. As $\mathfrak g_{\alpha }$ is a complex line, $H$ acts on $\mathfrak g_{\alpha }$ via a character $\xi _{\alpha }$.

As $\mathrm {Ad}(\gamma )$ preserves $B$, if $f,f'\in \mathfrak g_{\mathbf {C}}$, we obtain

(3.67)\begin{equation} B(\mathrm{Ad}(\gamma)f,f')=B(f,\mathrm{Ad}(\gamma)^{-1}f'). \end{equation}

Take $\alpha \in R$. By (3.67), if $f\in \mathfrak g_{\alpha }$ and $f'\in \mathfrak g_{-\alpha }$, then

(3.68)\begin{equation} \xi_{\alpha}(\gamma)B(f,f')=\xi_{-\alpha}^{-1}(\gamma)B(f,f'). \end{equation}

As we saw in § 3.3, if $\alpha \in R$, the pairing between $\mathfrak g_{\alpha }$ and $\mathfrak g_{-\alpha }$ via $B$ is nondegenerate. By (3.68), we obtain (3.61).

The first equation in (3.62) is trivial. As $\xi _{\alpha }$ restricts to a character of the compact group $H\cap K$, we obtain the second equation in (3.62). The first equation in (3.63) follows from the previous considerations. As $\theta (\gamma )=e^{-a}k^{-1}$, and because by (3.11) $\theta$ maps $\mathfrak g_{\alpha }$ into $\mathfrak g_{\theta \alpha }$, we obtain the second equation in (3.63). From this second equation, we deduce that if $\alpha \in R^{\mathrm {re}}$, then $\xi _{\alpha }(\gamma )$ is real, and if $\alpha \in R^{\mathrm {im}}$, then $\vert \xi _{\alpha }(\gamma )\vert =1$. If $\gamma \in H\cap K$ and $\alpha \in R^{\mathrm {re}}$, we know that $\xi _{\alpha }(\gamma )\in \mathbf {R}^{*}$ and $\vert \xi _{\alpha }(\gamma )\vert =1$, so that $\xi _{\alpha }(\gamma )=\pm 1$.

Equations (3.64) and (3.65) are trivial. By (3.64), $\gamma$ is regular if and only if for $\alpha \in R$, $\xi _{\alpha }(\gamma )\neq 1$.

Now we proceed as in [Reference Bismut and LabourieBL99, Theorem 1.38]. If $\kappa \subset \mathfrak h$ is a positive Weyl chamber for $(\mathfrak h, \mathfrak g)$, the forms in $R$ do not vanish on $\kappa$, so that $\kappa$ is included in a $\mathfrak z(\gamma )$ Weyl chamber. It follows that $R(\gamma )\cap R_{+}$ is a positive root system on $(\mathfrak h, \mathfrak z(\gamma ))$. The same argument is valid for $R(a)$. The proof of our theorem is complete.

3.10 Real roots, imaginary roots, and semisimple elements

We still take $\gamma$ as in § 3.9. When taking the intersection of $\mathfrak i$, $\mathfrak r$, and $\mathfrak c$ with $\mathfrak z(\gamma )$, $\mathfrak z(a)$, and $\mathfrak z(k)$, this will be indicated with a parenthesis containing the corresponding argument. The intersection with $\mathfrak z^{\perp }(\gamma )$, $\mathfrak z^{\perp }(a)$, and $\mathfrak z^{\perp }(k)$ are denoted with an extra $\perp$. These vector spaces also have a $\mathfrak p$ and a $\mathfrak k$ component.

By construction,

(3.69)\begin{equation} R^{\mathrm{im}}(\gamma)=R^{\mathrm{im}}(k). \end{equation}

As in (3.25) and (3.26), we obtain

(3.70)\begin{equation} R^{\mathrm{im}}(\gamma)=R^{\mathrm{im}}_{\mathfrak p}(\gamma)\cup R^{\mathrm{im}}_{\mathfrak k}(\gamma), \quad R^{\mathrm{im}}(k)=R^{\mathrm{im}}_{\mathfrak p}(k)\cup R^{\mathrm{im}}_{\mathfrak k}(k). \end{equation}

To make the notation simpler, in (3.70), we did not use instead the notation $\mathfrak p(\gamma )$, $\mathfrak k(\gamma )$, $\mathfrak p(k)$, and $\mathfrak k(k)$.

Proposition 3.19 The following identities hold:

(3.71)\begin{equation} \mathfrak i \subset \mathfrak z(a), \quad \mathfrak i(\gamma)= \mathfrak i(k),\quad\mathfrak i^{\perp}(k) \subset \mathfrak z_{a}^{\perp}(\gamma). \end{equation}

In addition,

(3.72)\begin{equation} \mathfrak i(k)_{\mathbf{C}}=\bigoplus_{\alpha\in R^{\mathrm{im}}(k)} \mathfrak g_{\alpha}, \quad \mathfrak i^{\perp}(k)_{\mathbf{C}}=\bigoplus _{\alpha\in R^{\mathrm{im}}{\setminus} R^{\mathrm{im}}(k)}\mathfrak g_{\alpha}. \end{equation}

Moreover,

(3.73)\begin{equation} \begin{aligned} &\mathfrak z(a)_{\mathbf{C}}=\mathfrak h_{\mathbf{C}} \oplus \bigoplus _{\alpha\in R(a)}\mathfrak g_{\alpha}, \\ &\mathfrak z^{\perp}(a) \subset \mathfrak r \oplus \mathfrak c, \\ &\mathfrak z^{\perp}(a)_{\mathbf{C}} =\bigoplus_{\alpha\in R{\setminus} R(a)} \mathfrak g_{\alpha}. \end{aligned} \end{equation}

If $\gamma$ is regular, then

(3.74)\begin{equation} \mathfrak i(k)=0. \end{equation}

Proof. By the first identity in (3.21), because $a\in \mathfrak h_{\mathfrak p}$, we obtain the first identity in (3.71). Combining the third identity in (2.20) with this first identity, we obtain the second identity in (3.71). The third identity in (3.71) is a consequence of the first two. By (3.7) and (3.23), we obtain (3.72) and the first and the third equations in (3.73), the second equation being a consequence of the first equation in (3.71). In addition, $\gamma$ is regular if and only if $\mathfrak z(\gamma )=\mathfrak h$. As $\mathfrak h\cap \mathfrak i=0$, by the second identity in (3.71), we obtain (3.74). The proof of our proposition is complete.

3.11 Cartan subalgebras and differential operators

Let $\mathfrak h$ be a $\theta$-stable Cartan subalgebra. There is a natural projection $\mathfrak g^{*}\to \mathfrak h^{*}$.

By (3.5), there is a well-defined projection $\mathfrak g\to \mathfrak h$. To the splitting (3.5) corresponds the dual splitting

(3.75)\begin{equation} \mathfrak g^{*}=\mathfrak h^{*} \oplus \mathfrak h^{*\perp}. \end{equation}

The projections $S{{}^{\cdot }}(\mathfrak g^{*})\to S{{}^{\cdot }}(\mathfrak h^{*})$ and $S{{}^{\cdot }}(\mathfrak g)\to S{{}^{\cdot }}(\mathfrak h)$ associated with (3.5) and (3.75) are just the restriction $r$ of polynomials on $\mathfrak g$ to $\mathfrak h$, or of polynomials on $\mathfrak g^{*}$ to $\mathfrak h^{*}$.

The Lie algebra $\mathfrak g$ acts as an algebra of derivations on $S{{}^{\cdot }}(\mathfrak g^{*})$.

Definition 3.20 Let $I{{}^{\cdot }}(\mathfrak g^{*}) \subset S{{}^{\cdot }}(\mathfrak g^{*})$ be the algebra of invariant elements in $S{{}^{\cdot }}(\mathfrak g^{*})$, i.e. the algebra of the elements of $S{{}^{\cdot }}(\mathfrak g^{*})$ on which the derivations associated with $\mathfrak g$ vanish. Let $I{{}^{\cdot }}(\mathfrak h^{*}_{\mathbf {C}}, \mathfrak g^{*}_{\mathbf {C}})$ be the algebra of $W(\mathfrak h_{\mathbf {C}}:\mathfrak g_{\mathbf {C}})$-invariant elements in $S{{}^{\cdot }}(\mathfrak h^{*}_{\mathbf {C}})$.

Recall that

(3.76)\begin{equation} S{{}^{\cdot}}(\mathfrak h_{\mathbf{C}}^{*})=S{{}^{\cdot}}(\mathfrak h^{*})_{\mathbf{C}}. \end{equation}

In particular $S{{}^{\cdot }}(\mathfrak h_{\mathbf {C}}^{*})$ is equipped with a natural conjugation.

Proposition 3.21 The algebra $I{{}^{\cdot }}(\mathfrak h_{\mathbf {C}}^{*}, \mathfrak g_{\mathbf {C}}^{*})$ is preserved under complex conjugation. There is a real algebra $I{{}^{\cdot }}(\mathfrak h^{*}, \mathfrak g^{*})\subset S{{}^{\cdot }}(\mathfrak h^{*})$ such that

(3.77)\begin{equation} I{{}^{\cdot}}(\mathfrak h^{*}_{\mathbf{C}}, \mathfrak g^{*}_{\mathbf{C}})=I{{}^{\cdot}}(\mathfrak h^{*}, \mathfrak g^{*})_{\mathbf{C}}. \end{equation}

The map $r: S{{}^{\cdot }}(\mathfrak g^{*})\to S{{}^{\cdot }}(\mathfrak h^{*})$ induces the canonical isomorphism

(3.78)\begin{equation} r:I{{}^{\cdot}}(\mathfrak g^{*}) \simeq I{{}^{\cdot}}(\mathfrak h^{*},\mathfrak g^{*}). \end{equation}

Proof. By Proposition 3.1, $W(\mathfrak h_{\mathbf {C}}: \mathfrak g_{\mathbf {C}})$ is preserved by conjugation. Therefore, $I{{}^{\cdot }}(\mathfrak h_{\mathbf {C}}^{*}, \mathfrak g_{\mathbf {C}}^{*})$ is preserved by conjugation, which gives (3.77). From the obvious isomorphism

(3.79)\begin{equation} r:I{{}^{\cdot}}(\mathfrak g_{\mathbf{C}}^{*}) \to I{{}^{\cdot}}(\mathfrak h_{\mathbf{C}}^{*},\mathfrak g_{\mathbf{C}}^{*}), \end{equation}

we obtain (3.78). The proof of our proposition is complete.

What we did for $\mathfrak g^{*}$ can also be done for $\mathfrak g$. The same argument as in (3.78) leads to the identification

(3.80)\begin{equation} r: I{{}^{\cdot}}(\mathfrak g) \simeq I{{}^{\cdot}}(\mathfrak h,\mathfrak g). \end{equation}

As we saw in § 3.1, $S{{}^{\cdot }}(\mathfrak g)$ can be identified with the algebra $D{}^{\cdot}(\mathfrak g)$ of real differential operators on $\mathfrak g$ with constant coefficients, so that $I{{}^{\cdot }}(\mathfrak g)$ is identified with the algebra $D^{\cdot}_{I}(\mathfrak g)$ of real differential operators with constant coefficients on $\mathfrak g$ which commute with the above $\mathfrak g$-derivations. Similarly, $I{{}^{\cdot }}(\mathfrak h,\mathfrak g)$ can be identified with the algebra $D^{\cdot}_{I}(\mathfrak h,\mathfrak g)$ of real differential operators on $\mathfrak h$ with constant coefficients that are $W(\mathfrak h_{\mathbf {C}}:\mathfrak g_{\mathbf {C}})$-invariant.

Let $R_{+} \subset R$ be a positive root system as in § 3.5. Recall that the associated polynomial $\pi ^{\mathfrak h, \mathfrak g}\in S{{}^{\cdot }}(\mathfrak h^{*}_{\mathbf {C}})$ was defined in (3.41). If $A\in I{{}^{\cdot }}(\mathfrak g) =D_{I}(\mathfrak g)$, if $f\in I{{}^{\cdot }}(\mathfrak g^{*})$, then $Af\in I{{}^{\cdot }}(\mathfrak g^{*})$, so that $r ( Af ) \in I{{}^{\cdot }}(\mathfrak h^{*},\mathfrak g^{*})$. In addition, $r(A)\in I{{}^{\cdot }}(\mathfrak h, \mathfrak g)=D_{I}(\mathfrak h, \mathfrak g)$. By [Reference Harish-ChandraHar57a, Lemmas 6 and 8], if $f\in I{{}^{\cdot }}(\mathfrak g^{*})$,

(3.81)\begin{equation} r(Af)=\frac{1}{\pi^{\mathfrak h,\mathfrak g}}r(A)\pi^{\mathfrak h, \mathfrak g}rf. \end{equation}

Let $C^{\infty,\mathfrak g}(\mathfrak g,\mathbf {R})$ be the vector space of smooth real functions on $\mathfrak g$ that vanish under the above $\mathfrak g$-derivations. Then (3.81) extends to $f\in C^{ \infty,\mathfrak g}(\mathfrak g,\mathbf {R})$.

4. Root systems and the function $\mathcal {J}_{\gamma }$

The purpose of this Section is to give a drastically simplified version of the function $\mathcal {J}_{\gamma }({Y_{0}^{\mathfrak k}})$ introduced in Definition 2.6. This is done in Theorem 4.7 by expressing this function in terms of a positive root system. Imaginary roots play an essential role in this expression. In particular, the function $\mathcal {L}_{\gamma }$ introduced in Definition 2.5 turns out not to depend on $a$.

This section is organized as follows. In § 4.1, if $\mathfrak h$ is a $\theta$-stable Cartan subalgebra and $H$ is the corresponding Cartan subgroup, if $\gamma \in H$, we give explicit formulas for the determinant of $1-\mathrm {Ad}(\gamma )$ on various subspaces in terms of a positive root system. In § 4.2, we establish our formula for $\mathcal {J}_{\gamma }({Y_{0}^{\mathfrak k}})$ using the root system.

We use the assumptions and the notation of § 3.

4.1 The determinant of $1-\mathrm {Ad}(\gamma )$

Let $\mathfrak h \subset \mathfrak g$ be a $\theta$-stable Cartan subalgebra, and let $H \subset G$ be the corresponding Cartan subgroup. Put

(4.1)\begin{equation} \mathfrak h^{\perp}_{+}=\bigoplus_{\alpha\in R_{+}}\mathfrak g_{\alpha}, \quad \mathfrak h^{\perp}_{-}=\bigoplus_{\alpha\in R_{+}}\mathfrak g_{-\alpha}. \end{equation}

By (3.10), we obtain

(4.2)\begin{equation} \mathfrak h_{\mathbf{C}}^{\perp}=\mathfrak h^{\perp}_{+} \oplus \mathfrak h^{\perp}_{-}. \end{equation}

Let $\gamma \in H$ be written as in (3.58). By Theorem 3.18, we obtain

(4.3)\begin{equation} \det\mathrm{Ad}(\gamma)\vert_{\mathfrak h^{\perp}_{+}}=\prod_{\alpha\in R_{+}}\xi_{\alpha}(\gamma). \end{equation}

We write (4.3) in the form

(4.4)\begin{equation} \det\mathrm{Ad}(\gamma)\vert_{\mathfrak h^{\perp}_{+}}=\prod_{\alpha\in R^{\mathrm{c}}_{+}}\xi_{\alpha}(\gamma) \prod_{\alpha\in R_{+}^{\mathrm{re}}}\xi_{\alpha}(\gamma) \prod_{\alpha\in R_{+}^{\mathrm{im}}}\xi_{\alpha}(\gamma). \end{equation}

By the considerations we made in § 3.5, $-\theta$ acts without fixed points on $R^{\mathrm {c}}_{+}$. By Theorem 3.18, in the right-hand side of (4.4), the first term is positive, the second is a product of nonzero real numbers, and the third term is a product of complex numbers of module $1$.

If $\alpha \in R_{+}$, we choose a square root $\xi _{\alpha }^{1/2}(k^{-1})$ of $\xi _{\alpha }(k^{-1})$. In view of the second identity in (3.63), if $\alpha \in R_{+}^{\mathrm {c}}$, we may and we will assume that

(4.5)\begin{equation} \xi_{-\theta\alpha}^{1/2}(k^{-1})=\overline{\xi_{\alpha}^{1/2}(k^{-1})}. \end{equation}

For $\alpha \in R_{+}$, we choose the square root $\xi _{\alpha }^{1/2}(\gamma )$ so that

(4.6)\begin{equation} \xi_{\alpha}^{1/2}(\gamma)=e^{\langle \alpha,a\rangle/2}\xi^{1/2}_{\alpha}(k^{-1}). \end{equation}

By (4.5) and (4.6), if $\alpha \in R_{+}^{\mathrm {c}}$, then

(4.7)\begin{equation} \xi^{1/2}_{-\theta\alpha}(\gamma)=\overline{\xi_{\alpha}^{1/2}(\gamma)}. \end{equation}

A square root of $\det \mathrm {Ad}(\gamma )\vert _{\mathfrak h^{\perp }_{+}}$ in (4.3) is given by

(4.8)\begin{equation} \det\mathrm{Ad}(\gamma)\vert_{\mathfrak h^{\perp}_{+}}^{1/2}= \prod_{\alpha\in R_{+}}\xi_{\alpha}^{1/2}(\gamma). \end{equation}

By proceeding as in (4.4), we can rewrite (4.8) in the form

(4.9)\begin{equation} \det\mathrm{Ad}(\gamma)\vert_{\mathfrak h^{\perp}_{+}}^{1/2}=\prod_{\alpha\in R_{+}^{\mathrm{c}}}\xi_{\alpha}^{1/2}(\gamma) \prod_{\alpha\in R_{+}^{\mathrm{re}}}\xi^{1/2}_{\alpha}(\gamma) \prod_{\alpha\in R_{+}^{\mathrm{im}}}\xi^{1/2}_{\alpha}(\gamma). \end{equation}

Using (4.6) and (4.7), we find that the first product in the right-hand side of (4.9) is positive, the second product is either a nonzero real number, or the product of $\sqrt {-1}$ by a nonzero real number, and the third product is of module $1$.

Definition 4.1 Put

(4.10)\begin{equation} \epsilon_{D}(\gamma)=\mathrm{sgn} \prod_{\alpha\in R_{+}^{\mathrm{re}}{\setminus} R_{+}^{\mathrm{re}}(\gamma)}(1-\xi_{\alpha}^{-1}(\gamma)). \end{equation}

If $\alpha \in R^{\mathrm {re}}$, by Theorem 3.18, then $\xi _{\alpha }(k^{-1})=\pm 1$.

Proposition 4.2 The following identity holds:

(4.11)\begin{equation} \epsilon_{D}(\gamma)=\mathrm{sgn} \prod_{\alpha\in R_{+}^{\mathrm{re}}{\setminus} R_{+}^{\mathrm{re}}(a)}(1-\xi_{\alpha}^{-1}(\gamma)). \end{equation}

Proof. If $\alpha \in R(a)$, by (3.63), $\xi _{\alpha }(\gamma )=\xi _{\alpha }(k^{-1})$. If $\alpha \notin R(\gamma )$, by (3.65), $\xi _{\alpha }(\gamma )\neq 1$. By Theorem 3.18, if $\alpha \in R^{\mathrm {re}}(a){\setminus} R^{\mathrm {re}}(\gamma )$, we have $\xi _{\alpha }(\gamma )=-1$, so that $1-\xi _{\alpha }^{-1}(\gamma )=2$. This completes the proof of our proposition.

Theorem 4.3 The following identities hold:

(4.12)\begin{gather} \det(1-\mathrm{Ad}(\gamma))\vert_{\mathfrak z^{\perp}(a)} =(-1)^{\vert R_{+}{\setminus} R_{+}(a)\vert}\prod_{\alpha\in R_{+}{\setminus} R_{+}(a)}(\xi_{\alpha}^{1/2}(\gamma)-\xi_{\alpha}^{-1/2}(\gamma))^{2},\nonumber\\ \vert \det(1-\mathrm{Ad}(\gamma))\vert_{\mathfrak z^{\perp}(a)} \vert^{1/2}=\epsilon_{D}(\gamma)\prod_{\alpha\in R_{+}{\setminus} R_{+}(a)}(\xi_{\alpha}^{1/2}(\gamma)-\xi_{\alpha}^{-1/2}(\gamma)) \prod_{\alpha\in R^{\mathrm{re}}_{+}{\setminus} R^{\mathrm{re}}_{+}(a)}\xi_{\alpha}^{-1/2}(k^{-1}),\nonumber\\ \det(1-\mathrm{Ad}(k^{-1}))\vert_{\mathfrak z_{a}^{\perp}(\gamma)}=(-1)^{\vert R_{+}(a){\setminus} R_{+}(\gamma)\vert} \prod_{\alpha\in R_{+}(a){\setminus} R_{+}(\gamma)}(\xi_{\alpha}^{1/2}(\gamma)-\xi_{\alpha}^{-1/2}(\gamma))^{2}.\nonumber\\ \end{gather}

Proof. Using Theorem 3.18 and the third identity in (3.73), we obtain

(4.13)\begin{equation} \det(1-\mathrm{Ad}(\gamma))\vert_{\mathfrak z^{\perp}(a)}=\prod_{\alpha\in R_{+}{\setminus} R_{+}(a)}(1-\xi_{\alpha}(\gamma)) (1-\xi_{\alpha}^{-1}(\gamma)), \end{equation}

from which the first equation in (4.12) follows.

By proceeding as in § 3.5, we find that $-\theta$ acts on $R_{+}{\setminus} ( R_{+}(a)\cup R_{+}^{\mathrm {re}} )$ without fixed points, so that $\vert R_{+}{\setminus} ( R_{+}(a)\cup R_{+}^{\mathrm {re}} ) \vert$ is even, and so

(4.14)\begin{equation} (-1)^{\vert R_{+}{\setminus} R_{+}(a)\vert} =(-1)^{\vert R_{+}^{\mathrm{re}}{\setminus} R^{\mathrm{re}}_{+}(a)\vert}. \end{equation}

The same arguments also show that

(4.15)\begin{equation} \prod_{\alpha\in R_{+}{\setminus} ( R_{+}(a)\cup R_{+}^{\mathrm{re}} ) }(\xi_{\alpha}^{1/2}(\gamma)-\xi_{\alpha}^{-1/2}(\gamma)) \end{equation}

is a positive number, and also that

(4.16)\begin{align} \prod_{\alpha\in R_{+}{\setminus} ( R_{+}(a)\cup R_{+}^{\mathrm{re}} )}(1-\xi_{\alpha}(\gamma)) (1-\xi_{\alpha}^{-1}(\gamma)) =\prod_{\alpha\in R_{+}{\setminus} ( R_{+}(a)\cup R_{+}^{\mathrm{re}} ) }(\xi_{\alpha}^{1/2}(\gamma)-\xi_{\alpha}^{-1/2}(\gamma))^{2}. \end{align}

Moreover, we have the identity of nonzero real numbers,

(4.17)\begin{align} \prod_{\alpha\in R_{+}^{\mathrm{re}}{\setminus} R_{+}^{\mathrm{re}}(a)}(1-\xi_{\alpha}(\gamma))(1-\xi_{\alpha}^{-1}(\gamma)) =(-1)^{\vert R^{\mathrm{re}}_{+} {\setminus} R^{\mathrm{re}}_{+}(a)\vert}\prod_{\alpha\in R^{\mathrm{re}}_{+} {\setminus} R^{\mathrm{re}}_{+}(a)}(1-\xi_{\alpha}^{-1}(\gamma))^{2}\xi_{\alpha}(\gamma). \end{align}

By Theorem 3.18, if $\alpha \in R_{+}^{\mathrm {re}}$, then

(4.18)\begin{equation} \xi_{\alpha}(\gamma)=e^{\langle \alpha,a\rangle}\xi_{\alpha}(k^{-1}), \quad \xi_{\alpha}(k^{-1})=\pm 1. \end{equation}

Using Proposition 4.2 and (4.17), we obtain

(4.19)\begin{align} \biggl\vert \prod_{\alpha\in R_{+}^{\mathrm{re}}{\setminus} R_{+}^{\mathrm{re}}(a)}(1-\xi_{\alpha}(\gamma))(1- \xi_{\alpha}^{-1}(\gamma))\biggr\vert^{1/2} =\epsilon_{D}(\gamma)\prod_{\alpha\in R^{\mathrm{re}}_{+} {\setminus} R^{\mathrm{re}}_{+}(a)}(1-\xi_{\alpha}^{-1}(\gamma))e^{ \langle \alpha,a\rangle/2}. \end{align}

Equation (4.19) can be rewritten in the form

(4.20)\begin{align} &\biggl\vert \prod_{\alpha\in R_{+}^{\mathrm{re}}{\setminus} R_{+}^{\mathrm{re}}(a)}(1-\xi_{\alpha}(\gamma))(1- \xi_{\alpha}^{-1}(\gamma))\biggr\vert^{1/2}\nonumber\\ &\quad =\epsilon_{D}(\gamma)\prod_{\alpha\in R^{\mathrm{re}}_{+} {\setminus} R^{\mathrm{re}}_{+}(a)}(\xi_{\alpha}^{1/2}(\gamma)- \xi_{\alpha}^{-1/2}(\gamma))\prod_{\alpha\in R^{\mathrm{re}}_{+}{\setminus} R^{\mathrm{re}}_{+}(a)}\xi_{\alpha}^{-1/2}(k^{-1}). \end{align}

By (4.13)–(4.20), we obtain the second identity in (4.12).

As on $\mathfrak z_{a}^{\perp }(\gamma )$, $\mathrm {Ad}(\gamma )$ acts like $\mathrm {Ad}(k^{-1})$, the proof of the third identity in (4.12) is the same as the proof of the first identity, which completes the proof of our theorem.

Remark 4.4 By the first two equations in (4.12), we deduce that

(4.21)\begin{equation} \mathrm{sgn} \det(1-\mathrm{Ad}(\gamma))\vert_{\mathfrak z^{\perp}(a)}=(-1)^{\vert R_{+} {\setminus} R_{+}(a)\vert}\prod_{\alpha\in R_{+}^{\mathrm{re}} {\setminus} R_{+}^{\mathrm{re}}(a)}\xi_{\alpha}^{-1}(k^{-1}). \end{equation}

In addition,

(4.22)\begin{equation} \vert R_{+}{\setminus} R_{+}(a)\vert=\dim \mathfrak p^{\perp}(a). \end{equation}

Using (4.22), we can rewrite (4.21) in the form

(4.23)\begin{equation} \mathrm{sgn} \det(1-\mathrm{Ad}(\gamma))\vert_{\mathfrak z^{\perp}(a)}=(-1)^{\dim \mathfrak p^{\perp}(a)}\det \mathrm{Ad}(k)\vert_{ \mathfrak r^{\perp}_{\mathfrak p}(a)}. \end{equation}

Using Proposition 3.8, we obtain

(4.24)\begin{equation} \det \mathrm{Ad}(k)\vert_{ \mathfrak r^{\perp}_{\mathfrak p}(a)}=\det \mathrm{Ad}(k)\vert_{ \mathfrak p^{\perp}(a)}. \end{equation}

By (4.23), (4.24), we obtain

(4.25)\begin{equation} \mathrm{sgn} \det(1-\mathrm{Ad}(\gamma))\vert_{\mathfrak z^{\perp}(a)}=(-1)^{\dim \mathfrak p^{\perp}(a)}\det \mathrm{Ad}(k)\vert_{\mathfrak p^{\perp}(a)}, \end{equation}

a result already established in [Reference BismutBis11, Proposition 5.4.1].

Let $\mathfrak i^{\perp }$ be the orthogonal space to $\mathfrak i$ in $\mathfrak h^{\perp }$. By (2.20), $\mathfrak z(\gamma ) \subset \mathfrak z(a)$, and by (3.71), $\mathfrak i \subset \mathfrak z(a)$. Therefore,

(4.26)\begin{equation} \mathfrak z^{\perp}(a) \subset \mathfrak z^{\perp}(\gamma)\cap \mathfrak i^{\perp}. \end{equation}

Similarly, we have the inclusion

(4.27)\begin{equation} R_{+}(\gamma)\cup R^{\mathrm{im}}_{+} \subset R_{+}(a). \end{equation}

Theorem 4.5 The following identities hold:

(4.28)\begin{equation} \begin{aligned} & \det(1-\mathrm{Ad}(\gamma))\vert_{\mathfrak z^{\perp}(\gamma)\cap \mathfrak i^{\perp}} =(-1)^{\vert R_{+}{\setminus} ( R_{+}(\gamma)\cup R^{\mathrm{im}}_{+}) \vert} \prod_{\alpha\in R_{+}{\setminus} ( R_{+}(\gamma)\cup R^{\mathrm{im}}_{+}) }(\xi_{\alpha}^{1/2}(\gamma)-\xi_{\alpha}^{-1/2}(\gamma))^{2},\\ & \vert \det(1-\mathrm{Ad}(\gamma))\vert_{\mathfrak z^{\perp}(\gamma)\cap \mathfrak i^{\perp}} \vert^{1/2} \\ & \quad =\epsilon_{D}(\gamma)\prod_{\alpha\in R_{+}{\setminus} ( R_{+}(\gamma)\cup R^{\mathrm{im}}_{+} ) }(\xi_{\alpha}^{1/2}(\gamma)-\xi_{\alpha}^{-1/2}(\gamma)) \prod_{\alpha\in R^{\mathrm{re}}_{+}{\setminus} R^{\mathrm{re}}_{+}(\gamma)}\xi_{\alpha}^{-1/2}(k^{-1}). \end{aligned} \end{equation}

Proof. The proof of the first identity in (4.28) is the same as the proof of the first identity in (4.12) that was given in Theorem 4.3. Instead of (4.14), we obtain

(4.29)\begin{equation} (-1)^{\vert R_{+}{\setminus}(R_{+}(\gamma)\cup R^{\mathrm{im}}_{+})\vert}=(-1)^{\vert R^{\mathrm{re}}_{+}{\setminus} R^{\mathrm{re}}_{+}(\gamma)\vert}. \end{equation}

If in (4.15), we replace $R_{+}{\setminus} (R_{+}(a)\cup R_{+}^{\mathrm {re}})$ by $R_{+}{\setminus} (R_{+}(\gamma )\cup R_{+}^{\mathrm {re}}\cup R^{\mathrm {im}}_{+})$, the conclusions remain valid. Similarly, (4.17) and (4.19) remain valid when replacing $R^{\mathrm {re}}_{+}{\setminus} R^{\mathrm {re}}_{+}(a)$ by $R^{\mathrm {re}}_{+}{\setminus} R_{+}^{\mathrm {re}}(\gamma )$. This completes the proof of our theorem.

4.2 Evaluation of the function $\mathcal {J}_{\gamma }$ on $i \mathfrak h_{\mathfrak k}$

Let $\mathfrak h \subset \mathfrak g$ be a $\theta$-stable Cartan subalgebra. Take $\gamma \in H$. Then $\mathfrak h \subset \mathfrak z(\gamma )$. By Proposition 3.16, $\gamma$ is semisimple. In particular, $\mathfrak h_{\mathfrak k} \subset \mathfrak k(\gamma )$, so that functions defined on $i \mathfrak k(\gamma )$ restrict to functions on $i \mathfrak h_{\mathfrak k}$.

Recall that the function $\mathcal {L}_{\gamma }({Y_{0}^{\mathfrak k}}), \mathcal {M}_{\gamma }({Y_{0}^{\mathfrak k}})$ on $i \mathfrak k(\gamma )$ were defined in Definition 2.5.

We use here the notation and results of § 3.10 and, in particular, the results of Proposition 3.19. In particular, by this proposition, $\mathfrak i(\gamma )=\mathfrak i(k)$.

Definition 4.6 If $h_{\mathfrak k}\in i \mathfrak h_{\mathfrak k}$, put

(4.30)\begin{equation} \mathscr{L}_{k^{-1}}(h_{\mathfrak k})=\frac{\det(1-\mathrm{Ad}(k^{-1}e^{-h_{\mathfrak k}}))\vert_{\mathfrak i_{\mathfrak k}^{\perp}(k)}}{\det(1- \mathrm{Ad}(k^{-1}e^{-h_{\mathfrak k}}))\vert_{\mathfrak i_{\mathfrak p}^{\perp}(k)}}. \end{equation}

Like the function $\mathcal {J}_{\gamma }({Y_{0}^{\mathfrak k}})$ in (2.68), the function $\mathscr {L}_{k^{-1}}(h_{\mathfrak k})$ is a smooth function of $h_{\mathfrak k}$, which verifies estimates similar to (2.77). Exactly the same arguments as in [Reference BismutBis11, § 5.5] and after (2.65) show that there is an unambiguously defined square root

(4.31)\begin{equation} \mathscr{M}_{k^{-1}}(h_{\mathfrak k})= \bigg[\frac{1}{\det(1-\mathrm{Ad}(k^{-1}))\vert _{\mathfrak i^{\perp}(k)}} \mathscr{L}_{k^{-1}}(h_{\mathfrak k})\bigg]^{1/2}. \end{equation}

This square root is positive for $h_{\mathfrak k}=0$.

Theorem 4.7 If $h_{\mathfrak k}\in i\mathfrak h_{\mathfrak k}$, then

(4.32)\begin{equation} \begin{aligned} \frac{\widehat{A}(\mathrm{ad}(h_{\mathfrak k})\vert_{\mathfrak p(\gamma)})}{\widehat{A}(\mathrm{ad}(h_{\mathfrak k})\vert_{\mathfrak k(\gamma)})}& = \frac{\widehat{A}(\mathrm{ad}(h_{\mathfrak k})\vert_{\mathfrak i_{\mathfrak p}(k)})}{\widehat{A}(\mathrm{ad}(h_{\mathfrak k})\vert_{\mathfrak i_{\mathfrak k}(k)})},\\ \mathcal{L}_{\gamma}(h_{\mathfrak k}) &=\mathscr{L}_{k^{-1}}(h_{\mathfrak k}). \end{aligned} \end{equation}

In particular, $\mathcal {L}_{\gamma }(h_{\mathfrak k})$ does not depend on $a$.

If $h_{\mathfrak k}\in i \mathfrak h_{\mathfrak k}$, we have the identity,

(4.33)\begin{equation} \mathcal{J}_{\gamma}(h_{\mathfrak k})=\frac{1}{\vert \det(1-\mathrm{Ad}(\gamma))\vert_{\mathfrak z^{\perp}(\gamma)\cap \mathfrak i^{\perp}}\vert^{1/2}}\frac{\widehat{A}(\mathrm{ad} (h_{\mathfrak k})\vert_{ \mathfrak i_{\mathfrak p}(k)})}{\widehat{A} (\mathrm{ad}(h_{\mathfrak k})\vert_{\mathfrak i_{\mathfrak k}(k)})} \mathscr{M}_{k^{-1}}(h_{\mathfrak k}). \end{equation}

This identity can be written in the form,

(4.34)\begin{align} \mathcal{J}_{\gamma}(h_{\mathfrak k}) &=\frac{(-1)^{\vert R^{\mathrm{im}}_{ \mathfrak p,+}{\setminus} R^{\mathrm{im}}_{\mathfrak p,+}(k)\vert}\epsilon_{D}(\gamma) \prod_{\alpha\in R_{+}^{\mathrm{re}}{\setminus} R_{+}^{\mathrm{re}}(\gamma)}\xi_{\alpha}^{1/2}(k^{-1})}{ \prod_{\alpha\in R_{+}{\setminus} R_{+}(\gamma)}(\xi^{1/2}_{\alpha}(\gamma)-\xi^{-1/2}_{\alpha}(\gamma))} \frac{\prod_{\alpha\in R_{ \mathfrak p,+}^{\mathrm{im}}(k)}\widehat{A}(\langle \alpha,h_{\mathfrak k}\rangle)}{ \prod_{\alpha\in R_{\mathfrak k,+}^{\mathrm{im}}(k)}\widehat{A}(\langle \alpha,h_{\mathfrak k}\rangle)}\nonumber\\ &\quad \times \frac{\prod_{\alpha\in R_{\mathfrak k,+}^{\mathrm{im}}{\setminus} R_{\mathfrak k,+}^{\mathrm{im}}(k)}( \xi_{\alpha}^{1/2}(k^{-1}e^{-h_{\mathfrak k}})- \xi^{-1/2}_{\alpha}(k^{-1}e^{-h_{\mathfrak k}}))}{ \prod_{\alpha\in R_{\mathfrak p,+}^{\mathrm{im}}{\setminus} R_{\mathfrak p,+}^{\mathrm{im}}(k)}( \xi_{\alpha}^{1/2}(k^{-1}e^{-h_{\mathfrak k}})- \xi^{-1/2}_{\alpha}(k^{-1}e^{-h_{\mathfrak k}}))}. \end{align}

Proof. By (3.28), we obtain

(4.35)\begin{equation} \mathfrak i^{\perp}= \mathfrak r \oplus \mathfrak c. \end{equation}

In addition, $\mathfrak i^{\perp }$ splits as

(4.36)\begin{equation} \mathfrak i^{\perp}= \mathfrak i^{\perp}_{\mathfrak p} \oplus \mathfrak i^{\perp}_{\mathfrak k}. \end{equation}

By Proposition 3.8, as representations of $H\cap K$, $\mathfrak i^{\perp }_{\mathfrak p}$ and $\mathfrak i^{\perp }_{\mathfrak k}$ are equivalent, so that (4.32) holds.

Observe that $\det (1-\mathrm {Ad}(k^{-1}))\vert _{\mathfrak z_{a}^{\perp }(\gamma )\cap \mathfrak i^{\perp }}>0$, and so this number has a positive square root. Moreover,

(4.37)\begin{align} &\det(1-\mathrm{Ad}(\gamma))\vert_{\mathfrak z^{\perp}(\gamma)\cap \mathfrak i^{\perp}}= \det(1-\mathrm{Ad}(\gamma))\vert_{\mathfrak z^{\perp}(a)} \det(1-\mathrm{Ad}(k^{-1}))\vert_{\mathfrak z_{a}^{\perp}(\gamma)\cap \mathfrak i^{\perp}}. \end{align}

By (2.64), (2.65), (2.68), (4.32), and (4.37), we obtain (4.33).

Clearly,

(4.38)\begin{equation} \frac{\widehat{A}(\mathrm{ad}(h_{\mathfrak k})\vert_{ \mathfrak i_{\mathfrak p}(k)})}{\widehat{A}(\mathrm{ad}(h_{\mathfrak k})\vert_{\mathfrak i_{\mathfrak k}(k)})}= \frac{\prod_{\alpha\in R^{\mathrm{im}}_{\mathfrak p,+}(k)}\widehat{A} (\langle \alpha,h_{\mathfrak k}\rangle)}{ \prod_{\alpha\in R^{\mathrm{im}}_{\mathfrak k,+}(k)}\widehat{A} (\langle \alpha,h_{\mathfrak k}\rangle)}. \end{equation}

By proceeding as in the proof of the third identity in (4.12), we obtain

(4.39)\begin{align} &\det(1-\mathrm{Ad}(k^{-1}) ) \vert_{\mathfrak i^{\perp}(k)} =(-1)^{\vert R^{\mathrm{im}}_{+}{\setminus} R_{+}^{\mathrm{im}}(k)\vert} \prod_{\alpha\in R^{\mathrm{im}}_{+}{\setminus} R^{\mathrm{im}}_{+}(k)}(\xi_{\alpha}^{1/2}(k^{-1}) -\xi_{\alpha}^{-1/2}(k^{-1}))^{2}. \end{align}

The same argument shows that

(4.40)\begin{align} &\mathscr{L}_{k^{-1}}(h_{\mathfrak k})=(-1)^{\vert R^{\mathrm{im}}_{+}{\setminus} R_{+}^{\mathrm{im}}(k)\vert} \frac{\prod_{\alpha\in R_{\mathfrak k,+}^{\mathrm{im}}{\setminus} R_{ \mathfrak k,+}^{\mathrm{im}}(k)}(\xi_{\alpha}^{1/2}(k^{-1}e^{-h_{\mathfrak k}})- \xi^{-1/2}_{\alpha}(k^{-1}e^{-h_{\mathfrak k}}))^{2}}{ \prod_{\alpha\in R_{\mathfrak p,+}^{\mathrm{im}}{\setminus} R_{\mathfrak p,+}^{\mathrm{im}}(k)}( \xi_{\alpha}^{1/2}(k^{-1}e^{-h_{\mathfrak k}})-\xi^{-1/2}_{\alpha}(k^{-1}e^{-h_{\mathfrak k}}))^{2}}. \end{align}

By (4.39) and (4.40), and keeping in mind the fact that we take the properly positive square root in (4.31), we obtain

(4.41)\begin{align} \mathscr{M}_{k^{-1}}(h_{\mathfrak k})&= \frac{(-1)^{\vert R^{\mathrm{im}}_{ \mathfrak p,+}/ R^{\mathrm{im}}_{\mathfrak p,+}(k)\vert}}{ \prod_{\alpha\in R^{\mathrm{im}}_{+}{\setminus} R^{\mathrm{im}}_{+}(k)}(\xi_{\alpha}^{1/2}(k^{-1})-\xi_{\alpha}^{-1/2}(k^{-1}))}\nonumber\\ &\quad \times \frac{\prod_{\alpha\in R_{\mathfrak k,+}^{\mathrm{im}}{\setminus} R_{\mathfrak k,+}^{\mathrm{im}}(k)}( \xi_{\alpha}^{1/2}(k^{-1}e^{-h_{\mathfrak k}})- \xi^{-1/2}_{\alpha}(k^{-1}e^{-h_{\mathfrak k}}))}{ \prod_{\alpha\in R_{\mathfrak p,+}^{\mathrm{im}}{\setminus} R_{\mathfrak p,+}^{\mathrm{im}}(k)}( \xi_{\alpha}^{1/2}(k^{-1}e^{-h_{\mathfrak k}})- \xi^{-1/2}_{\alpha}(k^{-1}e^{-h_{\mathfrak k}}))}. \end{align}

In the first product on the right-hand side of (4.41), we may as well replace $k^{-1}$ by $\gamma$.

By combining the second identity in (4.28), (4.33), (4.38), and (4.41), we obtain (4.34). The proof of our theorem is complete.

5. The function $\mathcal {J}_{\gamma }$ when $\gamma$ is regular

The purpose of this section is to study extra properties of the function $\mathcal {J}_{\gamma }$ when $\gamma$ is regular.

This section is organized as follows. In § 5.1, if $\mathfrak h$ is a $\theta$-stable Cartan subalgebra and if $H$ is the corresponding Cartan subgroup, if $\gamma \in H$, we describe a neighborhood of $\gamma$ in $H$. In § 5.2, if $\gamma \in H$, we define the $\gamma$-regular elements in $\mathfrak h$, which are such that a small perturbation of $\gamma$ by a $\gamma$-regular element is regular. In § 5.3, following Harish-Chandra [Reference Harish-ChandraHar65], we introduce the function $D_{H}$ on $H$. This function is an analogue of the denominator in the Lefschetz formulas. Finally, in § 5.4, we specialize the formula obtained in Theorem 4.7 for $\mathcal {J}_{\gamma }(h_{\mathfrak k})$ to the case where $\gamma \in H^{\mathrm {reg}}$. As a consequence, we prove the unexpected result that the function $(\gamma,h_{\mathfrak k})\in H^{\mathrm {reg}}\times i \mathfrak h_{\mathfrak k}\to \mathcal {J}_{\gamma }(h_{\mathfrak k})\in \mathbf {C}$ is smooth.

We make the same assumptions and we use the same notation as in § 4. In particular, we fix $\gamma \in H$ that is written as in (3.58).

5.1 A neighborhood of $\gamma$ in $H$

If $b\in \mathfrak h$, $b$ splits as

(5.1)\begin{equation} b= b_{\mathfrak p} + b_{\mathfrak k}, \quad b_{\mathfrak p}\in \mathfrak h_{\mathfrak p}, \quad b_{\mathfrak k}\in \mathfrak h_{\mathfrak k}. \end{equation}

Put

(5.2)\begin{equation} \gamma'=\gamma e^{b}. \end{equation}

Then $\gamma '\in H\cap Z(\gamma )$.

Set

(5.3)\begin{equation} a'=a+ b_{\mathfrak p}, \quad k'=ke^{-b_{\mathfrak k}}. \end{equation}

Then

(5.4)\begin{equation} \gamma'=e^{a'}k^{\prime -1}, \quad a'\in \mathfrak h_{\mathfrak p}, \quad k'\in H\cap K(\gamma),\quad \mathrm{Ad}(k')a'=a'. \end{equation}

In addition, $\mathrm {Ad}(\gamma ')$ preserves the splitting $\mathfrak g=\mathfrak z(\gamma ) \oplus \mathfrak z^{\perp }(\gamma )$. As $1-\mathrm {Ad}(\gamma )$ is invertible on $\mathfrak z^{\perp }(\gamma )$, we conclude that for $\epsilon >0$ small enough, if $\vert b\vert \le \epsilon$,

(5.5)\begin{equation} \mathfrak h \subset \mathfrak z(\gamma') \subset \mathfrak z(\gamma). \end{equation}

Let $H^{\mathrm {reg}}$ be the set of regular elements in $H$. Assume temporarily that $\gamma \in H^{\mathrm {reg}}$, i.e. $\mathfrak z(\gamma )= \mathfrak h$. By (5.5), for $\epsilon >0$ small enough if $\vert b\vert \le \epsilon$, then

(5.6)\begin{equation} \mathfrak z(\gamma')= \mathfrak h, \end{equation}

i.e. $\gamma '\in H^{\mathrm {reg}}$, which is a trivial conclusion. As $b\in \mathfrak h$, we conclude that $\gamma '\in Z(\gamma )$ and $\gamma \in Z(\gamma ')$. A priori, $Z(\gamma )$ and $Z(\gamma ')$ may be distinct. Still we have the obvious identity

(5.7)\begin{equation} Z^{0}(\gamma)=Z^{0}(\gamma')=H^{0}. \end{equation}

5.2 The $\gamma$-regular elements in $\mathfrak h$

We no longer assume $\gamma$ to be regular. By (3.73), we obtain

(5.8)\begin{equation} \mathfrak z_{a}^{\perp}(\gamma)_{\mathbf{C}}= \bigoplus_{\alpha\in R(a){\setminus} R(\gamma) }\mathfrak g_{\alpha}. \end{equation}

Let $\mathfrak h^{\perp }_{a}$ denote the orthogonal space to $\mathfrak h$ in $\mathfrak z(a)$. Then we have the splitting

(5.9)\begin{equation} \mathfrak h_{a}^{\perp}=\mathfrak h_{a, \mathfrak p}^{\perp} \oplus \mathfrak h_{a, \mathfrak k}^{\perp}. \end{equation}

By (3.73), we obtain

(5.10)\begin{equation} \mathfrak h_{a,\mathbf{C}}^{\perp}=\bigoplus_{\alpha\in R(a)}\mathfrak g_{\alpha}. \end{equation}

Definition 5.1 An element $h\in \mathfrak h$ is said to be $\gamma$-regular if for any $\alpha \in R(\gamma )$, $\langle \alpha,h\rangle \neq 0$.

The $\gamma$-regular elements in $\mathfrak h$ are exactly the regular elements in $\mathfrak h$ viewed as a Cartan subalgebra of $\mathfrak z(\gamma )$. The $\gamma$-regular elements lie in the complement of a finite family of hyperplanes in $\mathfrak h$.

As $\mathfrak h$ is a Cartan subalgebra of $\mathfrak z(\gamma )$, we define the function $\pi ^{\mathfrak h, \mathfrak z(\gamma )}$ on $\mathfrak h_{\mathbf {C}}$ as in (3.41), i.e.

(5.11)\begin{equation} \pi^{\mathfrak h,\mathfrak z(\gamma)}(h)=\prod_{\alpha\in R_{+}(\gamma)}\langle \alpha,h\rangle. \end{equation}

Then $h\in \mathfrak h$ is $\gamma$-regular if and only if $\pi ^{\mathfrak h,\mathfrak z(\gamma )}(h)\neq 0$.

Now we use the notation of § 5.1.

Proposition 5.2 There exists $\epsilon >0$ such that if $b\in \mathfrak h$ is $\gamma$-regular, and $\vert b\vert \le \epsilon$, if $\gamma '=\gamma e^{b}$, then $\gamma '\in H^{\mathrm {reg}}$.

Proof. For $\epsilon >0$ small enough, (5.5) holds, so that

(5.12)\begin{equation} \mathfrak z(\gamma')= \mathfrak z(\gamma)\cap \mathfrak z(e^{b}). \end{equation}

By (3.7), we obtain

(5.13)\begin{equation} \mathfrak z(\gamma)_{\mathbf{C}}= \mathfrak h_{\mathbf{C}} \oplus \bigoplus _{\alpha\in R(\gamma)}\mathfrak g_{\alpha}. \end{equation}

For $\alpha \in R(\gamma )$, $e^{b}$ acts on $\mathfrak g_{\alpha }$ by multiplication by $e^{\langle \alpha,b\rangle }$. For $\epsilon >0$ small enough, if $b$ is $\gamma$-regular and $\vert b\vert \le \epsilon$, for $\alpha \in R(\gamma )$, $e^{\langle \alpha,b\rangle }\neq 1$. By (5.12) and (5.13), we conclude that under the given conditions on $b$, $\mathfrak z(\gamma ')= \mathfrak h$, i.e. $\gamma '$ is regular. The proof of our proposition is completed.

5.3 The function $D_{H}(\gamma )$

Here, we follow Harish-Chandra [Reference Harish-ChandraHar65, § 19].

Definition 5.3 If $\gamma \in H^{\mathrm {reg}}$, putFootnote 11

(5.14)\begin{equation} D_{H}(\gamma)=\prod_{\alpha\in R_{+}}(\xi_{\alpha}^{1/2}(\gamma)-\xi_{\alpha}^{-1/2}(\gamma)). \end{equation}

Using (3.64) and proceeding as in the proof of Theorem 4.3, we obtain

(5.15)\begin{equation} \det(1-\mathrm{Ad}(\gamma))\vert_{\mathfrak h^{\perp}}= (-1)^{\vert R_{+}\vert}D_{H}^{2}(\gamma). \end{equation}

By (5.15), we deduce that if $\gamma \in H^{\mathrm {reg}}$, then

(5.16)\begin{equation} \vert \det(1-\mathrm{Ad}(\gamma))\vert_{\mathfrak h^{\perp}}\vert=\vert D_{H}(\gamma)\vert^{2}, \end{equation}

so that $D_{H}(\gamma )\neq 0$.

5.4 The function $\mathcal {J}_{\gamma }$ when $\gamma$ is regular

In this subsection, we assume that $\gamma \in H^{\mathrm {reg}}$, i.e. $D_{H}(\gamma )\neq 0$.

By (4.30) and (4.31), we obtain

(5.17)\begin{equation} \begin{aligned} & \mathscr{L}_{k^{-1}}(h_{\mathfrak k})=\frac{\det(1- \mathrm{Ad}(k^{-1}e^{-h_{\mathfrak k}}))\vert_{\mathfrak i_{\mathfrak k}}}{\det(1- \mathrm{Ad}(k^{-1}e^{-h_{\mathfrak k}}))\vert_{\mathfrak i_{\mathfrak p}}},\\ & \mathscr{M}_{k^{-1}}(h_{\mathfrak k})=\bigg[\frac{1}{\det(1-\mathrm{Ad}(k^{-1}))\vert _{\mathfrak i}}\mathscr{L}_{k^{-1}} (h_{\mathfrak k})\bigg]^{1/2}. \end{aligned} \end{equation}

By (4.10), $\epsilon _{D}(\gamma )$ is given by

(5.18)\begin{equation} \epsilon_{D}(\gamma)=\mathrm{sgn}\prod_{\alpha\in R_{+}^{\mathrm{re}}}(1-\xi_{\alpha}^{-1}(\gamma)). \end{equation}

The function $\epsilon _{D}(\gamma )$ is locally constant on $H^{\mathrm {reg}}$.

Theorem 5.4 If $h_{\mathfrak k}\in i \mathfrak h_{\mathfrak k}$, we have the identity

(5.19)\begin{equation} \mathcal{J}_{\gamma}(h_{\mathfrak k})=\frac{1}{\vert \det(1-\mathrm{Ad}(\gamma))\vert_{\mathfrak i^{\perp}}\vert^{1/2}} \mathscr{M}_{k^{-1}}(h_{\mathfrak k}). \end{equation}

This identity can be written in the form,

(5.20)\begin{align} \mathcal{J}_{\gamma}(h_{\mathfrak k})&=\frac{(-1)^{\vert R^{\mathrm{im}}_{\mathfrak p,+} \vert}\epsilon_{D}(\gamma)\prod_{\alpha\in R_{+}^{\mathrm{re}}}\xi_{\alpha}^{1/2}(k^{-1})}{ D_{H}(\gamma)}\nonumber\\ &\quad \times \frac{\prod_{\alpha\in R_{\mathfrak k,+}^{\mathrm{im}} }( \xi_{\alpha}^{1/2}(k^{-1}e^{-h_{\mathfrak k}})- \xi^{-1/2}_{\alpha}(k^{-1}e^{-h_{\mathfrak k}}))}{ \prod_{\alpha\in R_{\mathfrak p,+}^{\mathrm{im}}}( \xi_{\alpha}^{1/2}(k^{-1}e^{-h_{\mathfrak k}})- \xi^{-1/2}_{\alpha}(k^{-1}e^{-h_{\mathfrak k}}))}. \end{align}

The function $(\gamma,h_{\mathfrak k})\in H^{\mathrm {reg}}\times i \mathfrak h_{\mathfrak k}\to \mathcal {J}_{\gamma }(h_{\mathfrak k})\in \mathbf {C}$ is smooth.

Proof. The first part of our theorem is a trivial consequence of Theorem 4.7. For $b_{\mathfrak k}\in \mathfrak h_{\mathfrak k}$, for $\vert b_{\mathfrak k}\vert$ small enough, we take

(5.21)\begin{equation} \xi_{\alpha}^{1/2}(k^{\prime -1})=e^{\langle \alpha,b_{\mathfrak k}/2 \rangle}\xi^{1/2}_{\alpha}(k^{-1}). \end{equation}

By (4.5) and (5.21), we deduce that if $\alpha \in R_{+}^{\mathrm {c}}$, then

(5.22)\begin{equation} \xi_{-\theta\alpha}^{1/2}(k^{\prime -1})=\overline{\xi_{\alpha}^{1/2}(k^{\prime -1})}. \end{equation}

The stated smoothness is an obvious consequence of the above formulas. The proof of our theorem is complete.

6. The Harish-Chandra isomorphism

In this section, if $\mathfrak h \subset \mathfrak g$ is a Cartan subalgebra, we describe the Harish-Chandra isomorphism of algebras $\phi _{\mathrm {HC}}:Z(\mathfrak g) \simeq I{{}^{\cdot }}(\mathfrak h,\mathfrak g)$. In addition, we explain the action of $Z(\mathfrak g)$ on $C^{\infty }(X,F)$, and we introduce certain semisimple orbital integrals in which $Z(\mathfrak g)$ appears.

This section is organized as follows. In § 6.1, we introduce the center of the enveloping algebra $Z(\mathfrak g)$. In § 6.2, we recall some properties of the complex Harish-Chandra isomorphism $\phi _{\mathrm {HC}}: Z(\mathfrak g_{\mathbf {C}}) \simeq I{{}^{\cdot }}(\mathfrak h_{\mathbf {C}}, \mathfrak g_{\mathbf {C}})$, including some aspects of its construction. In § 6.3, we show that there is a real form of the Harish-Chandra isomorphism $\phi _{\mathrm {HC}}:Z(\mathfrak h) \simeq I{{}^{\cdot }}(\mathfrak h,\mathfrak g)$. In § 6.4, we recall the relation of the Harish-Chandra isomorphism to the Duflo isomorphism that was established in [Reference DufloDuf70]. In § 6.5, we consider the case of the Casimir. In § 6.6, we describe the action of $Z(\mathfrak g)$ on $C^{ \infty }(X,F)$. Finally, in § 6.7, we consider the orbital integrals in which $Z(\mathfrak g)$ appears.

6.1 The center of the enveloping algebra

Recall that the enveloping algebra $U(\mathfrak g)$ was introduced in § 2.3. Then $U(\mathfrak g)$ is a filtered algebra, and the corresponding $\mathrm {Gr}$ is just the algebra of polynomials $S{{}^{\cdot }}(\mathfrak g)$ on $\mathfrak g^{*}$.

Note that $\mathfrak g$ acts by derivations on $U(\mathfrak g)$. Recall that $Z(\mathfrak g)$ is the center of $U(\mathfrak g)$, i.e. it is the kernel of the above derivations.

Observe that $G$ acts both on the left and on the right on $C^{\infty }(G,\mathbf {R})$ by the formula

(6.1)\begin{equation} \gamma_{L} s(g)=s(\gamma^{-1}g), \quad \gamma_{R}s(g)=s(g\gamma), \end{equation}

and these two actions commute. They are intertwined by the involution induced by the involution $g\to \sigma g=g^{-1}$. Let $D_{L}(G)$ be the Lie algebras of left-invariant real differential operators on $G$. As we saw in § 2.3, $U(\mathfrak g)$ can be identified with $D_{L}(G)$. The algebra $D_{L}(G)$ commutes with the left action of $G$.

If $\mathfrak g_{-}$ is the Lie algebra $\mathfrak g$ with the negative of the original Lie bracket, the isomorphism of $\mathfrak g$ $f\to -f$ identifies $\mathfrak g$ and $\mathfrak g_{-}$. This isomorphism is induced by the involution $\sigma$.

Let $U(\mathfrak g_{-})$ be the enveloping algebra associated with $\mathfrak g_{-}$. Then $U(\mathfrak g_{-})$ can be identified with the algebra of right-invariant real differential operators $D_{R}(G)$. This algebra commutes with the right action of $G$. In addition, the isomorphism $f\to -f$ induces an identification of $U(\mathfrak g)$ and $U(\mathfrak g_{-})$. This identification is still induced by $\sigma$.

We equip $U(\mathfrak g), U(\mathfrak g_{-})$ with the antiautomorphism $*$ which is just the adjoint in the classical $L_{2}$ sense when identifying $U(\mathfrak g)$ and $U(\mathfrak g_{-})$ with $D_{L}(G)$ and $D_{R}(G)$. This involution extends to a $\mathbf {C}$-linear involution of $U(\mathfrak g_{\mathbf {C}})$ and $U(\mathfrak g_{-,\mathbf {C}})$.

By definition, $Z(\mathfrak g) \subset U(\mathfrak g)$ is the subalgebra of $D_{L}(G)$ which commutes with right multiplication. Equivalently

(6.2)\begin{equation} Z(\mathfrak g)= D_{L}(G) \cap D_{R}(G). \end{equation}

Note that $*$ induces an automorphism of $Z(\mathfrak g)$, which is an involution, and which we still denote by $*$.

The isomorphism of $U(\mathfrak g)$ with $U(\mathfrak g_{-})$ which was described before is that induced by $\sigma$. It induces the obvious isomorphism of $D_{L}(G)$ with $D_{R}(G)$. In this way, we obtain an automorphism $\sigma$ of $Z(\mathfrak g)$, which is also an involution.

Clearly,

(6.3)\begin{equation} Z(\mathfrak g_{\mathbf{C}})=Z(\mathfrak g)_{\mathbf{C}}. \end{equation}

Equivalently, $Z(\mathfrak g_{\mathbf {C}})$ is equipped with a complex conjugation, and $Z(\mathfrak g)$ is the algebra of complex conjugation invariants in $Z(\mathfrak g_{\mathbf {C}})$. In addition, $*$ and $\sigma$ extend to complex automorphisms of $Z(\mathfrak g_{\mathbf {C}})$.

6.2 The complex form of the Harish-Chandra isomorphism

We use the notation of § 3.11. Let $\mathfrak h \subset \mathfrak g$ be a $\theta$-stable Cartan subalgebra. By [Reference KnappKna86, Theorem 8.18], there is a canonical Harish-Chandra isomorphism of filtered algebras,

(6.4)\begin{equation} \phi_{\mathrm{HC}}: Z(\mathfrak g_{\mathbf{C}}) \simeq I{{}^{\cdot}}(\mathfrak h_{\mathbf{C}}, \mathfrak g_{\mathbf{C}}). \end{equation}

We need to describe the Harish-Chandra isomorphism in more detail. We fix a positive root system $R_{+}$ as in § 3.5. Put

(6.5)\begin{equation} \mathscr P=\sum_{\alpha\in R_{+}}U(\mathfrak g_{\mathbf{C}})\mathfrak g_{\alpha}. \end{equation}

Observe that $S{{}^{\cdot }}(\mathfrak h_{\mathbf {C}}) = U(\mathfrak h_{\mathbf {C}})$, and also that $U(\mathfrak h_{\mathbf {C}}) \subset U(\mathfrak g_{\mathbf {C}})$, so that $S{{}^{\cdot }}(\mathfrak h_{\mathbf {C}}) \subset U(\mathfrak g_{\mathbf {C}})$. By [Reference KnappKna86, Lemma 8.17], we obtain

(6.6)\begin{equation} S{{}^{\cdot}}(\mathfrak h_{\mathbf{C}} ) \cap \mathscr P =0, \quad Z(\mathfrak g_{\mathbf{C}}) \subset S{{}^{\cdot}}(\mathfrak h_{\mathbf{C}}) \oplus \mathscr P. \end{equation}

Let $\phi _{1,R_{+}}$ be the projection from $Z(\mathfrak g_{\mathbf {C}})$ on $S{{}^{\cdot }}(\mathfrak h_{\mathbf {C}})$.

Recall that $S{{}^{\cdot }}(\mathfrak h_{\mathbf {C}})$ is the algebra of polynomials on $\mathfrak h^{*}_{\mathbf {C}}$, and that $\rho ^{\mathfrak g}\in \mathfrak h_{\mathbf {C}}^{*}$ is the half sum of the roots in $R_{+}$. Let $\phi _{2,R_{+}}$ be the filtered automorphism of $S{{}^{\cdot }}(\mathfrak h_{\mathbf {C}})$ such that if $f\in S{{}^{\cdot }}(\mathfrak h_{\mathbf {C}})$, if $h^{*}\in \mathfrak h_{\mathbf {C}}^{*}$, then

(6.7)\begin{equation} \phi_{2,R_{+}}f(h^{*})=f(h^{*}-\rho^{\mathfrak g}). \end{equation}

The fundamental result of Harish-Chandra [Reference Harish-ChandraHar56, Lemmas 18–20], [Reference KnappKna86, Theorem 8.18] is that $\phi _{2,R_{+}}\phi _{1,R_{+}}$ maps $Z(\mathfrak g_{\mathbf {C}})$ onto $I{{}^{\cdot }}(\mathfrak h_{\mathbf {C}}, \mathfrak g_{\mathbf {C}})$, that it induces an isomorphism of filtered algebras that does not depend on the choice of $R_{+}$. This is exactly the Harish-Chandra isomorphism $\phi _{\mathrm {HC}}: Z(\mathfrak g_{\mathbf {C}}) \simeq I{{}^{\cdot }}(\mathfrak h_{\mathbf {C}}, \mathfrak g_{\mathbf {C}})$.

Now we proceed as in § 3.11, i.e. we identify $I{{}^{\cdot }}(\mathfrak h_{\mathbf {C}}, \mathfrak g_{\mathbf {C}})$ with the algebra $D^{\cdot}_{I}(\mathfrak h_{\mathbf {C}}, \mathfrak g_{\mathbf {C}})$ of holomorphic differential operators on $\mathfrak h_{\mathbf {C}}$ with constant complex coefficients which are $W(\mathfrak h_{\mathbf {C}}:\mathfrak g_{\mathbf {C}})$-invariant. The same arguments as in § 3.11 show that there is an algebra $D^{\cdot}_{I}(\mathfrak h, \mathfrak g)$ of real differential operators with constant coefficients on $\mathfrak h$ such that

(6.8)\begin{equation} D^{\cdot}_{I}(\mathfrak h_{\mathbf{C}}, \mathfrak g_{\mathbf{C}})=D^{\cdot}_{I}(\mathfrak h, \mathfrak g)_{\mathbf{C}}, \end{equation}

and that $I{{}^{\cdot }}(\mathfrak h, \mathfrak g)$ can be identified with $D^{\cdot}_{I}(\mathfrak h, \mathfrak g)$.

We use the assumptions and notation of § 3.7. Let $C^{\infty, G}(G^{\mathrm {reg}},\mathbf {C})$ denote the $\mathrm {Ad}$-invariant smooth complex functions on the open set $G^{\mathrm {reg}}$.

Let $C^{\infty, W(H:G)}(H^{\mathrm {reg}},\mathbf {C})$ be the smooth $W(H:G)$-invariant functions on $H^{\mathrm {reg}}$. There is a restriction map

\[ r:C^{\infty, G}(G^{\mathrm{reg}},\mathbf{C})\to C^{\infty, W(H:G)}(H^{\mathrm{reg}},\mathbf{C}). \]

Then $Z(\mathfrak g_{\mathbf {C}})$ acts on $C^{\infty, G}(G^{\mathrm {reg}},\mathbf {C})$, and $I{{}^{\cdot }}(\mathfrak h_{\mathbf {C}}, \mathfrak g_{\mathbf {C}})$ acts on $C^{\infty, W(H:G)}(H^{\mathrm {reg}},\mathbf {C})$.

Let $L\in Z(\mathfrak g_{\mathbf {C}} )$. Using [Reference Harish-ChandraHar65, Lemma 13], [Reference KnappKna86, Theorem 10.33], if $f\in C^{\infty, G}(G^{\mathrm {reg}},\mathbf {C})$, on $H^{\mathrm {reg}}$, we have the identity

(6.9)\begin{equation} rLf=\frac{1}{D_{H}}(\phi_{\mathrm{HC}} L)D_{H}rf. \end{equation}

6.3 The real form of the Harish-Chandra isomorphism

The involution $h\to -h$ induces an involution of $I{{}^{\cdot }}(\mathfrak h_{\mathbf {C}},\mathfrak g_{\mathbf {C}}) \simeq D^{\cdot}_{I}(\mathfrak h_{\mathbf {C}}, \mathfrak g_{\mathbf {C}})$. If $N$ counts the degree in $I{{}^{\cdot }}(\mathfrak h_{\mathbf {C}}, \mathfrak g_{\mathbf {C}})$, this involution is just $(-1)^{N}$. We still denote this involution by $*$.

In Proposition 3.21, we proved that $I{{}^{\cdot }}(\mathfrak h_{\mathbf {C}}, \mathfrak g_{\mathbf {C}})$ is preserved by complex conjugation. At the end of § 6.1, we proved that $Z(\mathfrak g_{\mathbf {C}})$ is also preserved by complex conjugation. Observe that $\theta$ acts on $Z(\mathfrak g_{\mathbf {C}})$ and $I{{}^{\cdot }}(\mathfrak h_{\mathbf {C}}, \mathfrak g_{\mathbf {C}})$ and preserves $Z(\mathfrak g)$ and $I{{}^{\cdot }}(\mathfrak h,\mathfrak g)$.

Theorem 6.1 If $L\in Z(\mathfrak g_{\mathbf {C} })$, then

(6.10)\begin{equation} \phi_{\mathrm{HC}} ( L^{*} ) =(\phi_{\mathrm{HC}} L)^{*}, \quad \phi_{\mathrm{HC}} ( \overline{L} ) =\overline{\phi_{\mathrm{HC}}( L )},\quad \phi_{\mathrm{HC}}\theta L=\theta\phi_{\mathrm{HC}}L. \end{equation}

On $Z(\mathfrak g_{\mathbf {C}})$, the involutions $\sigma$ and $*$ coincide. Finally, $\phi _{\mathrm {HC}}$ induces an isomorphism of real filtered algebras:

(6.11)\begin{equation} Z(\mathfrak g) \simeq I{{}^{\cdot}}(\mathfrak h, \mathfrak g). \end{equation}

Proof. The first equation in (6.10) was established by Harish-Chandra [Reference Harish-ChandraHar56, Lemma 20]. For the proof of the next two equations, we follow Harish-Chandra, and use the notation in § 6.2.

Observe that $\overline {R}_{+}$ is also a positive root system. More precisely, by (3.35), we obtain

(6.12)\begin{equation} \overline{R}_{+}=\overline{R}^{\mathrm{im}}_{+}\cup \overline{R}^{\mathrm{re}}_{+}\cup \overline{R}^{\mathrm{c}}_{+}. \end{equation}

From the properties of $R_{+}$, (6.12) can be rewritten in the form

(6.13)\begin{equation} \overline{R}_{+}=( -R^{\mathrm{im}}_{+}) \cup R^{\mathrm{re}}_{+}\cup R_{+}^{\mathrm{c}}. \end{equation}

Let $\overline {\mathscr P}$ denote the conjugate of $\mathscr P$ in $U(\mathfrak g_{\mathbf {C}})$. By (3.8), $\overline {\mathscr P}$ is just the object defined in (6.5) associated with $\overline {R}_{+}$. We deduce that if $L\in Z(\mathfrak g_{\mathbf {C}})$, we have the identity in $S{{}^{\cdot }}(\mathfrak h_{\mathbf {C}})$,

(6.14)\begin{equation} \phi_{1,\overline{R}_{+}}\overline{L}=\overline{\phi_{1,R_{+}}L}. \end{equation}

In addition, $\overline {\rho ^{\mathfrak g}}\in \mathfrak h_{\mathbf {C}}^{*}$ is the half sum of the roots in $\overline {R}_{+}$. By (6.13), if $f\in S{{}^{\cdot }}(\mathfrak h_{\mathbf {C}})$, then

(6.15)\begin{equation} \phi_{2,\overline{R}_{+}}\overline{f}=\overline{\phi_{2,R_{+}}f}. \end{equation}

By (6.14) and (6.15), we obtain the identity in $S{{}^{\cdot }}(\mathfrak h_{\mathbf {C}})$,

(6.16)\begin{equation} \phi_{2,\overline{R}_{+}}\phi_{1,\overline{R}_{+}}\overline{L}=\overline{\phi_{2,R_{+}} \phi_{1,R_{+}}L}. \end{equation}

Let us now use Harish-Chandra's result described after (6.7). For $L\in Z(\mathfrak g_{\mathbf {C}})$, we can rewrite (6.16) as an identity in $S{{}^{\cdot }}(\mathfrak h_{\mathbf {C}})$,

(6.17)\begin{equation} \phi_{\mathrm{HC}}\overline{L}=\overline{\phi_{\mathrm{HC}}L}. \end{equation}

Harish-Chandra gives more, namely that the image of $\phi _{\mathrm {HC}}$ is exactly $I{{}^{\cdot }}(\mathfrak h_{\mathbf {C}}, \mathfrak g_{\mathbf {C}})$. By (6.17), $I{{}^{\cdot }}(\mathfrak h_{\mathbf {C}}, \mathfrak g_{\mathbf {C}})$ is preserved by complex conjugation, which we already knew by Proposition 3.21, and we also obtain the second equation in (6.10) and (6.11).

In addition, $\theta R_{+}=-\overline {R}_{+}$ is a positive root system, and the corresponding half-sum of roots is given by $\theta \rho ^{\mathfrak g}$. As in (6.14), if $L\in Z(\mathfrak g_{\mathbf {C}})$, then

(6.18)\begin{equation} \phi_{1,\theta R_{+}}\theta L=\theta\phi_{1,R_{+}}L. \end{equation}

If $f\in S{{}^{\cdot }}(\mathfrak h_{\mathbf {C}})$, then

(6.19)\begin{equation} \phi_{2,\theta R_{+}}\theta f=\theta \phi_{2,R_{+}}f. \end{equation}

By (6.18) and (6.19), we conclude that

(6.20)\begin{equation} \phi_{2,\theta R_{+}}\phi_{1,\theta R_{+}}\theta L=\theta\phi_{2,R_{+}}\phi_{1,R_{+}}L. \end{equation}

Using again the result of Harish-Chandra, from (6.20), we obtain the third equation in (6.10).

If $f,h\in C^{\infty,c}(G,\mathbf {R})$, the convolution $f*h\in C^{\infty,c}(G,\mathbf {R})$ is defined by the formula,

(6.21)\begin{equation} f*h(g)=\int_{G}f(g^{-1}g')h(g') \, dg'. \end{equation}

If $A\in D_{R}(G),B\in D_{L}(G)$, we obtain easily

(6.22)\begin{equation} f*Ah=A(f*h), \quad f*Bh=( B^{*}f ) *h,\quad B(f*h)=( (\sigma B)f ) *h. \end{equation}

By (6.2) and (6.22), we conclude that if $L\in Z(\mathfrak g_{\mathbf {C}})$, then

(6.23)\begin{equation} ( L^{*}f ) *h=( (\sigma L)f ) *h. \end{equation}

from which we obtain

(6.24)\begin{equation} L^{*}f=\sigma Lf. \end{equation}

This completes the proof of our theorem.

6.4 The Duflo and the Harish-Chandra isomorphisms

Here, $S{{}^{\cdot }}[[\mathfrak g^{*}]]$ denotes the algebra of formal power series $\alpha =\sum _{i=0}^{+ \infty }\alpha _{i}$, $\alpha _{i}\in S^{i} [\mathfrak g^{*}]$. Then $\mathfrak g$ still acts on $S{{}^{\cdot }}[[\mathfrak g^{*}]]$ as an algebra of derivations. Let $I{{}^{\cdot }}[[\mathfrak g^{*}]]$ be the subalgebra of invariant elements in $S{{}^{\cdot }}[[\mathfrak g^{*}]]$.

As in § 3.1, $S{{}^{\cdot }}[[\mathfrak g^{*}]]$ can be identified with the algebra $D{{}^{\cdot }}[[\mathfrak g^{*}]]$ of formal real partial differential operators with constant coefficients on $\mathfrak g^{*}$, and $I{{}^{\cdot }}[[\mathfrak g^{*}]]$ with the algebra of formal real invariant differential operators with constant coefficients $D^{\cdot}_{I}[[\mathfrak g^{*}]]$, which acts on $S{{}^{\cdot }}(\mathfrak g)$.

We still use the conventions in (2.63). Then $\widehat {A}^{-1}(\mathrm {ad}(\cdot ))\in I{{}^{\cdot }}[[\mathfrak g^{*}]]$. In the following, we view $\widehat {A}^{-1}(\mathrm {ad}(\cdot ))$ as an element of $D^{\cdot}_{I}[[\mathfrak g^{*}]]$.

Let $\tau _{\mathrm {PBW}}$ be the Poincaré–Birkhoff–Witt isomorphism of filtered vector spaces $S{{}^{\cdot }}(\mathfrak g) \simeq U(\mathfrak g)$. Then $\tau _{\mathrm {PBW}}$ induces an identification of filtered vector spaces $I{{}^{\cdot }}(\mathfrak g) \simeq Z(\mathfrak g)$.

Definition 6.2 Put

(6.25)\begin{equation} \tau_{\mathrm{D}}=\tau_{\mathrm{PBW}} \widehat{A}^{-1}(\mathrm{ad}(\cdot)): S{{}^{\cdot}}(\mathfrak{g})\to U(\mathfrak{g}). \end{equation}

Then $\tau _{\mathrm {D}}$ is an isomorphism of filtered vector spaces, which commutes with $\theta$.

A result by Duflo [Reference DufloDuf70, Théorème V.2] asserts that when restricted to $I{{}^{\cdot }}(\mathfrak g)$, $\tau _{\mathrm {D}}$ induces an isomorphism of filtered algebras,

(6.26)\begin{equation} I{{}^{\cdot}}(\mathfrak{g})\simeq Z(\mathfrak{g}). \end{equation}

By [Reference DufloDuf70, Lemme V.1], we have the following commutative diagram.

(6.27)

By Theorem 6.1 and by (

6.27

), we obtain the commutative diagram

(6.28)

and the morphisms in (

6.28

) commute with $\theta$.

6.5 The case of the Casimir

Note that $B^{*}\vert _{\mathfrak h}\in I^{2}(\mathfrak h, \mathfrak g)$ corresponds to the Laplacian $\Delta ^{\mathfrak h}$ on $\mathfrak h$ associated with $B\vert _{ \mathfrak h}$. The following result of Harish-Chandra is established in [Reference KnappKna02, Example 5.64] as a consequence of the constructions in § 6.2.

Proposition 6.3 We have the identity

(6.29)\begin{equation} \phi_{\mathrm{HC}} C^{\mathfrak g}=-\Delta^{\mathfrak h}+B^{*}(\rho^{\mathfrak g},\rho^{\mathfrak g}). \end{equation}

Proposition 6.4 The following identity holds:

(6.30)\begin{equation} \tau_{\mathrm{D}}^{-1}C^{\mathfrak g}=-B^{*}+B^{*}(\rho^{\mathfrak g}, \rho^{\mathfrak g}). \end{equation}

Proof. Clearly,

(6.31)\begin{equation} \widehat{A}^{-1}(x)=1+\tfrac{1}{24}x^{2}+\cdots \end{equation}

In addition, $B^{*}\in I^{2}(\mathfrak g)$. Let $e_{1}\ldots,e_{m+n}$ be a basis of $\mathfrak g$, and let $e^{*}_{1},\ldots,e^{*}_{m+n}$ be the basis of $\mathfrak g$ which is dual with respect to $B$. By (6.31), we obtain

(6.32)\begin{equation} \widehat{A}^{-1}(\mathrm{ad}(\cdot))B^{*}=B^{*}+\tfrac{1}{24}\mathrm{Tr}^{\mathfrak g } [\mathrm{ad}(e_{i}) \mathrm{ad}(e_{j})]B^{*}(e_{i}^{*},e_{j}^{*}). \end{equation}

Equation (6.32) can be written in the form

(6.33)\begin{equation} \widehat{A}^{-1}(\mathrm{ad}(\cdot))B^{*}=B^{*}-\tfrac{1}{24}\mathrm{Tr}^{\mathfrak g} [C^{\mathfrak g, \mathfrak g}]. \end{equation}

By (2.46), we can rewrite (6.33) in the form

(6.34)\begin{equation} \widehat{A}^{-1}(\mathrm{ad}(\cdot))B^{*}=B^{*}+B^{*}(\rho^{\mathfrak g},\rho^{\mathfrak g}). \end{equation}

By (6.25) and (6.34), we obtain

(6.35)\begin{equation} \tau_{\mathrm{D}}B^{*}=-C^{\mathfrak g}+B^{*}(\rho^{\mathfrak g},\rho^{\mathfrak g}), \end{equation}

which is equivalent to (6.30). The proof of our proposition is complete.

Remark 6.5 Using (6.28), Propositions 6.3 and 6.4 can be derived from each other.

6.6 The action of $Z(\mathfrak g)$ on $C^{\infty }(X,F)$

We take the Hermitian finite-dimensional vector space $E$ as in § 2.4. Note that $G$ acts on the left on $C^{\infty }(G,E)$ as in (6.1), and that there is a corresponding action of $D_{R}(G)$. Also $K$ acts on $C^{\infty }(G,E)$ by the formula

(6.36)\begin{equation} k_{R}s(g)=\rho^{E}(k)s(gk), \end{equation}

and this action of $K$ commutes with the left action of $G$. Moreover, we have the identity

(6.37)\begin{equation} C^{\infty }(X,F)=[C^{\infty }(G,E) ]^{K}. \end{equation}

Then $D_{R}(G)$ commutes with the action of $K$ on $C^{\infty }(G,E)$. As a subalgebra of $D_{R}(G)$, $Z(\mathfrak g)$ also acts on $C^{\infty }(G,E)$, and its action commutes with the left action of $G$ and with the right action of $K$. The action of $D_{R}(G)$ descends to $C^{\infty } (X,F)$, so that the action of $Z(\mathfrak g)$ descends to $C^{\infty }(X,F)$ and commutes with the left action of $G$.

6.7 The semisimple orbital integrals involving $Z(\mathfrak g)$

Let $\mathscr S$ be the algebra of differential operators acting on $C^{\infty }(X,F)$ with uniformly bounded coefficients together with their derivatives of any order.Footnote 12

Definition 6.6 Let $C^{\infty,b}(X,F)$ be the vector space of smooth sections of $F$ on $X$ which are bounded together with their covariant derivatives of any order.

Let $\mathcal {Q}$ be the space of smooth kernels $Q(x,x')\vert _{x,x'\in X}$ acting on $C^{\infty,b}(X,F)$ and commuting with the left action of $G$ such that there exists $C>0$, and for any $S,S'\in \mathscr S$, there exists $C_{S,S'}>0$ for which

(6.38)\begin{equation} \vert SQS'(x,x')\vert\le C_{S,S'}\exp(-Cd^{2}(x,x')). \end{equation}

The same arguments as in [Reference BismutBis11, Proposition 4.1.2] shows that the vector space $\mathcal {Q}$ is an algebra with respect to the composition of operators.

In particular, $D_{R}(G)$ commutes with $Q$, and so $Z(\mathfrak g)$ commutes with $Q$.

Proposition 6.7 If $L\in Z(\mathfrak g)$ and $Q\in \mathcal {Q}$, then $LQ\in \mathcal {Q}$.

Proof. As $L\in Z(\mathfrak g)$, $L$ commutes with the left action of $G$, and so $LQ$ commutes with this action of $G$. We fix $x_{0}=p1\in G$. As $LQ$ commutes with $G$, and $G$ acts isometrically on $X$, to establish (6.38) for $LQ$, we may as well take $x=x_{0}$. If $U\in \mathfrak g$, and if $U^{X}$ is the corresponding vector field on $X$, because $U^{X}$ is a Jacobi field along the geodesics in $X$, there exist $C>0$ and $c>0$ such that

(6.39)\begin{equation} \vert U^{X}(x)\vert\le C\exp(cd(x_{0},x)). \end{equation}

The above estimate is also valid for the corresponding covariant derivatives. From (6.38), we obtain the estimate (6.38) for $LQ$ when $x=x_{0}$. The proof of our proposition is complete.

Let $\gamma \in G$ be semisimple. By (2.58) and (6.38), we have the analogue of (2.59), i.e. if $f\in \mathfrak p^{\perp }(\gamma )$, then

(6.40)\begin{equation} \vert Q(\gamma^{-1}e^{f}x_{0},e^{f}x_{0} )\vert\le C_{\gamma}\exp(-c_{\gamma}\vert f\vert^{2}). \end{equation}

In [Reference BismutBis11, Definition 4.2.2], if $\gamma \in G$ is semisimple, if $Q\in \mathcal {Q}$, the orbital integral $\mathrm {Tr}^{[\gamma ]} [Q]$ is defined by a formula similar to (2.60), i.e.

(6.41)\begin{equation} \mathrm{Tr}^{[\gamma]}[Q]= \int_{\mathfrak p^{\perp}(\gamma)}\mathrm{Tr}[\gamma_{*} Q(\gamma^{-1}e^{f}x_{0}, e^{f}x_{0}) ]r(f) \, df. \end{equation}

The estimates (2.57) and (6.40) guarantee that the integral in (6.41) is well-defined.

By Proposition 6.7, if $L\in Z(\mathfrak g)$, $LQ\in \mathcal {Q}$, and so $\mathrm {Tr}^{[\gamma ]}[LQ]$ is also well-defined.

7. The center of $U(\mathfrak g)$ and the regular orbital integrals

The purpose of this section is to evaluate the orbital integrals for kernels of the form $L\mu (\sqrt {C^{\mathfrak g,X}+A}\,)$ associated with regular elements in $G$, when $L\in Z(\mathfrak g)$. To establish our formula, we use the main result of [Reference BismutBis11] described in Theorem 2.9, the smoothness properties of the function $\mathcal {J}_{\gamma }(h_{\mathfrak k})$ that were obtained in § 5, and the Harish-Chandra isomorphism in the form given in (6.9).

This section is organized as follows. In § 7.1, we recall the classical result of Harish-Chandra [Reference Harish-ChandraHar57b, Theorem 3], [Reference Harish-ChandraHar66, § 18] that expresses certain orbital integrals on $H^{\mathrm {reg}}$ via the action of $Z(\mathfrak g)$ on the orbital integral as a function of $\gamma$. In § 7.2, using Theorem 2.9, we obtain our formula.

7.1 The algebra $Z(\mathfrak g)$ and the regular orbital integrals

Let $L\in Z(\mathfrak g)$ and $Q\in \mathcal {Q}$, then by Proposition 6.7, $LQ\in \mathcal {Q}$. If $f\in C^{\infty }(G^{\mathrm {reg}}, \mathbf {C})$, $Lf$ is a smooth function on $G^{\mathrm {reg}}$. For greater clarity, this function is instead denoted by $L_{\gamma }f$.

Now we give another proof of a result of Harish-Chandra (see [Reference Harish-ChandraHar57b, Theorem 3], [Reference Harish-ChandraHar66, § 18], and [Reference KnappKna86, Proposition 11.9]).

Proposition 7.1 If $Q\in \mathcal {Q}$, the map $\gamma \in G^{\mathrm {reg}}\to \mathrm {Tr}^{[\gamma ]}[Q]$ is smooth. If $L\in Z(\mathfrak g)$, we have the identity of smooth functions on $G^{\mathrm {reg}}$:

(7.1)\begin{equation} \mathrm{Tr}^{[\gamma]}[LQ]=(\sigma L)_{\gamma}\mathrm{Tr}^{[\gamma]}[Q]. \end{equation}

Proof. The map $(\gamma,g)\in H^{\mathrm {reg}}\times G/H\to g^{-1}\gamma g\in G^{\mathrm {reg}}$ is locally a diffeomorphism. As $\mathrm {Tr}^{[\gamma ]}[Q]$ is invariant by conjugation, to obtain the required smoothness, it is enough to prove that $\gamma \in H^{\mathrm {reg}}\to \mathrm {Tr}^{[\gamma ]}[Q]\in \mathbf {C}$ is smooth.

Put

(7.2)\begin{equation} K^{0}(H)=H^{0}\cap K. \end{equation}

As we saw in § 2.2, $K^{0}(H)$ is a maximal compact subgroup of $H^{0}$.

Using the notation in § 5.1, if $\gamma \in H^{\mathrm {reg}}$, and if $\gamma '\in H$ is close to $\gamma$, then $\gamma '\in H^{\mathrm {reg}}$ and (5.7) holds. Using (2.31) in Theorem 2.2, we deduce that

(7.3)\begin{equation} X(\gamma')=H^{0}/K^{0}(H). \end{equation}

In particular, $X(\gamma ')$ does not depend on $\gamma '$, and $\mathfrak p^{\perp }(\gamma ')= \mathfrak h_{\mathfrak p}^{\perp }$. By (6.41), we obtain

(7.4)\begin{equation} \mathrm{Tr}^{[\gamma']}[Q]=\int_{\mathfrak h_{\mathfrak p}^{\perp}}\mathrm{Tr}[\gamma'_{*}Q(\gamma^{\prime-1}e^{f}x_{0},e^{f}x_{0} ) ]r(f)\,df. \end{equation}

For $\gamma '\in H$ close enough to $\gamma \in H$, it is elementary to make the estimate in [Reference BismutBis11, Theorem 3.4.1], which was explained in (2.58), uniform, so that there exists $C>0$ such that if $\gamma '\in H^{\mathrm {reg}}$ is close enough to $\gamma$, if $f\in \mathfrak h_{\mathfrak p}^{\perp },\vert f\vert \ge 1$,

(7.5)\begin{equation} d_{\gamma'}(e^{f}x_{0})\ge C\vert f\vert. \end{equation}

By combining (6.38) with $S=1,S'=1$ and (7.5), for $\gamma '\in H$ close enough to $\gamma$, there exist $C>0$ and $c>0$ such that if $f\in \mathfrak h^{\perp }_{\mathfrak p}$, $\vert f\vert \ge 1$, we obtain

(7.6)\begin{equation} \vert \gamma_{*}Q(\gamma^{-1}e^{f}x_{0},e^{f}x_{0})\vert\le C\exp(-c \vert f\vert^{2}). \end{equation}

Using dominated convergence, by (2.57) and (7.6), we deduce that $\mathrm {Tr}^{[\gamma ]}[Q]$ is a continuous function of $\gamma \in H^{\mathrm {reg}}$.

Let us now prove the above function is smooth on $H^{\mathrm {reg}}$. The argument is essentially the same as before, by combining the estimates in (6.38) with $S$ arbitrary, together with uniform estimates given in (6.39).

Equation (7.1) just reflects the fact that $\sigma L$ is the image of $L$ by the map $g\to g^{-1}$.

7.2 A geometric formula for the regular orbital integrals

In the following, we take the function $\mu \in \mathcal {S}^{\mathrm {even}}(\mathbf {R})$ as in § 2.5. Let $A\in \mathbf {R},L\in Z(\mathfrak g)$.

Put

(7.7)\begin{equation} \mathfrak h_{i}= \mathfrak h_{\mathfrak p} \oplus i \mathfrak h_{\mathfrak k}. \end{equation}

Recall that $\phi _{\mathrm {HC}}L\in D_{I}^{{{}^{\cdot }}}(\mathfrak h)$. This differential operator acts on smooth functions on $\mathfrak h$, but as explained in § 3.1, it also acts on smooth functions on $\mathfrak h_{i}$.

In the next statement, the smooth kernel $( \phi _{\mathrm {HC}} L ) \mu (\sqrt {\phi _{\mathrm {HC}} C^{\mathfrak g}+A}\,)$ on $\mathfrak h_{i}$ acts on the distribution

\[ \mathcal{J}_{\gamma}(h_{\mathfrak k})\mathrm{Tr}^{E}[\rho^{E}(k^{-1}e^{-h_{\mathfrak k}})]\delta_{a}. \]

Theorem 7.2 The following identity holds on $H^{\mathrm {reg}}$:

(7.8)\begin{align} &\mathrm{Tr}{}^{[\gamma]}[L\mu(\sqrt{C^{\mathfrak g,X}+A}\,)] =( \phi_{\mathrm{HC}} L ) \mu(\sqrt{\phi_{\mathrm{HC}} C^{\mathfrak g}+A}\,) [\mathcal{J}_{\gamma}(h_{\mathfrak k})\mathrm{Tr}^{E} [\rho^{E}(k^{-1}e^{-h_{\mathfrak k}})]\delta_{a}](0). \end{align}

Proof. If $\gamma \in H^{\mathrm {reg}}$, then $\mathfrak z(\gamma )= \mathfrak h$, and $\mathfrak k(\gamma )=\mathfrak h_{\mathfrak k}$. When $L=1$, our theorem is just Theorem 2.9 combined with Proposition 6.3. When $L\in Z(\mathfrak g)$ is arbitrary, we use (6.9) and Proposition 7.1. Here $\phi _{\mathrm {HC}} \sigma L$ is a differential operator on $\mathfrak h$. We find that on $H^{\mathrm {reg}}$,

(7.9)\begin{align} &\mathrm{Tr}{}^{[\gamma]}[L\mu(\sqrt{C^{\mathfrak g,X}+A}\,)] =\frac{1}{D_{H}(\gamma)}(\phi_{\mathrm{HC}} \sigma L)[D_{H}(\gamma)r\mathrm{Tr}{}^{[\gamma]}[ \mu(\sqrt{C^{\mathfrak g,X}+A}\,)]]. \end{align}

By Theorem 6.1, we obtain

(7.10)\begin{equation} \phi_{\mathrm{HC}}\sigma L=( \phi_{\mathrm{HC}} L ) ^{*}. \end{equation}

We combine Theorem 2.9 and (6.29), (7.9), and (7.10). We obtain

(7.11)\begin{align} \mathrm{Tr}{}^{[\gamma]}[L\mu(\sqrt{C^{\mathfrak g,X}+A}\,)] &=\frac{1}{D_{H}(\gamma)}(\phi_{\mathrm{HC}} L)^{*}\nonumber\\ &\quad \times [D_{H}(\gamma)r\mu (\sqrt{\phi_{\mathrm{HC}} C^{\mathfrak g}+A}\,) [\mathcal{J}_{\gamma}(h_{\mathfrak k})\mathrm{Tr}^{E} [\rho^{E} ( k^{-1}e^{-h_{\mathfrak k}})]\delta_{a}](0) ]. \end{align}

For greater clarity, we fix $\gamma \in H^{\mathrm {reg}}$, and for $b\in \mathfrak h$ with $\vert b\vert$ small enough, we take $\gamma '=\gamma e^{b}$ as in (5.2), so that the differential operator $( \phi _{\mathrm {HC}} L )^{*}$ acts on the variable $b\in \mathfrak h$. This action is now denoted by $(\phi _{\mathrm {HC}} L)^{*}_{b}$. In addition, we use the notation of § 5.1.

By (5.3) and (5.20) in Theorem 5.4, we obtain

(7.12)\begin{align} D_{H}(\gamma')\mathcal{J}_{\gamma'}(h_{\mathfrak k}) &=(-1)^{\vert R^{\mathrm{im}}_{ \mathfrak p,+}\vert}\epsilon_{D}(\gamma')\prod_{\alpha\in R_{+}^{\mathrm{re}}} \xi_{\alpha}^{1/2}(k^{-1}e^{b_{\mathfrak k}})\nonumber\\ &\quad \times \frac{\prod_{\alpha\in R_{ \mathfrak k,+}^{\mathrm{im}}}( \xi_{\alpha}^{1/2}(k^{-1}e^{b_{\mathfrak k}-h_{\mathfrak k}})-\xi_{\alpha}^{-1/2}(k^{-1}e^{b_{\mathfrak k}-h_{\mathfrak k}}) ) }{ \prod_{\alpha\in R_{\mathfrak p,+}^{\mathrm{im}}}(\xi_{\alpha}^{1/2}(k^{-1}e^{b_{\mathfrak k}- h_{\mathfrak k}})-\xi^{-1/2}_{\alpha}(k^{-1}e^{b_{\mathfrak k}-h_{\mathfrak k}}) )}. \end{align}

By the same argument as in (5.21) and (5.22), if $\alpha \in R^{\mathrm {re}}_{+}$, we can choose $\xi _{\alpha }^{1/2}(k^{-1}e^{b_{\mathfrak k}})$ so that for $\vert b_{\mathfrak k}\vert$ small enough,

(7.13)\begin{equation} \xi_{\alpha}^{1/2}(k^{ -1}e^{b_{\mathfrak k}})=\xi_{\alpha}^{1/2}(k^{-1}), \end{equation}

i.e. (7.13) does not depend on $b$. Similarly, $\epsilon _{D}(\gamma ')$ is locally constant on $H^{\mathrm {reg}}$. Therefore, the product of these terms in the right-hand side of (7.12) is unaffected by the action of $(\phi _{\mathrm {HC}} L)^{*}_{b}$ in the right-hand side of (7.11).

In addition, we have the identity

(7.14)\begin{equation} \mathrm{Tr}^{E}[\rho^{E}(k^{ \prime -1}e^{-h_{\mathfrak k}})] =\mathrm{Tr}^{E}[\rho^{E}(k^{-1}e^{b_{\mathfrak k}-h_{\mathfrak k}})]. \end{equation}

The right-hand sides of (7.12) and (7.14) depend on $b_{\mathfrak k}-h_{\mathfrak k}$. When only considering the action of $( \phi _{\mathrm {HC}} L )^{*}_{b}$ in the variable $b_{\mathfrak k}$, this action can instead be transferred to the variable $h_{\mathfrak k}$ with a correcting sign. This argument still does not take into account the fact that $(\phi _{\mathrm {HC}} L)^{*}_{b}$ also acts in the variable $b_{\mathfrak p}$. However, differentiating a smooth kernel at the terminal point is equivalent to compose the smooth kernel with the same change of signs as before. By combining (7.11)–(7.14), this ultimately explains the disappearance of $*$, and leads to (7.8). The proof of our theorem is complete.

8. The function $\mathcal {J}_{\gamma }$ and the limit of regular orbital integrals

In this section, we verify the compatibility of our formula for regular orbital integrals of Theorem 7.2 with the limit theorems obtained by Harish-Chandra for such orbital integrals. Key properties of the function $\mathcal {J}_{\gamma }$ play a key role in the proofs.

This section is organized as follows. In § 8.1, given $\gamma \in H$ not necessarily regular, we study the function $\mathcal {J}_{\gamma '}(h_{\mathfrak k})$ for $\gamma '\in H^{\mathrm {reg}}$ close to $\gamma$. In § 8.2, if $L\in Z(\mathfrak g)$, we define the proper image $L^{\mathfrak z(\gamma )}\in D^{\cdot}_{I}(\mathfrak z(\gamma ))$. In § 8.3, using a formula by Rossmann, we express a smooth kernel involving $\Delta ^{\mathfrak h}$ as the restriction of another kernel for $\mathfrak z(\gamma )$. Finally, in § 8.4, we compute the limit of orbit integrals as $\gamma '\in H^{\mathrm {reg}}$ converges to $\gamma \in H$.

8.1 The function $\mathcal {J}_{\gamma }$ when $\gamma$ is not regular

Let $\gamma \in G$ be a semisimple element as in (2.19). Then $Z^{0}(\gamma ) \subset G$ is a reductive Lie group. Let $\mathfrak h \subset \mathfrak z(\gamma )$ be a $\theta$-stable Cartan subalgebra of $\mathfrak z(\gamma )$. As we saw in Proposition 3.17, $\mathfrak h$ is also a Cartan subalgebra of $\mathfrak g$. Let $H \subset G$ be the corresponding Cartan subgroup. Recall that the function $\pi ^{\mathfrak h, \mathfrak z(\gamma )}$ on $\mathfrak h_{\mathbf {C}}$ was introduced in (5.11).

Definition 8.1 An element $h_{\mathfrak k}\in i \mathfrak h_{\mathfrak k}$ is said to be $\gamma \, \mathrm {im}$-regular if for $\alpha \in R^{\mathrm {im}}(k)$, $\langle \alpha,h_{\mathfrak k}\rangle \neq 0$.

The vanishing locus of an imaginary root being a hyperplane in $i \mathfrak h_{\mathfrak k}$, the set of $\gamma \, \mathrm {im}$-regular elements has full Lebesgue measure.

We use the conventions of § 4, where we explained, in particular, how to choose the $\xi _{\alpha }^{1/2}(\gamma )\vert _{\alpha \in R_{+}}$. We extend the definition of $D_{H}(\gamma )$ for $\gamma \in H^{\mathrm {reg}}$ in Definition 5.3 to general elements $\gamma \in H$ by the formula

(8.1)\begin{equation} D_{H}(\gamma)=\prod_{\alpha\in R_{+}{\setminus} R_{+}(\gamma)}(\xi_{\alpha}^{1/2}(\gamma)-\xi_{\alpha}^{-1/2}(\gamma)). \end{equation}

By Theorem 3.18, if $\alpha \in R^{\mathrm {re}}_{+}(\gamma )\cup R_{+}^{\mathrm {im}}(k)$, then $\xi _{\alpha }(k^{-1})=1$, and $\xi _{\alpha }^{1/2}(k^{-1})=\xi _{\alpha }^{-1/2}(k^{-1})=\pm 1$, so that $\prod _{\alpha \in R^{\mathrm {re}}_{+}(\gamma )\cup R^{\mathrm {im}}_{+}(k)}\xi ^{1/2}_{\alpha }(k^{-1})$ is equal to $\pm 1$.

If $\mathfrak h$ is a $\theta$-stable fundamental Cartan subalgebra of $\mathfrak z(\gamma )$, we use the notation introduced in § 3.6, except that $\mathfrak g$ is now replaced by $\mathfrak z(\gamma )$, and the pair $(\mathfrak h_{\mathfrak k}, \mathfrak k)$ is replaced by the pair $( \mathfrak h_{\mathfrak k},\mathfrak k(\gamma ) )$. Let $R(\mathfrak h_{\mathfrak k}, \mathfrak k(\gamma ))$ denote the associated root system. Let $R_{+}(\mathfrak h_{\mathfrak k}, \mathfrak k(\gamma ))$ denote a positive root system. As in (3.46), if $h_{\mathfrak k}\in \mathfrak h_{\mathfrak k}$, set

(8.2)\begin{equation} \pi^{\mathfrak h_{\mathfrak k}, \mathfrak k(\gamma)}(h_{\mathfrak k})=\prod_{\beta\in R_{+}(\mathfrak h_{\mathfrak k}, \mathfrak k(\gamma))} \langle \beta,h_{\mathfrak k}\rangle. \end{equation}

By (3.50), we obtain

(8.3)\begin{equation} [\pi^{h_{\mathfrak k}, \mathfrak k(\gamma)}(h_{\mathfrak k})]^{2} =(-1)^{({1}/{2})\vert R^{\mathrm{c}}_{+}(\gamma)\vert} \biggl[\prod_{\alpha\in R^{\mathrm{im}}_{\mathfrak k,+}(k)} \langle \alpha,h_{\mathfrak k}\rangle\biggr]^{2} \prod_{\alpha\in R^{\mathrm{c}}_{+}(\gamma)}\langle \alpha,h_{\mathfrak k}\rangle. \end{equation}

We no longer assume $\mathfrak h$ to be fundamental in $\mathfrak z(\gamma )$.

In the following, we use the notation of § 5.1. In particular $\gamma \in H$ is fixed, and for $b\in \mathfrak h$, $\gamma '=\gamma e^{b}$. In particular, (5.3) and (5.4) hold.

We establish the following important result.

Theorem 8.2 For $\epsilon >0$ small enough, there exist $c>0,C>0$ such that for $b\in \mathfrak h$ $\gamma$-regular with $\vert b\vert \le \epsilon$, $h_{\mathfrak k}\in i \mathfrak h_{\mathfrak k}$, then

(8.4)\begin{equation} \vert \pi^{\mathfrak h, \mathfrak z(\gamma)}(b_{\mathfrak p} +h_{\mathfrak k})D_{H}(\gamma')\mathcal{J}_{\gamma'}( h_{\mathfrak k})\vert \le C\exp(c\vert h_{\mathfrak k}\vert). \end{equation}

If $h_{\mathfrak k}\in i \mathfrak h_{\mathfrak k}$ is not $\gamma \, \mathrm {im}$-regular, the left-hand side of (8.4) vanishes.

If $\mathfrak h$ is not the fundamental Cartan subalgebra of $\mathfrak z(\gamma )$, for $h_{\mathfrak k}\in i \mathfrak h_{\mathfrak k}$, as $b\in \mathfrak h$ $\gamma$-regular tends to 0,

(8.5)\begin{equation} \pi^{\mathfrak h,\mathfrak z(\gamma)}(b_{\mathfrak p}+ h_{\mathfrak k})D_{H}(\gamma')\mathcal{J}_{\gamma'}(h_{\mathfrak k})\to 0. \end{equation}

If $\mathfrak h$ is the fundamental Cartan subalgebra of $\mathfrak z(\gamma )$, if $h_{\mathfrak k}\in i \mathfrak h_{\mathfrak k}$ is $\gamma \,\mathrm {im}$-regular, as $b\in \mathfrak h$ $\gamma$-regular tends to 0,

(8.6)\begin{align} &\pi^{\mathfrak h,\mathfrak z(\gamma)}(b_{\mathfrak p}+ h_{\mathfrak k})D_{H}(\gamma')\mathcal{J}_{\gamma'}(h_{\mathfrak k})\nonumber\\ &\quad \to (-1)^{({1}/{2})\vert R^{\mathrm{c}}_{+}(\gamma)\vert+ \vert R_{\mathfrak k,+}^{\mathrm{im}}(k)\vert} [\pi^{\mathfrak h_{\mathfrak k}, \mathfrak k(\gamma)}(h_{\mathfrak k})]^{2} \prod_{\alpha\in R^{\mathrm{im}}_{ +}(k)}\xi_{\alpha}^{1/2}(k^{-1}) D_{H}(\gamma) \mathcal{J}_{\gamma}(h_{\mathfrak k}). \end{align}

Proof. By (5.11), we obtain

(8.7)\begin{equation} \pi^{\mathfrak h, \mathfrak z(\gamma)}(b_{\mathfrak p}+h_{\mathfrak k})=\prod_{\alpha\in R_{+}(\gamma)} \langle \alpha,b_{\mathfrak p}+h_{\mathfrak k}\rangle. \end{equation}

We can rewrite (8.7) in the form

(8.8)\begin{equation} \pi^{\mathfrak h, \mathfrak z(\gamma)}(b_{\mathfrak p}+h_{\mathfrak k})=\prod_{\alpha\in R^{\mathrm{re}}_{+}(\gamma)} \langle \alpha,b_{\mathfrak p}\rangle\prod_{\alpha\in R_{+}^{\mathrm{im}}(k)} \langle \alpha,h_{\mathfrak k}\rangle \prod_{\alpha\in R_{+}^{\mathrm{c}}(\gamma)}\langle \alpha,b_{\mathfrak p}+h_{\mathfrak k}\rangle. \end{equation}

By (8.8), we deduce that if $h_{\mathfrak k}\in i \mathfrak h_{\mathfrak k}$ is not $\gamma \,\mathrm {im}$-regular, (8.8) vanishes.

If $\alpha \in R^{\mathrm {im}}(k)$, then $\xi _{\alpha }(k^{-1})=1$, so that $\xi _{\alpha }^{1/2}(k^{-1})=\pm 1$. As $\alpha \in R(\gamma )$, if $b\in \mathfrak h$ is $\gamma$-regular, then $\langle \alpha,b_{\mathfrak k} \rangle \neq 0$. If $\epsilon >0$ is small enough, if $b\in \mathfrak h$ is $\gamma$-regular, and $\vert b_{\mathfrak k}\vert \le \epsilon$, if $h_{\mathfrak k}\in i \mathfrak h_{\mathfrak k}$, then $1-e^{-\langle \alpha,b_{\mathfrak k}-h_{\mathfrak k}\rangle }\neq 0$, so that the following expression is well-defined:

(8.9)\begin{align} &\prod_{\alpha\in R^{\mathrm{im}}_{\mathfrak p,+}(k)}\frac{ \langle \alpha,h_{\mathfrak k}\rangle}{\xi_{\alpha}^{1/2}(k^{-1}e^{b_{\mathfrak k}-h_{\mathfrak k}})-\xi_{\alpha}^{-1/2}(k^{-1}e^{b_{\mathfrak k}-h_{\mathfrak k}})}\nonumber\\ &\quad =\prod_{\alpha\in R^{\mathrm{im}}_{\mathfrak p,+}(k)}\frac{ \langle \alpha,h_{\mathfrak k}\rangle}{1-e^{-\langle \alpha,b_{\mathfrak k}-h_{\mathfrak k}\rangle}} \xi_{\alpha}^{-1/2}(k^{-1}e^{b_{\mathfrak k}-h_{\mathfrak k}}). \end{align}

Equation (8.9) can be rewritten in the form

(8.10)\begin{align} &\prod_{\alpha\in R^{\mathrm{im}}_{\mathfrak p,+}(k)}\frac{\langle \alpha,h_{\mathfrak k}\rangle}{\xi_{\alpha}^{1/2}(k^{-1}e^{b_{\mathfrak k}-h_{\mathfrak k}})-\xi_{\alpha}^{-1/2}(k^{-1}e^{b_{\mathfrak k}-h_{\mathfrak k}})}\nonumber\\ &\quad =\prod_{\alpha\in R^{\mathrm{im}}_{\mathfrak p,+}(k)} \frac{\langle \alpha,h_{\mathfrak k}\rangle /2}{\sinh( \langle \alpha,b_{\mathfrak k}-h_{\mathfrak k}\rangle/2)} \xi_{\alpha}^{-1/2}(k^{-1}). \end{align}

When $h_{\mathfrak k}$ is $\gamma$ $\mathrm {im}$-regular, we have an identity similar to (8.10),

(8.11)\begin{align} &\prod_{\alpha\in R^{\mathrm{im}}_{\mathfrak k,+}(k)}\frac{\xi_{\alpha}^{1/2}(k^{-1}e^{b_{\mathfrak k}-h_{\mathfrak k}})-\xi_{\alpha}^{-1/2}(k^{-1}e^{b_{\mathfrak k}-h_{\mathfrak k}})}{\langle \alpha,h_{\mathfrak k}\rangle}\nonumber\\ &\quad =\prod_{\alpha\in R^{\mathrm{im}}_{\mathfrak k,+}(k)}\frac{\sinh(\langle \alpha,b_{\mathfrak k}-h_{\mathfrak k}\rangle/2)}{\langle \alpha,h_{\mathfrak k}\rangle/2}\xi_{\alpha}^{1/2}(k^{-1}). \end{align}

If $x\in \mathbf {R}, y\in \mathbf {R}$,

(8.12)\begin{equation} \vert 1-e^{x+iy}\vert\ge \vert 1-e^{x}\vert. \end{equation}

By (8.12), we deduce that

(8.13)\begin{equation} \vert \sinh((x+iy)/2)\vert\ge\vert \sinh(x/2)\vert. \end{equation}

By (8.13), there exists $C>0$ such that if $e^{x+iy}\neq 1$,

(8.14)\begin{equation} \bigg\vert \frac{x}{\sinh((x+iy)/2)}\bigg\vert\le C. \end{equation}

By (8.10) and (8.14), if $h_{\mathfrak k}\in i \mathfrak h_{\mathfrak k}$ is $\gamma$ $\mathrm {im}$-regular, we obtain

(8.15)\begin{equation} \bigg\vert \prod_{\alpha\in R^{\mathrm{im}}_{\mathfrak p,+}(k)} \frac{\langle \alpha,h_{\mathfrak k}\rangle}{\xi_{\alpha}^{1/2} (k^{-1}e^{b_{\mathfrak k}-h_{\mathfrak k}})- \xi_{\alpha}^{-1/2}(k^{-1}e^{b_{\mathfrak k}-h_{\mathfrak k}})}\bigg\vert\le C. \end{equation}

The $\gamma$-regularity of $b$ does not play any role in the above estimate.

If $\alpha \in R_{\mathfrak p,+}^{\mathrm {im}}{\setminus} R_{\mathfrak p,+}^{\mathrm {im}}(k)$, then $\xi _{\alpha }(k^{-1})\neq 1$, so that for $\epsilon >0$ small enough, if $\vert b_{\mathfrak k}\vert \le \epsilon$, the complex numbers $\xi _{\alpha }(k^{-1}e^{b_{\mathfrak k}})$ which have module $1$, stay away from $1$. Given $\eta \in {]}0,\pi [$, there is $C_{\eta }>0$ such that if $x\in \mathbf {R}_{+}^{*}$ and $y\in [\eta,2\pi -\eta ]$, then

(8.16)\begin{equation} \vert xe^{iy/2}-x^{-1}e^{-iy/2}\vert\ge C_{\eta}. \end{equation}

By (8.16), we deduce that for $\epsilon >0$ small enough, if $\vert b_{\mathfrak k}\vert \le \epsilon$, and $h_{\mathfrak k}\in i \mathfrak h_{\mathfrak k}$, then

(8.17)\begin{align} &\prod_{\alpha\in R^{\mathrm{im}}_{\mathfrak p,+}{\setminus} R^{\mathrm{im}}_{\mathfrak p,+}(k)}\frac{1}{\xi_{\alpha}^{1/2}(k^{-1}e^{b_{\mathfrak k}-h_{\mathfrak k}})-\xi_{\alpha}^{-1/2}(k^{-1}e^{b_{\mathfrak k}-h_{\mathfrak k}})}\nonumber\\ &\quad =\prod_{\alpha\in R^{\mathrm{im}}_{\mathfrak p,+}{\setminus} R^{\mathrm{im}}_{\mathfrak p,+}(k)}\frac{\xi_{\alpha}^{-1/2}(k^{-1}e^{b_{\mathfrak k}-h_{\mathfrak k}})} {1-e^{-\langle \alpha,b_{\mathfrak k}-h_{\mathfrak k}\rangle}\xi_{\alpha}^{-1}(k^{-1})} \end{align}

is well-defined and, moreover,

(8.18)\begin{equation} \bigg\vert \prod_{\alpha\in R_{\mathfrak p,+}^{\mathrm{im}} {\setminus} R^{\mathrm{im}}_{\mathfrak p,+}(k)}\frac{1}{\xi_{\alpha}^{1/2} (k^{-1}e^{b_{\mathfrak k}-h_{\mathfrak k}})- \xi_{\alpha}^{-1/2}(k^{-1}e^{b_{\mathfrak k}-h_{\mathfrak k}})}\bigg\vert\le C. \end{equation}

By combining (5.20), (8.8), (8.15), and (8.18), we obtain (8.4), and also the fact that if $h_{\mathfrak k}\in i \mathfrak h_{\mathfrak k}$ is not $\gamma$ $\mathrm {im}$-regular, the left-hand side of (8.4) vanishes.

By Proposition 3.7, $\mathfrak h$ is the fundamental Cartan subalgebra of $\mathfrak z(\gamma )$ if and only if $R^{\mathrm {re}}(\gamma )$ is empty.

If $\mathfrak h$ is not the fundamental Cartan subalgebra of $\mathfrak z(\gamma )$, $R^{\mathrm {re}}_{+}(\gamma )$ is nonempty. Using (5.20), (8.8), and the previous bounds, we obtain (8.5).

From now on, we assume that $\mathfrak h$ is the fundamental Cartan subalgebra of $\mathfrak z(\gamma )$. By (4.10), because $R^{\mathrm {re}}_{+}(\gamma )$ is empty, we obtain

(8.19)\begin{equation} \epsilon_{D}(\gamma)=\mathrm{sgn}\prod_{\alpha\in R^{\mathrm{re}}_{+}}(1-\xi_{\alpha}^{-1}(\gamma)). \end{equation}

For $\alpha \in R^{\mathrm {re}}_{+}$, then $\xi _{\alpha }(\gamma )\neq 1$ so that for $\epsilon >0$ small enough, if $\vert b_{\mathfrak p}\vert \le \epsilon$,

(8.20)\begin{equation} \epsilon_{D}(\gamma')=\epsilon_{D}(\gamma). \end{equation}

In addition, if $\alpha \in R^{\mathrm {re}}_{+}$, $\xi _{\alpha }(k')=\xi _{\alpha }(k)$. By the above, it follows that for $b\in \mathfrak h$ $\gamma$-regular close enough to 0,

(8.21)\begin{equation} \epsilon_{D}(\gamma')\prod_{\alpha\in R^{\mathrm{re}}_{+}}\xi_{\alpha}^{1/2}(k^{ \prime -1})=\epsilon_{D} (\gamma)\prod_{\alpha\in R^{\mathrm{re}}_{+}}\xi_{\alpha}^{1/2}(k^{-1}). \end{equation}

By (8.10), (8.11), and (8.14), if $h_{\mathfrak k}\in i \mathfrak h_{\mathfrak k}$ is $\gamma$ im-regular, if $b\in \mathfrak h$ $\gamma$-regular tends to 0,

(8.22)\begin{equation} \begin{aligned} & \prod_{\alpha\in R^{\mathrm{im}}_{\mathfrak p,+}(k)}\frac{\langle \alpha,h_{\mathfrak k}\rangle}{\xi_{\alpha}^{1/2}(k^{-1}e^{b_{\mathfrak k}-h_{\mathfrak k}})-\xi_{\alpha}^{-1/2}(k^{-1}e^{b_{\mathfrak k}-h_{\mathfrak k}})} \\ & \quad \to (-1)^{\vert R_{\mathfrak p,+}^{\mathrm{im}}(k)\vert} \prod_{\alpha\in R^{\mathrm{im}}_{\mathfrak p,+}(k)} \widehat{A}(\langle \alpha,h_{\mathfrak k}\rangle)\xi_{\alpha}^{-1/2}(k^{-1}),\\ & \prod_{\alpha\in R^{\mathrm{im}}_{\mathfrak k,+}(k)}\frac{\xi_{\alpha}^{1/2}(k^{-1}e^{b_{\mathfrak k}-h_{\mathfrak k}})-\xi_{\alpha}^{-1/2}(k^{-1}e^{b_{\mathfrak k}-h_{\mathfrak k}})}{\langle \alpha,h_{\mathfrak k}\rangle} \\ & \quad\to (-1)^{\vert R^{\mathrm{im}}_{\mathfrak k,+}(k)\vert}\prod_{\alpha\in R^{\mathrm{im}}_{\mathfrak k,+}(k)}\frac{\xi_{\alpha}^{1/2}(k^{-1})}{\widehat{A}(\langle \alpha,h_{\mathfrak k}\rangle)}. \end{aligned}\end{equation}

By (5.20), by the considerations after (8.1), by (8.3), (8.8), (8.21), and (8.22), we deduce that if $h_{\mathfrak k}\in i \mathfrak h_{\mathfrak k}$ is $\gamma$ im-regular, then

(8.23)\begin{align} &\pi^{\mathfrak h,\mathfrak z(\gamma)}(b_{\mathfrak p}+ h_{\mathfrak k})D_{H}(\gamma')\mathcal{J}_{\gamma'}(h_{\mathfrak k})\nonumber\\ &\quad \to \epsilon_{D}(\gamma)(-1)^{\vert R_{\mathfrak p,+}^{\mathrm{im}}\vert+\vert R^{\mathrm{im}}_{+}(k)\vert+({1}/{2})\vert R_{+}^{\mathrm{c}}(\gamma)\vert}\nonumber\\ &\qquad \times \prod_{\alpha\in R^{\mathrm{re}}_{+}\cup R^{\mathrm{im}}_{+}(k)}\xi_{\alpha}^{1/2}(k^{-1}) [\pi^{\mathfrak h_{\mathfrak k},\mathfrak k(\gamma)}(h_{\mathfrak k})]^{2} \frac{\prod_{\alpha\in R^{\mathrm{im}}_{\mathfrak p,+}(k)} \widehat{A}(\langle \alpha,h_{\mathfrak k}\rangle)}{\prod_{\alpha\in R^{\mathrm{im}}_{\mathfrak k,+}(k)} \widehat{A}(\langle \alpha,h_{\mathfrak k}\rangle)}\nonumber\\ &\qquad \times \frac{\prod_{\alpha\in R_{\mathfrak k,+}^{\mathrm{im}}{\setminus} R_{\mathfrak k,+}^{\mathrm{im}}(k)}( \xi_{\alpha}^{1/2}(k^{-1}e^{-h_{\mathfrak k}})- \xi^{-1/2}_{\alpha}(k^{-1}e^{-h_{\mathfrak k}}))}{\prod_{\alpha\in R_{\mathfrak p,+}^{\mathrm{im}}{\setminus} R_{\mathfrak p,+}^{\mathrm{im}}(k)}( \xi_{\alpha}^{1/2}(k^{-1}e^{-h_{\mathfrak k}})- \xi^{-1/2}_{\alpha}(k^{-1}e^{-h_{\mathfrak k}}))}. \end{align}

By comparing (4.34) and the right-hand side of (8.23), we obtain (8.6). The proof of our theorem is complete.

8.2 The Lie algebra $\mathfrak z(\gamma )$ and the isomorphisms of Harish-Chandra and Duflo

Here, we use results contained in §§ 3.11, 6.1, and 6.4.

Let $\mathfrak h$ be a $\theta$-stable Cartan subalgebra of $\mathfrak z(\gamma )$. We have the Harish-Chandra and Duflo isomorphisms of filtered algebras:

(8.24)\begin{equation} \phi_{\mathrm{HC}}: Z(\mathfrak g) \simeq I{{}^{\cdot}}(\mathfrak h,\mathfrak g), \quad \tau_{\mathrm{D}}: I{{}^{\cdot}}(\mathfrak g) \simeq Z(\mathfrak g). \end{equation}

As explained in § 6.4, the above isomorphisms are compatible.

By (3.80), we have the isomorphisms

(8.25)\begin{equation} r: I{{}^{\cdot}}(\mathfrak g) \simeq I{{}^{\cdot}}(\mathfrak h,\mathfrak g), \quad r: I{{}^{\cdot}}(\mathfrak z(\gamma)) \simeq I{{}^{\cdot}}(\mathfrak h, \mathfrak z(\gamma)). \end{equation}

Recall that we have the splitting

(8.26)\begin{equation} \mathfrak g= \mathfrak z(\gamma) \oplus \mathfrak z^{\perp}(\gamma). \end{equation}

Let $r_{\mathfrak z(\gamma )}$ denote the projection $\mathfrak g\to \mathfrak z(\gamma )$. This map induces a corresponding morphism of $\mathbf {Z}$-graded algebras $r_{\mathfrak z(\gamma )}:I{{}^{\cdot }}(\mathfrak g)\to I{{}^{\cdot }}(\mathfrak z(\gamma ))$. Let $i$ be the obvious morphism $I{{}^{\cdot }}(\mathfrak h, \mathfrak g)\to I{{}^{\cdot }}(\mathfrak h, \mathfrak z(\gamma ))$.

We have the following commutative diagram.

(8.27)

Definition 8.3 If $L\in Z(\mathfrak g)$, let $L^{\mathfrak z(\gamma )}\in I{{}^{\cdot }}(\mathfrak z(\gamma ))$ be given by

(8.28)\begin{equation} L^{\mathfrak z(\gamma)}=r_{\mathfrak z(\gamma)}\tau^{-1}_{\mathrm D}(L). \end{equation}

The map $L\in Z(\mathfrak g)\to L^{\mathfrak z(\gamma )}\in I{{}^{\cdot }}(\mathfrak z(\gamma ))$ is a morphism of filtered algebras.

Proposition 8.4 If $L\in Z(\mathfrak g)$, the following identity holds:

(8.29)\begin{equation} L^{\mathfrak z(\gamma)}=r^{-1}i\phi_{\mathrm{HC}}L. \end{equation}

Proof. This follows from (6.28), (8.27), and (8.28).

As we saw in §§ 3.1 and 3.11, we have the identification

(8.30)\begin{equation} I{{}^{\cdot}}(\mathfrak z(\gamma)) \simeq D^{\cdot}_{I}(\mathfrak z(\gamma)). \end{equation}

In the following, when there is no ambiguity, if $L\in Z{{}^{\cdot }}(\mathfrak g)$, $L^{\mathfrak z(\gamma )}$ will be considered as an element of $D^{\cdot}_{I}(\mathfrak z(\gamma ))$.

Proposition 8.5 The following identity holds:

(8.31)\begin{equation} (C^{\mathfrak g})^{\mathfrak z(\gamma)}=-\Delta^{\mathfrak z(\gamma)}+B^{*}(\rho^{\mathfrak g},\rho^{\mathfrak g}). \end{equation}

Proof. By Proposition 6.3 and by (8.29), we obtain (8.31).

8.3 An application of Rossmann's formula

We know that $a\in \mathfrak h_{\mathfrak p}$. As $a$ is in the center of $\mathfrak z(\gamma )$, if $\alpha \in R(\gamma )$, then $\langle \alpha,a\rangle =0$. By (5.11), we deduce that if $h\in \mathfrak h$,

(8.32)\begin{equation} \pi^{\mathfrak h,\mathfrak z(\gamma)}(h+a)= \pi^{\mathfrak h, \mathfrak z(\gamma)}(h). \end{equation}

We identify $\mathfrak h$ and $\mathfrak h^{*}$ via the form $B$, so that

(8.33)\begin{equation} S{{}^{\cdot}}(\mathfrak h^{*}) \simeq S{{}^{\cdot}}(\mathfrak h). \end{equation}

As we saw in § 3.1, $S{{}^{\cdot }}(\mathfrak h)$ can be identified with the algebra $D{{}^{\cdot }}(\mathfrak h)$ of differential operators with constant coefficients on $\mathfrak h$. Let $\overline {\pi }^{\mathfrak h, \mathfrak z(\gamma )}\in D{{}^{\cdot }}(\mathfrak h_{\mathbf {C}})$ denote the differential operator on $\mathfrak h_{\mathbf {C}}$ associated with $\pi ^{\mathfrak h, \mathfrak z(\gamma )}\in S{{}^{\cdot }}(\mathfrak h_{\mathbf {C}})$.

Recall that $\mathfrak h_{i}$ was defined in (7.7). Let $\mu \in \mathcal {S}^{\mathrm {even}}(\mathbf {R})$ be taken as in § 2.5. If $A\in \mathbf {R}$, let $\mu (\sqrt {-\Delta ^{\mathfrak h}+A}\,)(h)$ be the smooth convolution kernel on $\mathfrak h_{i}$ associated with the operator $\mu (\sqrt {-\Delta ^{\mathfrak h}+A}\,)$. If $f\in C^{\infty,c}(\mathfrak h_{i},\mathbf {R})$, then

(8.34)\begin{equation} \mu(\sqrt{-\Delta^{\mathfrak h}+A}\,)f(h)=\int_{\mathfrak h_{i}}\mu(\sqrt{-\Delta^{\mathfrak h}+A}\,)(h-h')f(h') \, dh'. \end{equation}

We use the corresponding notation on $\mathfrak z_{i}(\gamma )= \mathfrak p(\gamma ) \oplus i \mathfrak k(\gamma )$.

Here, we use the notation of § 8.2. In the following, $\phi _{\mathrm {HC}} L$ and $L^{\mathfrak z(\gamma )}$ are viewed as differential operators in $D^{\cdot}_{I}(\mathfrak h)$ and $D^{\cdot}_{I}(\mathfrak z(\gamma ))$. As we saw in § 3.1, these differential operators act on $\mathfrak h_{i}$ and $\mathfrak z_{i}(\gamma )$, and so they can be composed with the above convolution kernels.

Proposition 8.6 We have the identity of smooth functions on $\mathfrak h_{i}$,

(8.35)\begin{align} \overline{\pi}^{\mathfrak h, \mathfrak z(\gamma)}(\phi_{\mathrm{HC}} L )\mu(\sqrt{-\Delta^{\mathfrak h}+A}\,)(h) = \pi^{\mathfrak h,\mathfrak z(\gamma)}(-2\pi h)L^{\mathfrak z(\gamma)}\mu(\sqrt{-\Delta^{\mathfrak z(\gamma)}+A}\,)(h). \end{align}

Proof. In the proof, we identify $\mathfrak z_{i}(\gamma )=\mathfrak p(\gamma ) \oplus i \mathfrak k(\gamma )$ as a real vector space to $\mathfrak u(\gamma )= i \mathfrak p(\gamma ) \oplus \mathfrak k(\gamma )$, which is the compact form of $\mathfrak z(\gamma )$.

We identify the real Euclidean vector space $\mathfrak h_{i}$ to its dual by its scalar product. Let $\mathcal {F}^{\mathfrak h_{i}}$ denote the classical Fourier transform on $\mathfrak h_{i}$. If $f\in \mathcal {S}(\mathfrak h_{i} )$, if $h^{*}\in \mathfrak h_{i}$, then

(8.36)\begin{equation} \mathcal{F}^{\mathfrak h_{i}}f(h^{*})=\int_{\mathfrak h_{i}}\exp(-2i\pi B(h,h^{*}))f(h) \, dh. \end{equation}

Put

(8.37)\begin{equation} \breve{\mathcal{F}}^{\mathfrak h_{i}}f(h^{*})=\mathcal{F}^{\mathfrak h_{i}}(-h^{*}). \end{equation}

Then

(8.38)\begin{align} &\mathcal{F}{}^{\mathfrak h_{i}}[\overline{\pi}^{\mathfrak h, \mathfrak z(\gamma)}( \phi_{\mathrm{HC}} L ) \mu(\sqrt{-\Delta^{\mathfrak h}+A}\,)](h^{*})\nonumber\\ &\quad =\pi^{\mathfrak h, \mathfrak z(\gamma)}(2i\pi h^{*}) (\phi_{\mathrm{HC}} L)(2i\pi h^{*})\mu(\sqrt{4\pi^{2}B(h^{*},h^{*})+A}\,). \end{align}

By (8.38), we obtain

(8.39)\begin{align} &\overline{\pi}^{\mathfrak h, \mathfrak z(\gamma)}(\phi_{\mathrm{HC}} L)\mu(\sqrt{-\Delta^{\mathfrak h}+A}\,)(h) \nonumber\\ &\quad =\breve{\mathcal{F}}^{\mathfrak h_{i}} [\pi^{\mathfrak h, \mathfrak z(\gamma)} (2i\pi h^{*})(\phi_{\mathrm{HC}} L)(2i\pi h^{*}) \mu(\sqrt{4\pi^{2}B(h^{*},h^{*})+A}\, ) ](h). \end{align}

We can define the Fourier transform $\mathcal {F}^{ \mathfrak z_{i}(\gamma )}$ on the Euclidean vector space $\mathfrak z_{i}(\gamma )$, which is canonically identified to the Lie algebra $\mathfrak u(\gamma )$. The function $B(h^{*},h^{*})$ extends to a $\mathrm {Ad} ( \mathfrak u(\gamma ) )$-invariant function on $\mathfrak u(\gamma )$. By Proposition 8.4, the $\mathrm {Ad} ( \mathfrak u(\gamma ) )$-invariant function $L^{\mathfrak z(\gamma )}$ on $\mathfrak z_{i}(\gamma )$ restricts to the function $\phi _{\mathrm {HC}}L$ on $\mathfrak h_{i}$. By Rossmann's formula (see [Reference RossmannRos78, Theorem p. 209] and [Reference VergneVer79, Theorem p. 13]), we obtain

(8.40)\begin{align} &\breve{\mathcal{F}}^{\mathfrak h_{i}} [\pi^{\mathfrak h, \mathfrak z(\gamma)} (2i\pi h^{*})(\phi_{\mathrm{HC}} L)(2i\pi h^{*})\mu(\sqrt{4\pi^{2}B(h^{*},h^{*})+A}\,)](h)\nonumber\\ &\quad =\pi^{\mathfrak h,\mathfrak z(\gamma)}(-2\pi h) \breve{\mathcal{F}}{}^{\mathfrak z_{i}(\gamma)}[ L^{\mathfrak z(\gamma)}(2i\pi h^{*})\mu(\sqrt{4\pi^{2} B(h^{*},h^{*})+A}\,)] (h). \end{align}

By (8.39) and (8.40), we obtain (8.35). The proof of our proposition is complete.

8.4 The limit of certain orbital integrals

We use the notation of § 8.1. As we saw in § 7.1, $\mathrm {Tr}^{[\gamma ']}[\mu (\sqrt {C^{\mathfrak g,X}+A}\,)]$ is a smooth function of $\gamma '\in H^{\mathrm {reg}}$. Recall that $\overline {\pi }^{\mathfrak h,\mathfrak z(\gamma )}$ is a differential operator on $\mathfrak h_{\mathbf {C}}$. To make our formulas clearer, we denote its action in the variables $b$ or $h$ as $\overline {\pi }^{\mathfrak h,\mathfrak z(\gamma )}_{b}$ or $\overline {\pi }^{\mathfrak h,\mathfrak z(\gamma )}_{h}$.

Proposition 8.7 The following identity holds on $H^{\mathrm {reg}}$:

(8.41)\begin{align} &\overline{\pi}^{\mathfrak h,\mathfrak z(\gamma)}[ D_{H}(\gamma') \mathrm{Tr}{}^{[\gamma']}[L\mu(\sqrt{C^{\mathfrak g,X}+A}\,) ]]\nonumber\\ &\quad =(-1)^{\vert R_{+}(\gamma)\vert}\overline{\pi}^{\mathfrak h,\mathfrak z(\gamma)}_{h}(\phi_{\mathrm{HC}} L)\mu(\sqrt{\phi_{\mathrm{HC}} C^{\mathfrak g}+A}\,) [D_{H}(\gamma')\mathcal{J}_{\gamma'}(h_{\mathfrak k}) \mathrm{Tr}^{E}[\rho^{E}(k^{-1}e^{b_{\mathfrak k}-h_{\mathfrak k}} ) ]\delta_{a'}](0)\nonumber\\ &\quad =(-2\pi)^{\vert R_{+}(\gamma)\vert}\int_{i \mathfrak h_{\mathfrak k}}L^{\mathfrak z(\gamma)} \mu(\sqrt{(C^{\mathfrak g})^{\mathfrak z(\gamma)}+A}\,)(-a- b_{\mathfrak p}-h_{\mathfrak k})\nonumber\\ &\qquad \times \pi^{\mathfrak h, \mathfrak z(\gamma)} (b_{\mathfrak p}+h_{\mathfrak k})D_{H}(\gamma')\mathcal{J}_{\gamma'}(h_{\mathfrak k}) \mathrm{Tr}^{E}[\rho^{E}(k^{ -1}e^{b_{\mathfrak k}-h_{\mathfrak k}} ) ] \, dh_{\mathfrak k}. \end{align}

Proof. As we saw in Theorem 5.4, the function $(\gamma ',h_{\mathfrak k})\in H^{\mathrm {reg}}\times i\mathfrak h_{\mathfrak k}\to \mathcal {J}_{\gamma '}(h_{\mathfrak k})\in \mathbf {C}$ is smooth. If $\gamma '\in H^{\mathrm {reg}}$, then $\mathfrak z(\gamma ')=\mathfrak h$, so that by (7.8) in Theorem 7.2, we obtain

(8.42)\begin{align} &\overline{\pi}^{\mathfrak h,\mathfrak z(\gamma)}[ D_{H}(\gamma')\mathrm{Tr}{}^{[\gamma']}[L\mu(\sqrt{C^{\mathfrak g,X}+A}\,)]]\nonumber\\ &\quad =(\phi_{\mathrm{HC}} L)\mu(\sqrt{\phi_{\mathrm{HC}} C^{\mathfrak g}+A}\,) \overline{\pi}^{\mathfrak h,\mathfrak z(\gamma)}_{b}[D_{H}(\gamma')\mathcal{J}_{\gamma'}(h_{\mathfrak k}) \mathrm{Tr}^{E}[\rho^{E}(k^{-1}e^{b_{\mathfrak k}-h_{\mathfrak k}} ) ]\delta_{a'}](0). \end{align}

On the right-hand side of (8.42), the differential operator $\overline {\pi }^{\mathfrak h, \mathfrak z(\gamma )}_{b}$ acts on the distribution on the right in the variables $b=(b_{\mathfrak p}, b_{\mathfrak k})\in \mathfrak h$, and not on the variable $h_{\mathfrak k}$. The situation is actually strictly similar to what we already met in the proofs of Proposition 7.1 and Theorem 7.2. We obtain in this way the first identity in (8.41).

By Proposition 8.6, using the conventions in (8.34), we obtain

(8.43)\begin{align} &(-1)^{\vert R_{+}(\gamma)\vert}\overline{\pi}^{\mathfrak h,\mathfrak z(\gamma)}(\phi_{\mathrm{HC}} L)\mu(\sqrt{\phi_{\mathrm{HC}} C^{\mathfrak g}+A}\,) [D_{H}(\gamma')\mathcal{J}_{\gamma'}(h_{\mathfrak k}) \mathrm{Tr}^{E}[\rho^{E}(k^{-1}e^{b_{\mathfrak k}-h_{\mathfrak k}} ) ]\delta_{a'}](0)\nonumber\\ &\quad =(-2\pi)^{\vert R_{+}(\gamma)\vert}\int_{i \mathfrak h_{\mathfrak k}} L^{\mathfrak z(\gamma)} \mu(\sqrt{( C^{\mathfrak g})^{\mathfrak z(\gamma)}+A}\,)(-a- b_{\mathfrak p}-h_{\mathfrak k})\nonumber\\ &\qquad \times \pi^{\mathfrak h, \mathfrak z(\gamma)} (a+b_{\mathfrak p}+h_{\mathfrak k})D_{H}(\gamma')\mathcal{J}_{\gamma'}(h_{\mathfrak k}) \mathrm{Tr}^{E}[\rho^{E}(k^{ -1}e^{b_{\mathfrak k}-h_{\mathfrak k}} ) ] \, dh_{\mathfrak k}. \end{align}

By (8.32), we obtain

(8.44)\begin{equation} \pi^{\mathfrak h,\mathfrak z(\gamma)}(a+b_{\mathfrak p}+h_{\mathfrak k})=\pi^{\mathfrak h, \mathfrak z(\gamma)}(b_{\mathfrak p}+h_{\mathfrak k}). \end{equation}

By the first identity in (8.41) and by (8.43) and (8.44), we obtain the second identity in (8.41). The proof of our proposition is complete.

Let $T(\gamma )$ be a maximal torus in $K^{0}(\gamma )$, let $\mathfrak t(\gamma ) \subset \mathfrak k(\gamma )$ be the corresponding Lie algebra, and let $W(\mathfrak t(\gamma ):\mathfrak k(\gamma ))$ be the corresponding Weyl group.Footnote 13

Theorem 8.8 If $\mathfrak h$ is not the fundamental Cartan subalgebra of $\mathfrak z(\gamma )$, as $b\in \mathfrak h$ $\gamma$-regular tends to 0, then

(8.45)\begin{equation} \overline{\pi}^{\mathfrak h,\mathfrak z(\gamma)} [D_{H}(\gamma') \mathrm{Tr}{}^{[\gamma']}[L\mu(\sqrt{C^{\mathfrak g,X}+A}\,)]]\to 0. \end{equation}

If $\mathfrak h$ is the fundamental Cartan subalgebra of $\mathfrak z(\gamma )$, as $b\in \mathfrak h$ $\gamma$-regular tends to 0, then

(8.46)\begin{align} &\overline{\pi}^{\mathfrak h,\mathfrak z(\gamma)} [D_{H}(\gamma') \mathrm{Tr}{}^{[\gamma']}[L\mu(\sqrt{C^{\mathfrak g,X}+A}\,)]]\nonumber\\ &\to (-1)^{({1}/{2})(\dim \mathfrak p(\gamma)-\dim \mathfrak h_{\mathfrak p})}\frac{\vert W(\mathfrak t(\gamma):\mathfrak k(\gamma))\vert}{\mathrm{Vol} (K^{0}(\gamma)/T(\gamma))}\prod_{\alpha\in R_{\mathfrak +}^{\mathrm{im}}(k)}\xi_{\alpha}^{1/2}(k^{-1})\nonumber\\ &\quad \times D_{H}(\gamma) (2\pi)^{\vert R_{+}(\gamma)\vert} \int_{i \mathfrak k(\gamma)}L^{\mathfrak z(\gamma)}\mu(\sqrt{( C^{\mathfrak g})^{\mathfrak z(\gamma)}+A}\,)(-a-{Y_{0}^{\mathfrak k}}) \mathcal{J}_{\gamma}({Y_{0}^{\mathfrak k}}) \mathrm{Tr}^{E}[\rho^{E}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}} )] \, d{Y_{0}^{\mathfrak k}}. \end{align}

Proof. First, we consider the case where $\mathfrak h$ is not the fundamental Cartan subalgebra of $\mathfrak z(\gamma )$. Using (2.80), (8.4), (8.5), (8.41), and dominated convergence, we get (8.45).

Assume now that $\mathfrak h$ is the fundamental Cartan subalgebra of $\mathfrak z(\gamma )$. Using (2.80), (8.4), (8.6), (8.41), since the convergence in (8.6) takes place except on a Lebesgue negligible set of $i \mathfrak h_{\mathfrak k}$, we can use dominated convergence, so that as $b\in \mathfrak h$ $\gamma$-regular tends to $0$,

(8.47)\begin{align} &\overline{\pi}^{\mathfrak h,\mathfrak z(\gamma)}[D_{H}(\gamma') \mathrm{Tr}{}^{[\gamma']}[L\mu(\sqrt{C^{\mathfrak g,X}+A}\,)]]\nonumber\\ &\to (-1)^{\vert R_{+}(\gamma)\vert+({1}/{2})\vert R^{\mathrm{c}}_{+}(\gamma)\vert+\vert R^{\mathrm{im}}_{\mathfrak k,+}(k)\vert}\prod_{\alpha\in R^{\mathrm{im}}_{+}(k)}\xi_{\alpha}^{1/2}(k^{-1}) D_{H}(\gamma) \nonumber\\ &\quad \times (2\pi)^{\vert R_{+}(\gamma)\vert}\int_{i \mathfrak h_{\mathfrak k}}L^{\mathfrak z(\gamma)} \mu (\sqrt{( C^{\mathfrak g} ) ^{\mathfrak z(\gamma)}\!+\!A}\,)(-a-h_{\mathfrak k}) \mathcal{J}_{\gamma}(h_{\mathfrak k}) \mathrm{Tr}^{E}[\rho^{E}(k^{-1}e^{-h_{\mathfrak k}}) ][\pi^{\mathfrak h_{\mathfrak k}, \mathfrak k(\gamma)}(h_{\mathfrak k})]^{2} \, dh_{\mathfrak k}. \end{align}

The operators $L^{\mathfrak z(\gamma )}$ and $( C^{\mathfrak g})^{\mathfrak z(\gamma )}$ on $\mathfrak z(\gamma )$ are both $K(\gamma )$-invariant, and so the smooth function

\[ L^{\mathfrak z(\gamma)} \mu (\sqrt{( C^{\mathfrak g} ) ^{\mathfrak z(\gamma)}+A}\,)(-a-{Y_{0}^{\mathfrak k}}) \]

on $i \mathfrak k(\gamma )$ is also $K(\gamma )$-invariant. This is also the case for the function

\[ \mathcal{J}_{\gamma}({Y_{0}^{\mathfrak k}})\mathrm{Tr}^{E}[\rho^{E}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}})]. \]

As $\mathfrak h$ is the fundamental Cartan subalgebra of $\mathfrak z(\gamma )$, $\mathfrak h_{\mathfrak k}$ is a Cartan subalgebra of $\mathfrak k(\gamma )$. By Weyl's integration formula, and taking into account the fact that on $i \mathfrak h_{\mathfrak k}$, $[\pi ^{\mathfrak h_{\mathfrak k}, \mathfrak k(\gamma )}(h_{\mathfrak k})]^{2}$ is non-negative, we obtain

(8.48)\begin{align} &\int_{i \mathfrak k(\gamma)} L^{\mathfrak z(\gamma)}\mu(\sqrt{( C^{\mathfrak g})^{\mathfrak z(\gamma)}+A}\,)(-a-{Y_{0}^{\mathfrak k}}) \mathcal{J}_{\gamma}({Y_{0}^{\mathfrak k}}) \mathrm{Tr}^{E}[\rho^{E}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}} )] \, d{Y_{0}^{\mathfrak k}}\nonumber\\ &\quad=\frac{\mathrm{Vol}(K^{0}(\gamma)/T(\gamma))}{\vert W(\mathfrak t(\gamma):\mathfrak k(\gamma))\vert} \int_{i \mathfrak h_{\mathfrak k}} L^{\mathfrak z(\gamma)} \mu(\sqrt{( C^{\mathfrak g})^{\mathfrak z(\gamma)}+A}\,)(-a-h_{\mathfrak k})\nonumber\\ &\qquad \times \mathcal{J}_{\gamma}(h_{\mathfrak k}) \mathrm{Tr}^{E}[\rho^{E}(k^{-1}e^{-h_{\mathfrak k}})] [\pi^{\mathfrak h_{\mathfrak k},\mathfrak k(\gamma)}(h_{\mathfrak k})]^{2} \, dh_{\mathfrak k}. \end{align}

Using, in particular, Proposition 3.10 applied to $\mathfrak z(\gamma )$, we have the identities

(8.49)\begin{equation} \begin{aligned} \vert R_{+}(\gamma)\vert &=\dim \mathfrak c_{+}(\gamma)+\tfrac{1}{2}\dim \mathfrak i(k),\\ \vert R_{\mathfrak k,+}^{\mathrm{im}}(k)\vert &=\tfrac{1}{2} \dim \mathfrak i_{\mathfrak k}(k),\\ \vert R^{\mathrm{c}}_{+}(\gamma)\vert &= \dim \mathfrak c_{+}(\gamma). \end{aligned} \end{equation}

By (8.49), we deduce that

(8.50)\begin{align} &\vert R_{+}(\gamma)\vert+\vert R_{\mathfrak k,+}^{\mathrm{im}}(k)\vert+\tfrac{1}{2}\vert R_{+}^{\mathrm{c}}(\gamma)\vert =\dim \mathfrak c_{+}(\gamma)+\tfrac{1}{2}\dim \mathfrak i_{\mathfrak k}( k)+\tfrac{1}{2}\dim \mathfrak i(k)+\tfrac{1}{2}\dim \mathfrak c_{+}(\gamma). \end{align}

By Proposition 3.10, $\mathfrak c_{+}(\gamma )$ has even dimension. This is also the case for $\mathfrak i_{\mathfrak k}(k)$. By (8.50), we get the equality $\mathrm {mod}\, 2$,

(8.51)\begin{equation} \vert R_{+}(\gamma)\vert+\vert R_{\mathfrak k,+}^{\mathrm{im}}(k)\vert+\tfrac{1}{2}\vert R_{+}^{\mathrm{c}}(\gamma)\vert=\tfrac{1}{2}\dim \mathfrak i_{\mathfrak p}(k)+\tfrac{1}{4}\dim \mathfrak c(\gamma). \end{equation}

By Proposition 3.7 and by (3.32) in Proposition 3.8 applied to $\mathfrak z(\gamma )$, because $\mathfrak h$ is fundamental in $\mathfrak z(\gamma )$, we obtain

(8.52)\begin{equation} \dim \mathfrak p(\gamma)-\dim \mathfrak h_{\mathfrak p}=\dim \mathfrak i_{\mathfrak p}(k)+\tfrac{1}{2}\dim \mathfrak c(\gamma). \end{equation}

By (8.51), (8.52), we obtain

(8.53)\begin{equation} (-1)^{\vert R_{+}(\gamma)\vert+ \vert R_{\mathfrak k,+}^{\mathrm{im}}(k)\vert+({1}/{2}) \vert R_{+}^{\mathrm{c}}(\gamma)\vert}=(-1)^{({1}/{2}) (\dim \mathfrak p(\gamma)-\dim \mathfrak h_{\mathfrak p})}. \end{equation}

When $\gamma =1$, the above identity had been established by [Reference Harish-ChandraHar64, Lemma 18].

By (8.47), (8.48), and (8.53), we obtain (8.46). The proof of our theorem is complete.

9. The final formula

In this section, we establish our final formula in the case of a non-necessarily regular semisimple element $\gamma \in G$. Our formula extends both the formula in Theorem 2.9 valid for $\gamma$ semisimple and $L=1$, and the formula in Theorem 7.2 valid for $\gamma$ regular. To establish our main result, we combine a fundamental result of Harish-Chandra with the results we obtained in § 8. In addition, along the lines of [Reference BismutBis11, Chapter 6], we give a wave kernel formulation of our main result.

This section is organized as follows. In § 9.1, we establish our main result. In § 9.2, as in [Reference BismutBis11], we reformulate our main result in terms of wave kernels. Finally, in § 9.3, we verify our main formula is compatible to natural operations on orbital integrals.

9.1 The general case

Let $L\in Z(\mathfrak g)$. Here, we take $\gamma \in G$ semisimple as in (2.19). We extend Theorem 7.2 to nonregular $\gamma$.

Theorem 9.1 The following identity holds:

(9.1)\begin{align} &\mathrm{Tr}{}^{[\gamma]}[L\mu(\sqrt{C^{\mathfrak g,X}+A}\,)] = L^{\mathfrak z(\gamma)} \mu(\sqrt{( C^{\mathfrak g})^{\mathfrak z(\gamma)}+A}\,)[ \mathcal{J}_{\gamma}({Y_{0}^{\mathfrak k}})\mathrm{Tr}^{E}[\rho^{E}(k^{-1} e^{-{Y_{0}^{\mathfrak k}}})]\delta_{a}](0). \end{align}

Proof. By a result of Harish-Chandra (see [Reference Harish-ChandraHar66, Lemma 28] and [Reference VaradarajanVar77, Part II, § 12.5, Theorem 13]), we know that if $\mathfrak h$ is the fundamental Cartan subalgebra in $\mathfrak z(\gamma )$, there is a universal constant $c_{\gamma }$ depending only on $\gamma$ such that with the notation in Theorem 8.8, as $b\in \mathfrak h$ $\gamma$-regular tends to 0,

(9.2)\begin{align} &\overline{\pi}^{\mathfrak h,\mathfrak z(\gamma)} [D_{H}(\gamma')\mathrm{Tr}{}^{[\gamma']}[L\mu(\sqrt{C^{\mathfrak g,X}+A}\,)]] \to c_{\gamma}\mathrm{Tr}{}^{[\gamma]}[L \mu(\sqrt{C^{\mathfrak g,X}+A}\,)]. \end{align}

In Theorem 8.8, we gave another proof of the existence of the limit in (9.2). In addition, by the fundamental result of [Reference BismutBis11] stated as Theorem 2.9, when $L=1$, the integral in the right-hand side of (8.46) coincides with the orbital integral $\mathrm {Tr}^{[\gamma ]}[\mu (\sqrt {C^{\mathfrak g,X}+A}\,)]$. To identify the constant $c_{\gamma }$, we only need to prove that one of these last orbital integrals does not vanish. It is enough to take $E$ to be the trivial representation, and $\mu (x)=\exp (-x^{2})$. As the scalar heat kernel on $X$ is positive, the corresponding orbital integrals do not vanish. Thus, we find that

(9.3)\begin{align} &c_{\gamma}=(-1)^{({1}/{2})(\dim \mathfrak p(\gamma)-\dim \mathfrak h_{\mathfrak p})} \frac{\vert W(\mathfrak t(\gamma):\mathfrak k(\gamma))\vert}{\mathrm{Vol}(K^{0}(\gamma)/T(\gamma))} (2\pi)^{\vert R_{+}(\gamma)\vert}\prod_{\alpha\in R_{\mathfrak +}^{\mathrm{im}}(k)}\xi_{\alpha}^{1/2}(k^{-1}) D_{H}(\gamma). \end{align}

When $\gamma =1$, this computation has already been done by Harish-Chandra in [Reference Harish-ChandraHar75, § 37, Theorem 1].Footnote 14 For the case of a general $\gamma$, this formula can also be derived from [Reference Harish-ChandraHar66, p. 34] and from the reference given previously.

By combining (8.46), (9.2), and (9.3), we obtain (9.1). The proof of our theorem is complete.

9.2 A microlocal version

We still take $\gamma \in G$ semisimple as in (2.19).

We proceed as in [Reference BismutBis11, § 6.3], to which we refer for more details. In the following, we identify $TX$ and $T^{*}X$ by the metric.

Let $\mathrm {Tr}^{[\gamma ]}[L\cos (s\sqrt {C^{\mathfrak g,X}+A}\,)]$ be the even distribution on $\mathbf {R}$ such that for any $\mu \in \mathcal {S}^{\mathrm {even}}(\mathbf {R})$ with $\widehat {\mu }$ having compact support,

(9.4)\begin{equation} \mathrm{Tr}{}^{[\gamma]}[L\mu(\sqrt{C^{\mathfrak g,X}+A}\,)]= \int_{\mathbf{R}}\widehat{\mu}(s) \mathrm{Tr}{}^{[\gamma]}[L\cos(2\pi s\sqrt{C^{\mathfrak g,X}+A}\,)] \, ds.\end{equation}

The operator $L\cos (s\sqrt {C^{\mathfrak g,X}+A}\,)$ defines a distribution on $\mathbf {R}\times X\times X$. By finite propagation speed (see [Reference Chazarain and PiriouCP81, § 7.8] and [Reference TaylorTay81, § 4.4]), its support is included in $(s,x,x'), \vert s\vert \ge d(x,x')$. Let $\mathcal {X}$ be the total space of $TX$. Let $s\in \mathbf {R}\to \varphi _{s}$ be the geodesic flow on $\mathcal {X}$. Let $\tau$ be the variable dual to $s$. By [Reference HörmanderHör85, Theorem 23.1.4 and remark], the wave front set $\mathrm {WF}(L\cos (s\sqrt {C^{\mathfrak g,X}+A}\,))$ of the distribution $L\cos (s\sqrt {C^{\mathfrak g,X}+A}\,)$ is the conic set in $\mathbf {R}^{2}\times T^{*}X\times T^{*}X$ generated by $(x',-Y')=\varphi _{\pm s}(x,Y)$, $\vert Y\vert =1$, and $\tau =\pm 1$. Conic means that the dilations by $\lambda >0$ are applied simultaneously to the variables $Y$, $Y'$, and $\tau$.

As explained in [Reference BismutBis11, § 3.4], in the geodesic coordinate system centered at $x_{0}=p1$, $\mathfrak p^{\perp }(\gamma )$ can be identified with a smooth submanifold $P^{\perp }(\gamma )$ of $X$. Let $N_{P^{\perp }(\gamma )/X}$ be the orthogonal bundle to $TP^{\perp }(\gamma )$ in $TX$.

Set

(9.5)\begin{equation} \Delta^{\gamma}_{X}=\{(x,\gamma x),x\in P^{\perp}(\gamma)\}. \end{equation}

Then $\Delta ^{\gamma }_{X}$ is a smooth submanifold of $X\times X$. The conormal bundle to $\mathbf {R}\times \Delta ^{\gamma }_{X} \subset \mathbf {R}\times X\times X$ is the set $((s,\tau ),(x,Y),(x',Y')) \in \mathbf {R}^{2}\times \mathcal {X}\times \mathcal {X}$ such that $\tau =0$, $x\in P^{\perp }(\gamma )$, $x'=\gamma x$, and $\gamma ^{*}Y'+Y\in N_{P^{\perp }(\gamma )/X}$.

By [Reference HörmanderHör83, Theorem 8.2.10],

\[ L\cos(s\sqrt{C^{\mathfrak g,X}+A}\,)\Delta^{\gamma}_{X} \]

is a well-defined distribution on $\mathbf {R}\times X\times X$, and its wave front set is the formal sum of the wave front sets of the two above distributions. In particular, the pushforward of the distribution $\mathrm {Tr}^{F}[\gamma L\cos ( s\sqrt {C^{\mathfrak g,X}+A}\,)]$ by the projection $\mathbf {R}\times X\times X\to \mathbf {R}$ is well-defined. It is denoted by

(9.6)\begin{equation} \int_{\Delta^{\gamma}_{X}}\mathrm{Tr}^{F} [\gamma L\cos( s\sqrt{C^{\mathfrak g,X}+A}\,)].\end{equation}

This is an even distribution on $\mathbf {R}$.

Tautologically, we have the identity of even distributions on $\mathbf {R}$,

(9.7)\begin{equation} \mathrm{Tr}{}^{[\gamma]}[L\cos(s\sqrt{C^{\mathfrak g,X}+A}\,)]= \int_{\Delta^{\gamma}_{X}}\mathrm{Tr}^{F} [\gamma L\cos ( s\sqrt{C^{\mathfrak g,X}+A}\,)]. \end{equation}

We have the result established in [Reference BismutBis11, Proposition 6.3.1].

Proposition 9.2 The singular support of $\mathrm {Tr}^{[\gamma ]}[L\cos ( s\sqrt {C^{\mathfrak g,X}+A}\,)]$ is included in $s=\pm \vert a\vert$, and the ordinary support is included in

\[ \{s\in\mathbf{R},\vert s\vert\ge\vert a\vert\}. \]

If $a=0$, if $\mathfrak p(\gamma )=0$, the singular support of

\[ \mathrm{Tr}{}^{[\gamma]}[L\cos( s\sqrt{C^{\mathfrak g,X}+A}\,)] \]

is empty.

We define the even distribution on $\mathbf {R}$,

(9.8)\begin{equation} L^{\mathfrak z(\gamma)}\cos(s\sqrt{( C^{\mathfrak g} ) ^{\mathfrak z(\gamma)}+A}\,) [\mathcal{J}_{\gamma}({Y_{0}^{\mathfrak k}})\mathrm{Tr}^{E} [\rho^{E}(k^{-1}\ e^{-{Y_{0}^{\mathfrak k}}} )] \delta_{a}] (0) \end{equation}

by the formula

(9.9)\begin{align} &L^{\mathfrak z(\gamma)}\mu(\sqrt{( C^{\mathfrak g})^{\mathfrak z(\gamma)}+A} \,)[\mathcal{J}_{\gamma}({Y_{0}^{\mathfrak k}})\mathrm{Tr}^{E}[\rho^{E}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}} )]\delta_{a}](0)\nonumber\\ &\quad = \int_{\mathbf{R}}\widehat{\mu}(s) L^{\mathfrak z(\gamma)}\cos(2\pi s\sqrt{( C^{\mathfrak g})^{\mathfrak z(\gamma)}+A}\,) [\mathcal{J}_{\gamma}({Y_{0}^{\mathfrak k}}) \mathrm{Tr}^{E}[\rho^{E}(k^{-1} e^{-{Y_{0}^{\mathfrak k}}})]\delta_{a}](0). \end{align}

Let $z=(y,{Y_{0}^{\mathfrak k}})$ be the generic element of $\mathfrak z_{i}(\gamma ) =\mathfrak p(\gamma ) \oplus i\mathfrak k(\gamma )$. Using finite propagation speed for the wave equation,

\[ L^{\mathfrak z(\gamma)}\cos( s\sqrt{( C^{\mathfrak g})^{\mathfrak z(\gamma)}+A}\,) \]

is a distribution on $\mathbf {R}\times \mathfrak z_{i}(\gamma )\times \mathfrak z_{i}(\gamma )$ whose support is included in $(s,z,z')$, $\vert s\vert \ge \vert z'-z\vert$. Moreover, by [Reference HörmanderHör85, Theorem 23.1.4 and remark], its wave front set is the conic set associated with $(y',-Y')=(y\pm sY,Y)$, $\vert Y\vert =1$, and $\tau =\pm 1$. Conic set means again that the dilations by $\lambda >0$ are applied to the variables $Y$, $Y'$, and $\tau$.

Set

(9.10)\begin{equation} H^{\gamma}=\{0\}\times (a,i\mathfrak k(\gamma) ) \subset \mathfrak z_{i}(\gamma)\times \mathfrak z_{i}(\gamma). \end{equation}

The wave front set associated with $\mathbf {R}\times H^{\gamma } \subset \mathbf {R}\times \mathfrak z_{i}(\gamma ) \times \mathfrak z_{i}(\gamma )$ is such that $Y^{ \prime \mathfrak k(\gamma )}=0$, $\tau =0$, so that the product

\[ L^{\mathfrak z(\gamma)}\cos(s\sqrt{( C^{\mathfrak g} )^{\mathfrak z(\gamma)}+A}\,)H^{\gamma} \]

is well-defined.

The function $\mathcal {J}_{\gamma }({Y_{0}^{\mathfrak k}})\mathrm {Tr}^{E} [\rho ^{E}(k^{-1} e^{-{Y_{0}^{\mathfrak k}}})$ can be viewed as a smooth function on the second copy of $\mathfrak z_{i}(\gamma )$ in $\mathfrak z_{i}(\gamma )\times \mathfrak z_{i}(\gamma )$. It lifts to a smooth function on $\mathfrak z_{i}(\gamma )\times \mathfrak z_{i}(\gamma )$.

Therefore,

(9.11)\begin{equation} L^{\mathfrak z(\gamma)}\cos(s\sqrt{(C^{\mathfrak g})^{\mathfrak z(\gamma)}+A}\,)H^{\gamma}\mathcal{J}_{\gamma}({Y_{0}^{\mathfrak k}})\mathrm{Tr}^{E} [\rho^{E}(k^{-1} e^{-{Y_{0}^{\mathfrak k}}})] \end{equation}

is a well-defined distribution on $\mathbf {R}\times \mathfrak z_{i}(\gamma )\times \mathfrak z_{i}(\gamma )$. The pushforward of this distribution by the projection $\mathbf {R}\times \mathfrak z_{i}(\gamma ) \times \mathfrak z_{i}(\gamma )\to \mathbf {R}$ is denoted by

(9.12)\begin{equation} \int_{H^{\gamma}}L^{\mathfrak z(\gamma)}\cos(s\sqrt{( C^{\mathfrak g})^{\mathfrak z(\gamma)}+A}\,)\mathcal{J}_{\gamma}({Y_{0}^{\mathfrak k}})\mathrm{Tr}^{E} [\rho^{E}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}} ) ]. \end{equation}

This is an even distribution supported in $\vert s\vert \ge \vert a\vert$, with singular support included in $s=\pm \vert a\vert$. Note that if $a=0$ and if $\mathfrak p(\gamma )=0$, the singular support of this distribution is empty.

Theorem 9.3 We have the identity of even distributions on $\mathbf {R}$ supported on $\vert s\vert \ge \vert a\vert$ with singular support included in $\pm \vert a\vert$,

(9.13)\begin{align} &\int_{\Delta^{\gamma}_{X}}\mathrm{Tr}^{F} [\gamma L\cos(s\sqrt{C^{\mathfrak g,X}+A}\,)]\nonumber\\ &\quad = \int_{H^{\gamma}}L^{\mathfrak z(\gamma)}\cos(s\sqrt{( C^{\mathfrak g})^{\mathfrak z(\gamma)}+A}\,)\mathcal{J}_{\gamma}({Y_{0}^{\mathfrak k}})\mathrm{Tr}^{E} [\rho^{E}(k^{-1} e^{-{Y_{0}^{\mathfrak k}}})]. \end{align}

Proof. We use Theorem 9.1, and we proceed as in the proof of [Reference BismutBis11, Theorem 6.3.2].

9.3 Compatibility properties of the formula

Let us give a direct proof that the right-hand side of (9.1) is invariant by conjugation of $\gamma$ in $G$. Indeed let $\gamma$ and $\gamma '$ be two conjugate elements in $G$ as in Theorem 2.3. By this theorem, they are also conjugate by an element $k''$ of $K$, and (2.33) holds. As the character of the representation $\rho ^{E}$ is invariant by conjugation by elements of $K$, the right-hand sides of (9.1) associated with $\gamma$ and $\gamma '$ coincide.

We denote the dependence of our orbital integrals on $E$ with an extra superscript $E$. If $L\in Z(\mathfrak g)$, by Theorem 6.1, the $L_{2}$ transpose of $L$ is just $\sigma (L)$. Observe that $C^{\mathfrak g,X}$ is symmetric, i.e. it is equal to its transpose. Then one has the easy formula

(9.14)\begin{equation} \begin{aligned} \mathrm{Tr}{}^{[\gamma^{-1}],E^{*}}[\sigma(L)\mu (\sqrt{C^{\mathfrak g,X}+A}\,)] & =\mathrm{Tr}{}^{[\gamma],E}[L\mu(\sqrt{C^{\mathfrak g,X}+A}\,)],\\ \overline{\mathrm{Tr}^{[\gamma],E}[L\mu(\sqrt{C^{\mathfrak g,X}+A}\,)]} & =\mathrm{Tr}{}^{[\gamma],E^{*}}[L \mu(\sqrt{C^{\mathfrak g,X}+A}\,)]. \end{aligned} \end{equation}

Using the identities in (2.71), we can recover (9.14) from (9.1).

Finally, it is easy to verify that, as it should be, our formula is unchanged when replacing $\gamma$ and $L$ by $\theta \gamma$ and $\theta L$.

10. Orbital integrals and the index theorem

The purpose of this section is to verify the compatibility of our formula for orbital integrals with the index theorem of Atiyah and Singer [Reference Atiyah and SingerAS68a, Reference Atiyah and SingerAS68b], to the Lefschetz formulas of [Reference Atiyah and BottAB67, Reference Atiyah and BottAB68] for Dirac operators, to the index formula of Kawasaki [Reference KawasakiKaw79]. More precisely we extend to the case of an arbitrary $L$ what was done in [Reference BismutBis11, Chapter 7] in the case $L=1$. In addition, we verify the compatibility of our results with results of Huang and Pandžić [Reference Huang and PandžićHP02] who established the Vogan conjecture on Dirac cohomology.

This section is organized as follows. In § 10.1, we construct the Dirac operator $D^{X}$ on the symmetric space $X$. In § 10.2, we introduce the relevant notation when $G$ and $K$ have the same complex rank. In § 10.3, we evaluate the orbital integrals associated with the index theorem for Dirac operators when $\gamma$ semisimple is nonelliptic, and also when $\gamma =1$. In § 10.4, when $\gamma$ is elliptic, we consider again the case where the difference of complex ranks is still equal to 0. In § 10.5, we evaluate the orbital integrals associated with the index theorem for the Dirac operator. Finally, in § 10.6, we verify the compatibility of our results with the results of Huang and Pandžić [Reference Huang and PandžićHP02].

10.1 The Dirac operator on $X$

Here, we use the notation of § 2. We assume that $K$ is simply connected, and also that $\mathfrak p$ is even-dimensional and oriented. Let $c(\mathfrak p)$ be the Clifford algebra associated with $(\mathfrak p,B\vert _{\mathfrak p})$.

As explained in [Reference BismutBis11, § 7.2], the representation $\rho ^{\mathfrak p}: K\to \mathrm {SO}(\mathfrak p)$ lifts to a representation $K\to \mathrm {Aut}^{\mathrm {even}}(S^{\mathfrak p})$, where $S^{\mathfrak p}=S^{\mathfrak p}_{+} \oplus S^{\mathfrak p}_{-}$ is the $\mathbf {Z}_{2}$-graded Hermitian vector space of $\mathfrak p$-spinors. We have the identification of $\mathbf {Z}_{2}$-graded algebras,

(10.1)\begin{equation} c(\mathfrak p) \otimes _{\mathbf{R}}\mathbf{C}=\mathrm{End}(S^{\mathfrak p}). \end{equation}

Set

(10.2)\begin{equation} S^{TX}=G\times_{K} S^{\mathfrak p}. \end{equation}

The $\mathbf {Z}_{2}$-graded vector bundle $S^{TX}$ inherits a unitary connection $\nabla ^{S^{TX}}$.

Let $\nabla ^{S^{TX}\otimes F}$ be the connection on $S^{TX} \otimes F$ associated with $\nabla ^{S^{TX}}, \nabla ^{F}$.

Recall that $C^{\mathfrak k,E}$ descends to a parallel section $C^{\mathfrak k,F }$ of $\mathrm {End}(F)$. Here, $C^{\mathfrak g,X}$ denotes the action of $C^{\mathfrak g}$ on $C^{\infty }(X,S^{TX} \otimes F)$.

Here, $D^{X}$ denotes the Dirac operator acting on $C^{\infty }(X,S^{TX}\otimes F)$. If $e_{1},\ldots,e_{m}$ is an orthonormal basis of $TX$, then

(10.3)\begin{equation} D^{X}=\sum_{1}^{n}c(e_{i})\nabla^{S^{TX} \otimes F}_{e_{i}}. \end{equation}

Let $\mathfrak h \subset \mathfrak g$ be a $\theta$-stable fundamental Cartan subalgebra of $\mathfrak g$. We use the notation

(10.4)\begin{equation} \mathfrak b=\mathfrak h_{\mathfrak p}, \quad \mathfrak t=\mathfrak h_{\mathfrak k}. \end{equation}

Then $\mathfrak t \subset \mathfrak k$ is the Lie algebra of a maximal torus $T \subset K$. In addition, $\dim \mathfrak t$ and $\dim \mathfrak h$ are the complex ranks of $K$ and $G$, and $\dim \mathfrak b$ is the difference of these complex ranks. As $m$ is even, $\dim \mathfrak b$ is also even. Let $\phi _{\mathrm {HC}}: Z(\mathfrak g) \simeq I{{}^{\cdot }}(\mathfrak h, \mathfrak g)$ be the corresponding isomorphism of Harish-Chandra.

We fix a system of positive roots in $i \mathfrak t^{*}$ associated with the pair $(\mathfrak t,\mathfrak k)$. In particular, $\rho ^{\mathfrak k}\in i \mathfrak t^{*}$ is calculated with respect to this system.

By [Reference BismutBis11, (7.2.8) and (7.2.9)] and by (2.48), we obtain

(10.5)\begin{equation} D^{X,2}=C^{\mathfrak g,X}-B^{*}(\rho^{\mathfrak g},\rho^{\mathfrak g})+B^{*}(\rho^{\mathfrak k},\rho^{\mathfrak k})-C^{\mathfrak k,F}. \end{equation}

We may and we will assume that $\rho ^{E}$ is an irreducible representation of $K$ with dominant weight $\lambda \in i \mathfrak t^{*}$. Then

(10.6)\begin{equation} C^{\mathfrak k,E}=-B^{*}(\rho^{\mathfrak k}+\lambda,\rho^{\mathfrak k}+\lambda)+B^{*}(\rho^{\mathfrak k},\rho^{\mathfrak k}). \end{equation}

By (10.5) and (10.6), we obtain

(10.7)\begin{equation} D^{X,2}=C^{\mathfrak g,X}-B^{*}(\rho^{\mathfrak g},\rho^{\mathfrak g})+B^{*}(\rho^{\mathfrak k}+\lambda,\rho^{\mathfrak k}+\lambda). \end{equation}

By (6.29), we can rewrite (10.7) in the form

(10.8)\begin{equation} D^{X,2}=C^{\mathfrak g,X}-\phi_{\mathrm{HC}}C^{\mathfrak g}( \rho^{\mathfrak k}+\lambda ). \end{equation}

10.2 The case where $\dim \mathfrak b=0$

In this subsection, we assume that $\dim \mathfrak b=0$. Then $\mathfrak h= \mathfrak t$ is a fundamental Cartan subalgebra of $\mathfrak g$, and

(10.9)\begin{equation} R=R^{\mathrm{im}}. \end{equation}

In addition, $R^{\mathrm {im}}_{\mathfrak k}$ is just the root system associated with the pair $(\mathfrak t, \mathfrak k)$. We fix a positive root system $R^{\mathrm {im}}_{+}$ which is compatible with the orientation of $\mathfrak p$.Footnote 15

The functions $\pi ^{\mathfrak t, \mathfrak g}$ and $\pi ^{\mathfrak t, \mathfrak k}$ on $\mathfrak t$ are given by

(10.10)\begin{equation} \pi^{\mathfrak t, \mathfrak g}(h)=\prod_{\alpha\in R^{\mathrm{im}}_{+}} \langle \alpha,h\rangle, \quad \pi^{\mathfrak t, \mathfrak k}(h)=\prod_{\alpha\in R^{\mathrm{im}}_{\mathfrak k,+}} \langle \alpha,h\rangle. \end{equation}

Here, $\rho ^{\mathfrak k}, \lambda \in i \mathfrak t^{*}$ are calculated with this choice of $R^{\mathrm {im}}_{\mathfrak k,+}$. We identify $\mathfrak t$ and $\mathfrak t^{*}$ by the quadratic form $B\vert _{\mathfrak t}$. In particular, $\pi ^{\mathfrak t, \mathfrak k}({\rho ^{\mathfrak k}}/{2\pi })$ and $\pi ^{\mathfrak t, \mathfrak k}(({\rho ^{\mathfrak k}+\lambda })/{2\pi })$ are well-defined, and ${\pi ^{\mathfrak t,\mathfrak g}(({\rho ^{\mathfrak k}+\lambda })/{2\pi })}/{\pi ^{\mathfrak t, \mathfrak k}({\rho ^{\mathfrak k}}/{2\pi })}$ only depends on the orientation of $\mathfrak p$. In addition $\phi _{\mathrm {HC}}L$ is a polynomial on $\mathfrak t^{*}$, and so $\phi _{\mathrm {HC}}L(-\rho ^{\mathfrak k}-\lambda )$ is well-defined.

10.3 Orbital integrals and the index theorem: the case of the identity

Take $L\in Z(\mathfrak g)$. For $t>0$, $L\exp (-tD^{X,2})$ acts on $C^{\infty }(X,S^{TX} \otimes F)$.

In the following, $\mathrm {Tr_{s}}$ is our notation for the supertrace.Footnote 16

As in [Reference BismutBis11, § 7.1], $\widehat {A}(TX,\nabla ^{TX}),\mathrm {ch}(F,\nabla ^{F})$ denote the obvious characteristic forms on $X$. Let $\eta \in \Lambda ^{m}(T^{*}X)$ be the canonical volume form on $X$ that defines its orientation. If $\alpha \in \Lambda {{}^{\cdot }}(T^{*}X)$, let $\alpha ^{(p)}$ denote its component in $\Lambda ^{p}(T^{*}X)$. Let $\alpha ^{\rm max}\in \mathbf {R}$ be such that

(10.11)\begin{equation} a^{(m)}=\alpha^{{\rm max}}\eta. \end{equation}

Let $\gamma \in G$ be semisimple. We extend [Reference BismutBis11, Theorem 7.4.1].

Theorem 10.1 If $\gamma$ is nonelliptic, for any $t>0$,

(10.12)\begin{equation} \mathrm{Tr_{s}}^{[\gamma]}[L\exp(-tD^{X,2})]=0. \end{equation}

If $\dim \mathfrak b>0$, for any $t>0$,

(10.13)\begin{equation} \begin{aligned} \mathrm{Tr_{s}}^{[1]}[L\exp(-tD^{X,2})]&=0,\\ [\widehat{A}(TX,\nabla^{TX})\mathrm{ch}(F,\nabla^{F})]^{{\rm max}}&=0. \end{aligned} \end{equation}

If $\dim \mathfrak b=0$, then

(10.14)\begin{equation} \begin{aligned} \mathrm{Tr_{s}}^{[1]}[L\exp(-tD^{X,2})]& =\phi_{\mathrm{HC}}L(-\rho^{\mathfrak k}-\lambda ) (-1)^{m/2} \frac{\pi^{\mathfrak t, \mathfrak g}(({\rho^{\mathfrak k}+\lambda})/{2\pi})}{\pi^{\mathfrak t,\mathfrak k} ({\rho^{\mathfrak k}}/{2\pi})},\\ [\widehat{A}(TX,\nabla^{TX})\mathrm{ch}(F,\nabla^{F})]^{{\rm max}} &=(-1)^{m/2} \frac{\pi^{\mathfrak t, \mathfrak g}(\tfrac{\rho^{\mathfrak k}+\lambda }{2\pi} )}{\pi^{\mathfrak t, \mathfrak k}({\rho^{\mathfrak k}}/{2\pi})}. \end{aligned} \end{equation}

Proof. First we prove (10.12). We proceed as in [Reference BismutBis11]. By Proposition 8.5, by Theorem 9.1, and by (10.7), we obtain

(10.15)\begin{align} \mathrm{Tr_{s}}^{[\gamma]}[L\exp(-tD^{X,2})]&=\exp(-tB^{*}(\rho^{\mathfrak k}+\lambda,\rho^{\mathfrak k}+\lambda))\nonumber\\ &\quad \times L^{ \mathfrak z(\gamma)}\exp(t\Delta^{\mathfrak z(\gamma)}) [ \mathcal{J}_{\gamma}(Y_{0}^{ \mathfrak k}) \mathrm{Tr_{s}}^{S^{ \mathfrak p}\otimes E}[\rho^{S^{\mathfrak p} \otimes E}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}})]\delta_{a}](0). \end{align}

In addition,

(10.16)\begin{align} \mathrm{Tr_{s}}^{S^{ \mathfrak p}\otimes E}[\rho^{S^{\mathfrak p} \otimes E}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}})]&= \mathrm{Tr_{s}}^{S^{ \mathfrak p}}[\rho^{S^{\mathfrak p}}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}})] \mathrm{Tr}^{ E}[\rho^{ E}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}})]. \end{align}

It is well-known that

\[ \mathrm{Tr_{s}}^{S^{ \mathfrak p}}[\rho^{S^{\mathfrak p}}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}})] \]

is a square root of $\det (1-\mathrm {Ad}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}})\vert _{\mathfrak p})$.

If $\gamma$ is nonelliptic, $a\neq 0$ lies in the kernel of $1-\mathrm {Ad}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}})\vert _{\mathfrak p}$, and so (10.16) vanishes. By (10.15), we obtain (10.12).

By [Reference BismutBis11, Theorem 7.4.1], we obtain

(10.17)\begin{equation} \mathrm{Tr_{s}}^{[1]}[\exp(-tD^{X,2})]= [\widehat{A}(TX,\nabla^{TX})\mathrm{ch}(F,\nabla^{F})]^{{\rm max}}. \end{equation}

By (10.15), we obtain

(10.18)\begin{align} \mathrm{Tr_{s}}^{[1]}[L\exp(-tD^{X,2})]&=\exp(-tB^{*}(\rho^{\mathfrak k}+ \lambda,\rho^{\mathfrak k}+\lambda))\nonumber\\ &\quad\times L^{\mathfrak g}\exp(t\Delta^{\mathfrak g})[ \mathcal{J}_{1}(Y_{0}^{ \mathfrak k}) \mathrm{Tr_{s}}^{S^{ \mathfrak p}\otimes E}[\rho^{S^{\mathfrak p} \otimes E}(e^{-{Y_{0}^{\mathfrak k}}})]\delta_{0}](0). \end{align}

We use (10.16) with $k=1$. We have the well-known identity in [Reference BismutBis11, (7.5.11)],

(10.19)\begin{equation} \mathrm{Tr_{s}}^{S^{ \mathfrak p}}[\rho^{S^{\mathfrak p}}(e^{-{Y_{0}^{\mathfrak k}}})] =(-i)^{m/2}\mathrm{Pf}[\mathrm{ad}({Y_{0}^{\mathfrak k}})\vert_{\mathfrak p}] \widehat{A}^{-1}(\mathrm{ad}({Y_{0}^{\mathfrak k}}\vert_{\mathfrak p})). \end{equation}

In (10.19), we may and we will assume that ${Y_{0}^{\mathfrak k}}\in i \mathfrak t$. As $\mathfrak b \subset \ker \mathrm {ad}({Y_{0}^{\mathfrak k}})\vert _{\mathfrak p}$, if $\dim \mathfrak b>0$, then

(10.20)\begin{equation} \mathrm{Pf}[\mathrm{ad}({Y_{0}^{\mathfrak k}})\vert_{\mathfrak p}]=0, \end{equation}

and so (10.19) vanishes, which implies the vanishing of (10.18), i.e. we have established the first identity in (10.13). Combining this equation for $L=1$ and (10.17), we obtain the second equation in (10.13).

In the following, we assume that $\dim \mathfrak b=0$. We use the notation and results of § 10.2.

If $\gamma =1$, put $\mathfrak g_{i}= \mathfrak z_{i}(\gamma )$, so that $\mathfrak g_{i}= \mathfrak p \oplus i \mathfrak k$. Let $L^{\mathfrak g}\exp (t\Delta ^{\mathfrak g})(f),\, f\in \mathfrak g_{i}$ be the convolution kernel for $L^{\mathfrak g}\exp (t\Delta ^{\mathfrak g})$. Then

(10.21)\begin{align} &L^{\mathfrak g}\exp(t\Delta^{\mathfrak g}) [ \mathcal{J}_{1}(Y_{0}^{ \mathfrak k}) \mathrm{Tr_{s}}^{S^{ \mathfrak p}\otimes E}[\rho^{S^{\mathfrak p} \otimes E}(e^{-{Y_{0}^{\mathfrak k}}})]\delta_{0}](0)\nonumber\\ &\quad =\int_{i \mathfrak k}L^{\mathfrak g}\exp(t\Delta^{\mathfrak g})(-{Y_{0}^{\mathfrak k}})\mathcal{J}_{1}(Y_{0}^{ \mathfrak k}) \mathrm{Tr_{s}}^{S^{ \mathfrak p}\otimes E}[\rho^{S^{\mathfrak p} \otimes E}(e^{-{Y_{0}^{\mathfrak k}}})]\,d{Y_{0}^{\mathfrak k}}. \end{align}

Let $W(\mathfrak t:\mathfrak k)$ denoteFootnote 17 the Weyl group associated with the pair $(\mathfrak t, \mathfrak k)$. As the integrated function on $i \mathfrak k$ is $K$-invariant, by Weyl's integration formula, as in (8.48), from (10.21), we obtain

(10.22)\begin{align} &L^{\mathfrak g}\exp(t\Delta^{\mathfrak g}/2) [ \mathcal{J}_{1}(Y_{0}^{ \mathfrak k}) \mathrm{Tr_{s}}^{S^{ \mathfrak p}\otimes E}[\rho^{S^{\mathfrak p} \otimes E}(e^{-{Y_{0}^{\mathfrak k}}})]\delta_{0}](0)\nonumber\\ &\quad =\frac{\mathrm{Vol}(K/T)}{\vert W(\mathfrak t:\mathfrak k) \vert}\int_{i \mathfrak t}L^{\mathfrak g}\exp(t\Delta^{\mathfrak g})(-h_{\mathfrak k}) \mathcal{J}_{1}(h_{\mathfrak k}) \mathrm{Tr_{s}}^{S^{ \mathfrak p}\otimes E}[\rho^{S^{\mathfrak p} \otimes E}(e^{-h_{\mathfrak k}})] [\pi^{\mathfrak t, \mathfrak k}(h_{\mathfrak k})]^{2} \, dh_{\mathfrak k}. \end{align}

By (2.70) and (10.19), we obtain

(10.23)\begin{equation} \mathcal{J}_{1}(h_{\mathfrak k})\mathrm{Tr_{s}}^{S^{\mathfrak p}} [e^{-h_{\mathfrak k}}]=(-i)^{m/2}\mathrm{Pf} [\mathrm{ad}(h_{\mathfrak k})\vert_{\mathfrak p}] \widehat{A}^{-1}(\mathrm{ad}(h_{\mathfrak k})\vert_{\mathfrak k}). \end{equation}

Moreover, given our choice of $R^{\mathrm {im}}_{\mathfrak p,+}$, we have

(10.24)\begin{equation} \mathrm{Pf}[\mathrm{ad}(h_{\mathfrak k})\vert_{\mathfrak p}] =i^{m/2}\prod_{\alpha\in R^{\mathrm{im}}_{\mathfrak p,+}} \langle \alpha,h_{\mathfrak k}\rangle. \end{equation}

If $w\in W(\mathfrak t:\mathfrak k)$, let $\epsilon _{w}=\pm 1$ be the determinant of $w$ on $\mathfrak t$. Using the Weyl character formula, we have the identity

(10.25)\begin{align} &[\pi^{\mathfrak t,\mathfrak k}(h_{\mathfrak k} ) ]^{2} \widehat{A}^{-1}(\mathrm{ad}(h_{\mathfrak k})\vert_{\mathfrak k})\mathrm{Tr}^{E} [\rho^{E}(e^{-h_{\mathfrak k}})]\nonumber\\ &\quad =(-1)^{\vert R^{\mathrm{im}}_{\mathfrak k,+}\vert}\pi^{\mathfrak t, \mathfrak k}(h_{\mathfrak k}) \sum_{w\in W(\mathfrak t:\mathfrak k)}\epsilon_{w}e^{-\langle w(\rho^{\mathfrak k}+\lambda),h_{\mathfrak k}\rangle}. \end{align}

By (10.10) and (10.23)–(10.25), we conclude that

(10.26)\begin{align} &\mathcal{J}_{1}(h_{\mathfrak k})\mathrm{Tr_{s}}^{S^{\mathfrak p} \otimes E}[\rho^{S^{\mathfrak p} \otimes E}(e^{-h_{\mathfrak k}})] [\pi^{\mathfrak t,\mathfrak k}(h_{\mathfrak k} ) ]^{2}\nonumber\\ &\quad =(-1)^{\vert R^{\mathrm{im}}_{\mathfrak k,+}\vert} \pi^{\mathfrak t,\mathfrak g}(h_{\mathfrak k}) \sum_{w\in W(\mathfrak t:\mathfrak k)}\epsilon_{w}e^{- \langle w(\rho^{\mathfrak k}+\lambda),h_{\mathfrak k}\rangle}. \end{align}

By (10.26), we obtain

(10.27)\begin{align} &\int_{i \mathfrak t}L^{\mathfrak g}\exp(t\Delta^{\mathfrak g})(-h_{\mathfrak k})\mathcal{J}_{1}(h_{\mathfrak k}) \mathrm{Tr_{s}}^{S^{ \mathfrak p}\otimes E}[\rho^{S^{\mathfrak p} \otimes E}(e^{-h_{\mathfrak k}})] [\pi^{\mathfrak t, \mathfrak k}(h_{\mathfrak k})]^{2} \, dh_{\mathfrak k}\nonumber\\ &\quad =(-1)^{\vert R^{\mathrm{im}}_{\mathfrak k,+}\vert}\int_{i \mathfrak t} L^{\mathfrak g}\exp(t\Delta^{\mathfrak g})(-h_{\mathfrak k}) \biggl(\pi^{\mathfrak t,\mathfrak g}(h_{\mathfrak k}) \sum_{w\in W(\mathfrak t:\mathfrak k)}\epsilon_{w}e^{-\langle w ( \rho^{\mathfrak k} +\lambda) ,h_{\mathfrak k}\rangle}\biggr) \,dh_{\mathfrak k}. \end{align}

As in (8.40), we use Rossmann formula in (10.27) with respect to the pair $(\mathfrak t, \mathfrak u)$. If $e\in \mathfrak t^{*}_{\mathbf {C}}$, we obtain

(10.28)\begin{align} &\int_{i\mathfrak t}L^{\mathfrak g}\exp(t\Delta^{\mathfrak g})(-h_{\mathfrak k})\pi^{\mathfrak t, \mathfrak g}(h_{\mathfrak k})e^{- \langle e,h_{\mathfrak k}\rangle} \, dh_{\mathfrak k}\nonumber\\ &\quad =(-1)^{\vert R^{\mathrm{im}}_{+}\vert} \pi^{\mathfrak t, \mathfrak g}\biggl(\frac{e}{2\pi}\biggr)L^{\mathfrak g}(-e)\exp(tB^{*}(e,e)). \end{align}

In addition, $W(\mathfrak t:\mathfrak k) \subset W(\mathfrak t_{\mathbf {C}}:\mathfrak g_{\mathbf {C}})$. Moreover, if $w\in W(\mathfrak t_{\mathbf {C}}:\mathfrak g_{\mathbf {C}})$, if $\epsilon _{w}$ still denotes the determinant of $w$ on $\mathfrak t$, by [Reference Bröcker and tom DieckBtD95, Corollary V.4.6 and Lemma V.4.10],

(10.29)\begin{equation} \pi^{\mathfrak t, \mathfrak g}(we)=\epsilon_{w}\pi^{\mathfrak t, \mathfrak g}(e). \end{equation}

Finally, $L^{\mathfrak g}\vert _{\mathfrak t}$ is $W(\mathfrak t_{\mathbf {C}}:\mathfrak g_{\mathbf {C}})$-invariant.

By (10.15), (10.22), (10.27), and (10.28), we obtain

(10.30)\begin{align} &\mathrm{Tr}^{[1]}[L\exp(-tD^{X,2})] =\mathrm{Vol}(K/T)(-1)^{\vert R^{\mathrm{im}}_{\mathfrak p,+}\vert} \pi^{\mathfrak t, \mathfrak g}\bigg(\frac{\rho^{\mathfrak k}+\lambda}{2\pi}\bigg) L^{\mathfrak g}(-\rho^{\mathfrak k}-\lambda). \end{align}

By construction,

(10.31)\begin{equation} L^{\mathfrak g}(-\rho^{\mathfrak k}-\lambda)=\phi_{\mathrm{HC}}L(- \rho^{\mathfrak k}-\lambda). \end{equation}

By [Reference Berline, Getzler and VergneBGV04, Corollary 7.27], we obtain

(10.32)\begin{equation} \mathrm{Vol}(K/T)=\frac{1}{\pi^{\mathfrak t, \mathfrak k}({\rho^{\mathfrak k}}/{2\pi})}. \end{equation}

In addition,

(10.33)\begin{equation} \vert R^{\mathrm{im}}_{\mathfrak p,+}\vert=m/2. \end{equation}

By (10.30)–(10.33), we obtain the first equation in (10.14). When $L=1$, we can compare (10.17) and this first equation, and we obtain the second equation in (10.14). The proof of our theorem is complete.

Remark 10.2 Equation (10.14) was obtained by Atiyah and Schmid [Reference Atiyah and SchmidAS77, (3.10)], using Hirzebruch proportionality principle [Reference HirzebruchHir58], and formulas such as (10.32).

10.4 The case where $\gamma =k^{-1},\dim \mathfrak b=0$

In this subsection, we assume that $\gamma$ is elliptic, i.e. $\gamma =k^{-1},\ k\in K$. Recall that the orientation of $\mathfrak p$ is fixed.

Let $T \subset K$ be a maximal torus, and let $\mathfrak t \subset \mathfrak k$ be the corresponding Lie algebra. We may and we will assume that $k\in T$, so that $\mathfrak t \subset \mathfrak k(k)$. Then $T$ is a maximal torus in $K^{0}(k)$, and $\mathfrak t \subset \mathfrak k(k)$. Let $\kappa \in \mathfrak t$ be such that

(10.34)\begin{equation} k=e^{\kappa}. \end{equation}

Then $\kappa$ is well-defined up to the lattice of integral elements in $\mathfrak t$ associated with $K$. As $k$ is in the center of $K^{0}(k)$, if $w\in W(\mathfrak t:\mathfrak k(k ))$, $w\kappa -\kappa$ is integral in $\mathfrak t$.

Let $\mathfrak h= \mathfrak b \oplus \mathfrak t$ be the associated fundamental $\theta$-stable Cartan subalgebra of $\mathfrak g$. Then $\mathfrak h$ is a $\theta$-stable fundamental Cartan subalgebra of $\mathfrak z(k)$.

In this subsection, we assume that $\dim \mathfrak b=0$. Then $\mathfrak t$ is a $\theta$-stable fundamental Cartan subalgebra of $\mathfrak g$ and of $\mathfrak z(k)$. As in (10.9), we have

(10.35)\begin{equation} R=R^{\mathrm{im}}, \quad R(k)=R^{\mathrm{im}}(k). \end{equation}

We make the same choice of $R^{\mathrm {im}}_{\mathfrak k,+},R^{\mathrm {im}}_{\mathfrak p,+}$ as in § 10.2. Set

(10.36)\begin{equation} R^{\mathrm{im}}_{+}(k)=R^{\mathrm{im}}_{+}\cap R^{\mathrm{im}}(k). \end{equation}

Then $R_{+}^{\mathrm {im}}(k)$ is a positive root system associated with the pair $(\mathfrak t,\mathfrak z(k))$, and we still have

(10.37)\begin{equation} R_{+}^{\mathrm{im}}(k)=R^{\mathrm{im}}_{\mathfrak p,+}(k)\cup R^{\mathrm{im}}_{\mathfrak k,+}(k). \end{equation}

The choice of $R_{\mathfrak p,+}^{\mathrm {im}}(k)$ defines an orientation on $\mathfrak p(k)$.

The functions $\pi ^{\mathfrak t, \mathfrak z(k)}, \pi ^{\mathfrak t, \mathfrak k(k)}$ on $\mathfrak t$ are given by

(10.38)\begin{equation} \pi^{\mathfrak t, \mathfrak z(k)}=\prod_{\alpha\in R^{\mathrm{im}}_{+}(k)} \langle \alpha,h\rangle, \quad \pi^{\mathfrak t, \mathfrak k(k)}=\prod_{\alpha\in R^{\mathrm{im}}_{\mathfrak k,+}(k)} \langle \alpha,h\rangle. \end{equation}

Again $\rho ^{\mathfrak k},\lambda \in i \mathfrak t^{*}$ are calculated with respect to $R^{\mathrm {im}}_{\mathfrak k,+}$, and $\rho ^{\mathfrak k(k)}\in i \mathfrak t^{*}$ is obtained via $R^{\mathrm {im}}_{\mathfrak k,+}(k)$. We identify $\mathfrak t$ and $\mathfrak t^{*}$ by the quadratic form $B\vert _{\mathfrak t}$. In particular, $\pi ^{\mathfrak t, \mathfrak k(k)}({\rho ^{\mathfrak k(k)}}/{2\pi })$ and $\pi ^{\mathfrak t,\mathfrak z(k)}(({\rho ^{\mathfrak k}+\lambda })/{2\pi })$ are well-defined as well as $\phi _{\mathrm {HC}}L(-\rho ^{\mathfrak k}-\lambda )$.

Then $W(\mathfrak t: \mathfrak k(k)) \subset W(\mathfrak t:\mathfrak k)$. If $w\in W(\mathfrak t:\mathfrak k)$, $e^{-\langle w(\rho ^{\mathfrak k}+\lambda ),\kappa \rangle }$ depends only on the image of $w$ in $W(\mathfrak t:\mathfrak k(k)){\setminus} W(\mathfrak t:\mathfrak k)$. The same is true for $\epsilon _{w}\pi ^{\mathfrak t,\mathfrak z(k)}({w(\rho ^{\mathfrak k}+\lambda )}/{2\pi })$.

10.5 Orbital integrals and index theory: the case of elliptic elements

We use the same notation as in § 10.4. In particular, $\gamma =k^{-1},\ k\in K$.

Let $X(\gamma )$ be the fixed point set of $\gamma$ in $X$. Let

\[ \widehat{A}^{\gamma}(TX\vert_{X(\gamma)},\nabla^{TX\vert_{X(\gamma)}}), \mathrm{ch}^{\gamma}(F,\nabla^{F}) \]

denote the corresponding Atiyah–Bott characteristic forms on $X(\gamma )$, that are defined as in [Reference BismutBis11, (7.7.2) and (7.7.4)].

Theorem 10.3 If $\dim \mathfrak b>0$, then

(10.39)\begin{equation} \begin{aligned} \mathrm{Tr_{s}}^{[\gamma]}[L\exp(-tD^{X,2})]& =0,\\ [\widehat{A}^{\gamma}(TX\vert_{X(\gamma)},\nabla^{TX\vert_{X(\gamma)}}) \mathrm{ch}^{\gamma}(F,\nabla^{F})]^{{\rm max}}& =0. \end{aligned} \end{equation}

If $\dim \mathfrak b=0$, then

(10.40)\begin{align} &\mathrm{Tr_{s}}^{[\gamma]}[L\exp(-tD^{X,2})]\nonumber\\ &\quad =\phi_{\mathrm{HC}}L(-\rho^{\mathfrak k}-\lambda )(-1)^{\dim \mathfrak p(k)/2} \frac{1}{ \pi^{\mathfrak t, \mathfrak k(k)}({\rho^{\mathfrak k(k)}}/{2\pi})} \frac{1}{ \prod_{\alpha\in R^{\mathrm{im}}_{+}{\setminus} R^{\mathrm{im}}_{+}(k)}2\sinh(-\langle \alpha,\kappa\rangle/2)}\nonumber\\ &\qquad\times \sum_{w\in W(\mathfrak t:\mathfrak k(k)){\setminus} W(\mathfrak t:\mathfrak k)} \epsilon_{w}\pi^{\mathfrak t, \mathfrak z(k)}\bigg(\frac{w(\rho^{\mathfrak k}+\lambda)}{2\pi}\bigg)e^{-\langle w(\rho^{\mathfrak k}+\lambda),\kappa\rangle}, \end{align}

and

(10.41)\begin{align} &[\widehat{A}^{\gamma}(TX\vert_{X(\gamma)},\nabla^{TX\vert_{X(\gamma)}}) \mathrm{ch}^{\gamma}(F,\nabla^{F})]^{{\rm max}}\nonumber\\ &\quad =(-1)^{\dim \mathfrak p(k)/2} \frac{1}{\pi^{\mathfrak t, \mathfrak k(k)}({\rho^{\mathfrak k(k)}}/{2\pi})}\frac{1}{ \prod_{\alpha\in R^{\mathrm{im}}_{+}{\setminus} R^{\mathrm{im}}_{+}(k)}2\sinh(-\langle \alpha,\kappa\rangle/2)}\nonumber\\ &\qquad \times \sum_{w\in W(\mathfrak t:\mathfrak k(k)){\setminus} W(\mathfrak t:\mathfrak k)} \epsilon_{w}\pi^{\mathfrak t, \mathfrak z(k)}\bigg(\frac{w(\rho^{\mathfrak k}+\lambda)}{2\pi}\bigg)e^{-\langle w(\rho^{\mathfrak k}+\lambda),\kappa\rangle}. \end{align}

Proof. By [Reference BismutBis11, Theorem 7.7.1], for $t>0$, we obtain

(10.42)\begin{align} &\mathrm{Tr_{s}}^{[\gamma]}[\exp(-tD^{X,2})] =[\widehat{A}^{\gamma}(TX\vert_{X(\gamma)},\nabla^{TX\vert_{X(\gamma)}}), \mathrm{ch}^{\gamma}(F,\nabla^{F})]^{{\rm max}}. \end{align}

Equation (10.15) still holds. We claim that if $\dim \mathfrak b>0$,

(10.43)\begin{equation} \mathrm{Tr_{s}}^{S^{\mathfrak p}}[\rho^{S^{\mathfrak p}}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}})]=0. \end{equation}

If ${Y_{0}^{\mathfrak k}}\in i\mathfrak k(k)$, after conjugation by an element of $K^{0}(k)$, we may assume that ${Y_{0}^{\mathfrak k}}\in i \mathfrak t$. If $\dim \mathfrak b>0$, then $1-\mathrm {Ad}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}})$ vanishes on $\mathfrak b$. The argument we gave after (10.16) shows that (10.43) vanishes. This proves the first equation in (10.39). Combining this equation for $L=1$ and (10.42), we obtain the second equation in (10.39).

In the following, we assume that $\dim \mathfrak b=0$. We use the notation and results of § 10.4, and also (10.15). As in (10.21), and with a similar notation, we obtain

(10.44)\begin{align} &L^{\mathfrak z(k)}\exp(t\Delta^{\mathfrak z(k)})[ \mathcal{J}_{k^{-1}}(Y_{0}^{ \mathfrak k}) \mathrm{Tr_{s}}^{S^{ \mathfrak p}\otimes E}[\rho^{S^{\mathfrak p} \otimes E}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}})]\delta_{0}](0)\nonumber\\ &\quad =\int_{i \mathfrak k(k)}L^{\mathfrak z(k)} \exp(t\Delta^{\mathfrak z(k)})(-{Y_{0}^{\mathfrak k}}) \mathcal{J}_{k^{-1}}({Y_{0}^{\mathfrak k}}) \mathrm{Tr_{s}}^{S^{\mathfrak p} \otimes E}[\rho^{S^{\mathfrak p} \otimes E}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}})] \, d{Y_{0}^{\mathfrak k}}. \end{align}

Using Weyl integration as in (10.22), we deduce from (10.44) that

(10.45)\begin{align} &L^{\mathfrak z(k)}\exp(t\Delta^{\mathfrak z(k)})[ \mathcal{J}_{k^{-1}}(Y_{0}^{ \mathfrak k}) \mathrm{Tr_{s}}^{S^{ \mathfrak p}\otimes E}[\rho^{S^{\mathfrak p} \otimes E}(k^{-1}e^{-{Y_{0}^{\mathfrak k}}})]\delta_{0}](0)\nonumber\\ &\quad =\frac{\mathrm{Vol}(K^{0}(k)/T)}{\vert W(\mathfrak t:\mathfrak k(k) )\vert} \int_{i \mathfrak t}L^{\mathfrak z(k)}\exp(t \Delta^{\mathfrak z(k)})(-h_{\mathfrak k})\nonumber\\ &\qquad \times \mathcal{J}_{k^{-1}}(h_{\mathfrak k}) \mathrm{Tr_{s}}^{S^{\mathfrak p} \otimes E} [\rho^{S^{\mathfrak p} \otimes E}(k^{-1}e^{-h_{\mathfrak k}})] [\pi^{\mathfrak t, \mathfrak k(k)}(h_{\mathfrak k})]^{2} \, dh_{\mathfrak k}. \end{align}

By [Reference BismutBis11, (7.7.7)] and using the corresponding notation, if $h_{\mathfrak k}\in i\mathfrak t$, we have the identity

(10.46)\begin{align} \mathrm{Tr_{s}}^{S^{\mathfrak p}}[\rho^{S^{\mathfrak p}}(k^{-1}e^{-h_{\mathfrak k}})] &=(-i)^{\dim \mathfrak p(k)/2}\mathrm{Pf}[\mathrm{ad}(h_{\mathfrak k})\vert_{\mathfrak p(k)}] \nonumber\\ &\quad \times \widehat{A}^{-1}(\mathrm{ad}(h_{\mathfrak k})\vert_{\mathfrak p(k)}) (\widehat{A}^{ke^{h_{\mathfrak k}}\vert_{\mathfrak p^{\perp}(k)}}(0) )^{-1}. \end{align}

By (2.68) and (10.46), and by proceeding as in [Reference BismutBis11, (7.7.8)], we obtain

(10.47)\begin{align} &\mathcal{J}_{k^{-1}}(h_{\mathfrak k})\mathrm{Tr_{s}}^{S^{\mathfrak p}} [\rho^{S^{\mathfrak p}}(k^{-1}e^{-h_{\mathfrak k}})] \nonumber\\ &\quad =(-i)^{\dim \mathfrak p(k)/2}\mathrm{Pf}[\mathrm{ad}(h_{\mathfrak k})\vert_{\mathfrak p(k)}] \widehat{A}^{-1}(\mathrm{ad}(h_{\mathfrak k}) \vert_{\mathfrak k(k)}) \widehat{A}^{k^{-1}\vert_{\mathfrak p^{\perp}(k)}}(0)\nonumber\\ &\qquad \times \bigg[\frac{\det(1-\mathrm{Ad}(k^{-1}e^{-h_{\mathfrak k}}))\vert_{ \mathfrak k^{\perp} (k)}}{\det(1-\mathrm{Ad}(k^{-1}))\vert _{ \mathfrak k^{\perp}(k)}}\bigg]^{1/2}. \end{align}

In addition, we have the identity

(10.48)\begin{equation} \bigg[\frac{\det(1-\mathrm{Ad}(k^{-1}e^{-h_{\mathfrak k}}))\vert_{ \mathfrak k^{\perp} (k)}}{\det(1-\mathrm{Ad}(k^{-1}))\vert _{ \mathfrak k^{\perp}(k)}}\bigg]^{1/2}=\frac{\widehat{A}^{k^{-1}\vert_{\mathfrak k^{\perp}(k)}}(0)}{\widehat{A}^{k^{-1}e^{-h_{\mathfrak k}}\vert_{\mathfrak k^{\perp}(k)}}(0)}. \end{equation}

Using (10.48), we can rewrite (10.47) in the form,

(10.49)\begin{align} &\mathcal{J}_{k^{-1}}(h_{\mathfrak k})\mathrm{Tr_{s}}^{S^{\mathfrak p}} [\rho^{S^{\mathfrak p}}(k^{-1}e^{-h_{\mathfrak k}})]\nonumber\\ &\quad =(-i)^{\dim \mathfrak p(k)/2} \mathrm{Pf}[\mathrm{ad}(h_{\mathfrak k})\vert_{\mathfrak p(k)}] \widehat{A}^{k^{-1}}(0)( \widehat{A}^{k^{-1}} ) ^{-1}(-\mathrm{ad}(h_{\mathfrak k})\vert_{\mathfrak k}) . \end{align}

As in (10.24), we obtain

(10.50)\begin{equation} \mathrm{Pf}[\mathrm{ad}(h_{\mathfrak k} ) \vert_{\mathfrak p(k)}] =i^{\dim \mathfrak p(k)/2}\prod_{\alpha\in R_{\mathfrak p,+}^{\mathrm{im}}(k)} \langle \alpha,h_{\mathfrak k}\rangle. \end{equation}

By Weyl's character formula, we obtain

(10.51)\begin{align} &[\pi^{\mathfrak t,\mathfrak k(k)}(h_{\mathfrak k})]^{2} \widehat{A}^{k^{-1}}(-\mathrm{ad}(h_{\mathfrak k})\vert_{\mathfrak k})\mathrm{Tr}^{E} [\rho^{E}(k^{-1}e^{-h_{\mathfrak k}})]\nonumber\\ &\quad = (-1)^{\vert R^{\mathrm{im}}_{\mathfrak k,+}(k)\vert} \pi^{\mathfrak t,\mathfrak k(k)}(h_{\mathfrak k}) \sum_{w\in W(\mathfrak t:\mathfrak k)}\epsilon_{w}e^{- \langle w ( \rho^{\mathfrak k}+\lambda), \kappa+h_{\mathfrak k} \rangle}. \end{align}

By (10.49)–(10.51), we find that

(10.52)\begin{align} &\mathcal{J}_{k^{-1}}(h_{\mathfrak k})\mathrm{Tr_{s}}^{S^{\mathfrak p} \otimes E}[\rho^{S^{\mathfrak p} \otimes E}(k^{-1}e^{-h_{\mathfrak k}})] [\pi^{\mathfrak t, \mathfrak k(k)}(h_{\mathfrak k})]^{2}\nonumber\\ &\quad =(-1)^{\vert R^{\mathrm{im}}_{\mathfrak k,+}(k)\vert} \widehat{A}^{k^{-1}}(0)\pi^{\mathfrak t, \mathfrak z(k)}(h_{\mathfrak k}) \sum_{w\in W(\mathfrak t:\mathfrak k)} \epsilon_{w}e^{-\langle w ( \rho^{\mathfrak k}+\lambda ) , \kappa+h_{\mathfrak k} \rangle}. \end{align}

By (10.52), we obtain

(10.53)\begin{align} &\int_{i \mathfrak t}L^{\mathfrak z(k)}\exp(t \Delta^{\mathfrak z(k)})(-h_{\mathfrak k}) \mathcal{J}_{k^{-1}}(h_{\mathfrak k}) \mathrm{Tr_{s}}^{S^{\mathfrak p} \otimes E} [\rho^{S^{\mathfrak p} \otimes E}(k^{-1}e^{-h_{\mathfrak k}})] [\pi^{\mathfrak t, \mathfrak k(k)}(h_{\mathfrak k})]^{2} \, dh_{\mathfrak k}\nonumber\\ &\quad =(-1)^{\vert R^{\mathrm{im}}_{\mathfrak k,+}(k)\vert} \widehat{A}^{k^{-1}}(0) \int_{i \mathfrak t}L^{\mathfrak z(k)}\exp(t \Delta^{\mathfrak z(k)})(-h_{\mathfrak k}) \pi^{\mathfrak t, \mathfrak z(k)}(h_{\mathfrak k})\sum_{w\in W(\mathfrak t:\mathfrak k)} \epsilon_{w}e^{-\langle w ( \rho^{\mathfrak k}+\lambda ) , \kappa+h_{\mathfrak k} \rangle} \, dh_{\mathfrak k}. \end{align}

Using Rossmann's formula as in (10.28), if $e\in \mathfrak t^{*}_{\mathbf {C}}$, we find that

(10.54)\begin{align} &\int_{i \mathfrak t}L^{\mathfrak z(k)}\exp(t \Delta^{\mathfrak z(k)})(-h_{\mathfrak k}) \pi^{\mathfrak t, \mathfrak z(k)}(h_{\mathfrak k})e^{-\langle e,h_{\mathfrak k}\rangle} \, dh_{\mathfrak k}\nonumber\\ &\quad =(-1)^{\vert R^{\mathrm{im}}_{+}( k ) \vert}\pi^{\mathfrak t,\mathfrak z(k)} \bigg(\frac{e}{2\pi}\bigg)L^{\mathfrak g}(-e)\exp(tB^{*}(e,e)). \end{align}

By (10.54), we obtain

(10.55)\begin{align} &\int_{i \mathfrak t}L^{\mathfrak z(k)}\exp(t \Delta^{\mathfrak z(k)})(-h_{\mathfrak k}) \pi^{\mathfrak t, \mathfrak z(k)}(h_{\mathfrak k})\sum_{w\in W(\mathfrak t:\mathfrak k)} \epsilon_{w}e^{-\langle w(\rho^{\mathfrak k}+\lambda), \kappa+h_{\mathfrak k} \rangle} \, dh_{\mathfrak k}\nonumber\\ &\quad =(-1)^{\vert R^{\mathrm{im}}_{+}(k)\vert} L^{\mathfrak g}(-\rho^{\mathfrak k}-\lambda)\exp(tB^{*}(\rho^{\mathfrak k}+\lambda,\rho^{\mathfrak k}+\lambda))\nonumber\\ &\qquad \times \sum_{w\in W(\mathfrak t:\mathfrak k)}\epsilon_{w}\pi^{\mathfrak t, \mathfrak z(k)}\bigg(\frac{w(\rho^{\mathfrak k}+\lambda)}{2\pi}\bigg)e^{-\langle w(\rho^{\mathfrak k}+\lambda),\kappa\rangle}. \end{align}

By the considerations that follow (10.34) and by (10.55), we obtain

(10.56)\begin{align} &\int_{i \mathfrak t}L^{\mathfrak z(k)}\exp(t \Delta^{\mathfrak z(k)})(-h_{\mathfrak k}) \pi^{\mathfrak t, \mathfrak z(k)}(h_{\mathfrak k})\sum_{w\in W(\mathfrak t:\mathfrak k)} \epsilon_{w}e^{-\langle w(\rho^{\mathfrak k}+\lambda), \kappa+h_{\mathfrak k} \rangle} \, dh_{\mathfrak k}\nonumber\\ &\quad =(-1)^{\vert R^{\mathrm{im}}_{+}(k)\vert} \vert W(\mathfrak t:\mathfrak k(k))\vert L^{\mathfrak g}(- \rho^{\mathfrak k}-\lambda)\exp(tB^{*}(\rho^{\mathfrak k}+ \lambda,\rho^{\mathfrak k}+\lambda))\nonumber\\ &\qquad \times \sum_{w\in W(\mathfrak t:\mathfrak k(k)){\setminus} W(\mathfrak t: \mathfrak k)}\epsilon_{w}\pi^{\mathfrak t, \mathfrak z(k)}\bigg(\frac{w(\rho^{\mathfrak k}+\lambda)}{2\pi}\bigg) e^{-\langle w(\rho^{\mathfrak k}+\lambda),\kappa\rangle}. \end{align}

By (10.15), (10.45), (10.53), and (10.56), we obtain

(10.57)\begin{align} \mathrm{Tr_{s}}^{[\gamma]}[L\exp(-tD^{X,2})]&=\mathrm{Vol}(K^{0}(k)/T)(-1)^{\vert R^{\mathrm{im}}_{\mathfrak p,+}(k)\vert}\widehat{A}^{k^{-1}}(0)\phi_{\mathrm{HC}}L(-\rho^{\mathfrak k}-\lambda ) \nonumber\\ &\quad \times \sum_{w\in W(\mathfrak t:\mathfrak k(k)){\setminus} W(\mathfrak t:\mathfrak k)} \epsilon_{w}\pi^{\mathfrak t, \mathfrak z(k)}\bigg(\frac{w(\rho^{\mathfrak k}+\lambda)}{2\pi}\bigg)e^{-\langle w(\rho^{\mathfrak k}+\lambda),\kappa\rangle}. \end{align}

As in (10.32), we obtain

(10.58)\begin{equation} \mathrm{Vol}(K^{0}(k)/T)=\frac{1}{\pi^{\mathfrak t, \mathfrak k(k)}({\rho^{\mathfrak k(k)}}/{2\pi})}. \end{equation}

As in (10.33), we obtain

(10.59)\begin{equation} \vert R^{\mathrm{im}}_{\mathfrak p,+}(k)\vert=\dim \mathfrak p(k)/2. \end{equation}

Moreover,

(10.60)\begin{equation} \widehat{A}^{k^{-1}}(0)=\frac{1}{ \prod_{\alpha\in R^{\mathrm{im}}_{+}{\setminus} R^{\mathrm{im}}_{+}(k)}2\sinh(-\langle \alpha,\kappa\rangle/2)}. \end{equation}

By (10.57)–(10.60), we obtain (10.40), which combined with (10.42) gives (10.41). The proof of our theorem is complete.

Remark 10.4 Equation (10.41) can also be obtained by a suitable application of Hirzebruch proportionality principle [Reference HirzebruchHir58] similar to what was done by Atiyah and Schmid [Reference Atiyah and SchmidAS77].

10.6 Orbital integrals and a conjecture by Vogan

Let $\pi$ be an irreducible unitary representation of $G$ acting on a Hilbert space $V_{\pi }$. By [Reference KnappKna86, p. 205], a vector $v\in V_{\pi }$ is called $K$-finite if the vector subspace generated by the vectors $k v\vert _{k\in K}$ has finite dimension. Let $V_{\pi,K}\subset V_{\pi }$ be the vector subspace of the $K$-finite vectors in $V_{\pi }$. By [Reference KnappKna86, Proposition 8.5], $U(\mathfrak g_{\mathbf {C}})$ acts on $V_{\pi,K}$, so that $V_{\pi,K}$ is a $(\mathfrak g_{\mathbf {C}},K)$-module.

Let $e_{1},\ldots, e_{m}$ be an orthonormal basis of $\mathfrak p$. Let $D\in U(\mathfrak g)\otimes c(\mathfrak p)$ be the Dirac operator,

(10.61)\begin{equation} D=\sum_{i=1}^{m}c(e_{i})e_{i}. \end{equation}

We denote by $D\vert _{V_{\pi,K}\otimes S^{\mathfrak p}}$ the restriction of $D$ to $V_{\pi,K}\otimes S^{\mathfrak p}$. By [Reference Huang and PandžićHP02, p. 189], the Dirac cohomology of $V_{\pi,K}$ is the $K$-module defined by

(10.62)\begin{equation} H_{D}(V_{\pi,K})=\ker D|_{V_{\pi,K}\otimes S^{\mathfrak p}}. \end{equation}

By [Reference KnappKna86, Theorem 8.1], each $K$-type in $H_{D}(V_{\pi,K})$ has finite multiplicity.

The Vogan conjecture, solved by Huang and Pandžić [Reference Huang and PandžićHP02, Corollary 2.4] states the following.

Theorem 10.5 If the Dirac cohomology $H_{D}(V_{\pi,K})$ contains a $K$-type of highest weight $\lambda \in i\mathfrak t^{*}$, the infinitesimal character of $V_{\pi,K}$ is $\rho ^{\mathfrak k}+\lambda$.

An equivalent formulation of Theorem 10.5 says that if $E$ is an irreducible $K$ representation of highest weight $\lambda \in i\mathfrak t^{*}$, if $D^{S^{\mathfrak p} \otimes E}$ denotes the restriction of $D$ to $(V_{\pi,K}\otimes S^{\mathfrak p}\otimes E)^{K}$, if $\ker D^{S^{\mathfrak p} \otimes E}\neq 0$, then $L\in Z(\mathfrak g)$ acts on $V_{\pi,K}$ as the scalar $\phi _{\rm HC}L(-\rho ^{\mathfrak k}-\lambda )$.

We show that (10.14) and (10.40) are compatible with Theorem 10.5. Let $\Gamma$ be a discrete cocompact subgroup of $G$. By [Reference Gelfand, Graev and Pyatetskii-ShapiroGGP90, Theorem, p.23], we have

(10.63)\begin{equation} L^{2}(\Gamma\backslash G)=\bigoplus_{\pi\in \widehat{G}_{u}}^{\rm Hil}n_{\Gamma}(\pi)V_{\pi}, \end{equation}

with $n_{\Gamma }(\pi )\in \mathbf {N}$.

We use the notation of § 10.1. In particular, we assume that $\rho ^{E}$ is an irreducible representation of $K$ with highest weight $\lambda \in i\mathfrak t^{*}$. Let $Z$ be the compact orbifold $Z=\Gamma {\setminus} X$. The vector bundle $F$ on $X$ descends to an orbifold vector bundle on $Z$, which we still denote by $F$. In addition, $D^{X}$ descends to the orbifold Dirac operator $D^{Z}$. By (10.63), we have

(10.64)\begin{equation} \ker D^{Z}=\bigoplus_{\pi\in \widehat{G}_{u}} n_{\Gamma}(\pi)(H_{D}(V_{\pi,K})\otimes E)^{K}. \end{equation}

As $\ker D^{Z}$ is finite-dimensional, the sum on the right-hand side only contains finitely many nonzero terms. By Theorem 10.5, $L\in Z(\mathfrak g)$ acts on $\ker D^{Z}$ as $\phi _{\rm HC}L(-\rho ^{\mathfrak k}-\lambda )$.

Using the McKean–Singer formula [Reference McKean and SingerMS67] and the above, for $t>0$, we obtain

(10.65)\begin{equation} \mathrm{Tr_{s}}[L\exp(-tD^{Z,2})]=\phi_{\mathrm{HC}}L(-\rho^{\mathfrak k}-\lambda)\mathrm{Tr_{s}}[\exp(-tD^{Z,2})]. \end{equation}

In addition, $\mathrm {Tr_{s}}[L\exp (-tD^{Z,2})]$ can be evaluated in terms of corresponding orbital integrals using Selberg's trace formula.

Assume first that $\Gamma$ is torsion free. By (10.12) in Theorem 10.1, only the identity element contributes to the above supertrace. Then (10.14) can be viewed as a consequence of (10.17) and (10.65).

When $\Gamma$ is not torsion free, only the finite number of conjugacy classes of elliptic elements in $\Gamma$ contribute to (10.65). Then (10.40) and (10.42) are compatible with (10.65).

Footnotes

The authors are much indebted to Laurent Clozel for his stimulating remarks during the preparation of the paper, and for reading the preliminary version very carefully. We thank the referee for his helpful remarks.

1 This means here that the connected component of the identity $Z^{0}(\gamma )$ is reductive, and the group $Z(\gamma )/Z^{0}(\gamma )$ is finite.

2 This isomorphism is usually written in its complex version $I{{}^{\cdot }}(\mathfrak g_{\mathbf {C}}) \simeq I{{}^{\cdot }}(\mathfrak h_{\mathbf {C}}, \mathfrak g_{\mathbf {C}})$. In §§ 3.3 and 6.3, the corresponding real version is derived. Such considerations will also apply to other complex isomorphisms.

3 This projection is defined in § 8.2.

4 In the following, $\otimes$ is omitted.

5 In [Reference KnappKna86, § 8.3], the Casimir is defined with the opposite sign. We have adopted the sign conventions of [Reference BismutBis11], which are closer to analysis.

6 More details are given in § 3 on Cartan subalgebras and root systems.

7 The definition of $\kappa ^{\mathfrak g}$ is not needed. The formula is given for later reference.

8 This fits with the classical notation in the theory of characteristic classes.

9 As explained in § 3.1, the symmetric form $B^{*}\vert _{\mathfrak z(\gamma )}$ determines the Laplacian $\Delta ^{\mathfrak z(\gamma )}$.

10 On $\mathbf {C} \simeq \mathbf {R}^{2}$, when acting on holomorphic functions, the differential operators ${\partial }/{\partial z}, {\partial }/{\partial x}, -i({\partial }/{\partial y})$ coincide. In this sense, the differential operator ${\partial }/{\partial x}$ on $\mathbf {R}$ extends to the differential operator ${\partial }/{\partial z}$ on $\mathbf {C}$, and restricts to the operator $-i({\partial }/{\partial y})$ on the imaginary line $i\mathbf {R}$. The operator ${\partial ^{2}}/{\partial x^{2}}$ on $\mathbf {R}$ restricts to the operator $-{\partial ^{2}}/{\partial y^{2}}$ on $i\mathbf {R}$.

11 In [Reference Harish-ChandraHar65, § 18], Harish-Chandra assumes $G$ to be acceptable, i.e. $\rho ^{\mathfrak g}$ is assumed to be a weight, so that $D_{H}(\gamma )$ can be globally defined. Here, we only need a local definition of $D_{H}(\gamma )$, and we do not need this assumption.

12 These are linear combinations of operators $\nabla ^{F}_{U_{1}}\ldots \nabla ^{F}_{U_{k}}$, where $U_{1},\ldots,U_{k}$ are smooth bounded vector fields with uniformly bounded covariant derivatives of any order.

13 We use this notation instead of $W(\mathfrak t(\gamma )_{\mathbf {C}}:\mathfrak k(\gamma )_{\mathbf {C}})$ because this Weyl group is real.

14 More precisely, if $G=KAN$ is the Iwasawa decomposition, when $\gamma =1$, the constant obtained in [Reference Harish-ChandraHar75] is $2^{{\dim N}/{2}}c_\gamma$. In [Reference Harish-ChandraHar75, § 7], Harish-Chandra uses another normalization for the Haar measure on $G$, which is adapted to the Iwasawa decomposition. By [Reference Harish-ChandraHar75, p. 202], the ratio of these two normalizations is given by $2^{{\dim N}/{2}}$, which explains the discrepancy.

15 Using the notation in § 3.6, if $b_{\mathfrak k}$ lies in a positive Weyl chamber with respect to $R_{+}^{\mathrm {im}}$, $\mathrm {ad}(b_{\mathfrak k})\vert _{\mathfrak p}$ defines an orientation of $\mathfrak p$.

16 If $V=V_{+} \oplus V_{-}$ is a $\mathbf {Z}_{2}$-graded vector space, if $\tau =\pm 1$ is the involution defining the grading, if $A\in \mathrm {End}(V)$, the supertrace of $A$ is defined to be $\mathrm {Tr_{s}}[A]=\mathrm {Tr}[\tau A]$.

17 As before, we use this notation instead of $W(\mathfrak t_{\mathbf {C}}:\mathfrak k_{\mathbf {C}})$ because this Weyl group is real.

References

Atiyah, M. F. and Bott, R., A Lefschetz fixed point formula for elliptic complexes. I, Ann. of Math. (2) 86 (1967), 374407.CrossRefGoogle Scholar
Atiyah, M. F. and Bott, R., A Lefschetz fixed point formula for elliptic complexes. II. Applications, Ann. of Math. (2) 88 (1968), 451491.CrossRefGoogle Scholar
Atiyah, M. F. and Schmid, W., A geometric construction of the discrete series for semisimple Lie groups, Invent. Math. 42 (1977), 162.CrossRefGoogle Scholar
Atiyah, M. F. and Singer, I. M., The index of elliptic operators. I, Ann. of Math. (2) 87 (1968), 484530.CrossRefGoogle Scholar
Atiyah, M. F. and Singer, I. M., The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546604.CrossRefGoogle Scholar
Ballmann, W., Gromov, M. and Schroeder, V., Manifolds of nonpositive curvature, Springer Monographs in Mathematics, vol. 61 (Birkhäuser, Boston, MA, 1985).CrossRefGoogle Scholar
Berline, N., Getzler, E. and Vergne, M., Heat kernels and Dirac operators, Grundlehren Text Editions (Springer, Berlin, 2004). Corrected reprint of the 1992 original.Google Scholar
Bismut, J.-M., Hypoelliptic Laplacian and orbital integrals, Annals of Mathematics Studies, vol. 177 (Princeton University Press, Princeton, NJ, 2011).Google Scholar
Bismut, J.-M. and Labourie, F., Symplectic geometry and the Verlinde formulas, in Surveys in differential geometry: differential geometry inspired by string theory, Surveys in Differential Geometry, vol. 5 (International Press, Boston, MA, 1999), 97311.Google Scholar
Bismut, J.-M. and Shen, S., Intégrales orbitales semi-simples et centre de l'algèbre enveloppante, C. R. Math. Acad. Sci. Paris 357 (2019), 897906.CrossRefGoogle Scholar
Bröcker, T. and tom Dieck, T., Representations of compact Lie groups, Graduate Texts in Mathematics, vol. 98 (Springer, New York, 1995). Translated from the German manuscript, Corrected reprint of the 1985 translation.Google Scholar
Chazarain, J. and Piriou, A., Introduction à la théorie des équations aux dérivées partielles linéaires (Gauthier-Villars, Paris, 1981).Google Scholar
Duflo, M., Caractères des groupes et des algèbres de Lie résolubles, Ann. Sci. École Norm. Sup. (4) 3 (1970), 2374.CrossRefGoogle Scholar
Eberlein, P. B., Geometry of nonpositively curved manifolds, Chicago Lectures in Mathematics (University of Chicago Press, Chicago, IL, 1996).Google Scholar
Gelfand, I. M., Graev, M. I. and Pyatetskii-Shapiro, I. I., Representation theory and automorphic functions, Generalized Functions, vol. 6 (Academic Press, Boston, MA, 1990). Translated from the Russian by K. A. Hirsch, Reprint of the 1969 edition.Google Scholar
Harish-Chandra, , The characters of semisimple Lie groups, Trans. Amer. Math. Soc. 83 (1956), 98163.CrossRefGoogle Scholar
Harish-Chandra, , Differential operators on a semisimple Lie algebra, Amer. J. Math. 79 (1957), 87120.CrossRefGoogle Scholar
Harish-Chandra, , A formula for semisimple Lie groups, Amer. J. Math. 79 (1957), 733760.CrossRefGoogle Scholar
Harish-Chandra, , Some results on an invariant integral on a semisimple Lie algebra, Ann. of Math. (2) 80 (1964), 551593.CrossRefGoogle Scholar
Harish-Chandra, , Invariant eigendistributions on a semisimple Lie group, Trans. Amer. Math. Soc. 119 (1965), 457508.CrossRefGoogle Scholar
Harish-Chandra, , Discrete series for semisimple Lie groups. II. Explicit determination of the characters, Acta Math. 116 (1966), 1111.CrossRefGoogle Scholar
Harish-Chandra, , Harmonic analysis on real reductive groups. I. The theory of the constant term, J. Funct. Anal. 19 (1975), 104204.CrossRefGoogle Scholar
Hirzebruch, F., Automorphe Formen und der Satz von Riemann-Roch, in Symposium internacional de topología algebraica international symposium on algebraic topology (Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958), 129144.Google Scholar
Hörmander, L., Distribution theory and Fourier analysis, in The analysis of linear partial differential operators. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256 (Springer, Berlin, 1983).Google Scholar
Hörmander, L., The analysis of linear partial differential operators. III. Pseudo-differential operators, Grundlehren der Mathematischen Wissenschaften Band 274 (Springer, Berlin, 1985).Google Scholar
Huang, J.-S. and Pandžić, P., Dirac cohomology, unitary representations and a proof of a conjecture of Vogan, J. Amer. Math. Soc. 15 (2002), 185202.CrossRefGoogle Scholar
Kawasaki, T., The Riemann–Roch theorem for complex $V$-manifolds, Osaka J. Math. 16 (1979), 151159.Google Scholar
Knapp, A. W., Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36 (Princeton University Press, Princeton, NJ, 1986). An overview based on examples.CrossRefGoogle Scholar
Knapp, A. W., Lie groups beyond an introduction, second edition, Progress in Mathematics, vol. 140 (Birkhäuser, Boston, MA, 2002).Google Scholar
Kostant, B., On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. École Norm. Sup. (4) 6 (1973), 413455.CrossRefGoogle Scholar
Kostant, B., On Macdonald's $\eta$-function formula, the Laplacian and generalized exponents, Adv. Math. 20 (1976), 179212.CrossRefGoogle Scholar
McKean, H. P. and Singer, I. M. Jr., Curvature and the eigenvalues of the Laplacian, J. Differential Geom. 1 (1967), 4369.CrossRefGoogle Scholar
Rossmann, W., Kirillov's character formula for reductive Lie groups, Invent. Math. 48 (1978), 207220.CrossRefGoogle Scholar
Selberg, A., Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 4787.Google Scholar
Taylor, M. E., Pseudodifferential operators, Princeton Mathematical Series, vol. 34 (Princeton University Press, Princeton, NJ, 1981).CrossRefGoogle Scholar
Varadarajan, V. S., Harmonic analysis on real reductive groups, Lecture Notes in Mathematics, vol. 576 (Springer, Berlin–New York, 1977).CrossRefGoogle Scholar
Vergne, M., On Rossmann's character formula for discrete series, Invent. Math. 54 (1979), 1114.CrossRefGoogle Scholar
Wallach, N. R., Real reductive groups. I, Pure and Applied Mathematics, vol. 132 (Academic Press, Boston, MA, 1988).Google Scholar