1 Introduction
We investigate sums involving the divisor function over nonhomogeneous Beatty sequences. The nonhomogeneous Beatty sequences of integers are defined by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu2.png?pub-status=live)
where
$\alpha $
and
$\beta $
are fixed real numbers and
$\beta \neq 0$
. Here,
$[x]$
denotes the greatest integer not larger than x. The distribution properties of such sequences are related to the type of
$\alpha .$
For an irrational number
$\alpha ,$
we define its type
$\tau $
by the relation
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu3.png?pub-status=live)
where
$\lVert u\rVert $
denotes the distance of u from the nearest integer. Thus, an irrational number
$\alpha $
is of type
$\tau $
if and only if for every
$\epsilon>0$
, there is a constant
$c(\tau ,\alpha )$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu4.png?pub-status=live)
For properties and extensions of the type, see [Reference Abercrombie, Banks and Shparlinski2, Reference Banks and Shparlinski3].
Let
$\alpha>1$
and
$\beta $
be fixed real numbers with
$\alpha $
positive, irrational and of finite type
$\tau =\tau (\alpha )$
. The classical divisor function
$d(n)$
denotes the number of divisors of the integer n. There are precise estimates for sums of the divisor function over homogeneous Beatty sequences. Abercrombie proved in [Reference Abercrombie1] that for almost all
$\alpha>1$
with respect to the Lebesgue measure,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu5.png?pub-status=live)
where the implied constant may depend on
$\alpha $
and
$\varepsilon .$
This result was subsequently improved and extended in various ways (see [Reference Abercrombie, Banks and Shparlinski2, Reference Lü and Zhai9, Reference Technau and Zafeiropoulos11, Reference Zhai14]). Zhai [Reference Zhai14] proved that for almost all
$\alpha>1$
with respect to the Lebesgue measure,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu6.png?pub-status=live)
where the implied constant may depend on
$\alpha $
and
$\varepsilon .$
In fact, this result can be modified to apply to an individual
$\alpha .$
The main aim of this paper is to generalise such sums to nonhomogeneous Beatty sequences and an individual number
$\alpha $
with an error term as strong as previous results (obtained for almost all numbers). By the method of [Reference Abercrombie, Banks and Shparlinski2] or [Reference Zhai14], it is not easy to obtain such results for nonhomogeneous Beatty sequences and an individual
$\alpha $
, and we borrow some ideas from [Reference Banks and Shparlinski3].
Before we focus on sums of the divisor function over Beatty sequences, we investigate a related double exponential sum, analogous to a result of Vaughan [Reference Vaughan12].
Theorem 1.1. Let
$\alpha>1$
be a real number. Suppose that
$a,q,h\in \mathbb {N}^{+}$
and
$H,x\geq 1$
with
$H\ll x.$
If
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu7.png?pub-status=live)
then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu8.png?pub-status=live)
Estimates for exponential functions twisted with divisor functions are classical problems in analytic number theory. For example, Chowla [Reference Chowla4] proved that for almost all irrational
$\alpha ,$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu9.png?pub-status=live)
as
$x\rightarrow \infty .$
Erdös [Reference Erdős5] improved the error term in this result to
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu10.png?pub-status=live)
for almost all
$\alpha .$
However, such estimates give no idea about the numbers
$\alpha $
to which the result applies. The estimates we obtain for such sums depend on the type of
$\alpha $
and we show that the estimate applies to any individual
$\alpha $
whose rational approximations satisfy certain hypotheses. In this way, we can derive estimates for specific values of
$\alpha $
(or over interesting classes of
$\alpha $
such as the class of algebraic numbers). For example, we give the following consequence of Theorem 1.1.
Corollary 1.2. For all irrational
$\alpha>1$
of finite type
$\tau <\infty , h\in \mathbb {N}^{+}$
and
$H,x\geq 1$
with
$H\ll x,$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu11.png?pub-status=live)
where the implied constant may depend on
$\alpha $
and
$\varepsilon .$
Remark 1.3. Taking
$\tau =1$
and
$H=1$
gives a similar upper bound for the sum
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu12.png?pub-status=live)
for individual numbers
$\alpha $
of finite type
$\tau <\infty $
.
By adapting the method of proving Theorem 1.1, we can obtain the following result for inhomogeneous Beatty sequences.
Theorem 1.4. Let
$\alpha>1$
be a fixed irrational number of finite type
$\tau <\infty $
and
$\beta \in \mathbb {R}$
be fixed. Then there is a constant
$\varepsilon>0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu13.png?pub-status=live)
where N is a sufficiently large integer and the implied constant depends only on
$\alpha , \beta $
and
$\varepsilon $
.
Remark 1.5. Previously, such estimates were proved only for almost all
$\alpha>1$
(not for an individual
$\alpha $
) and for homogeneous Beatty sequences. Our result also gives almost all results for nonhomogeneous Beatty sequences because, by the theorems of Khinchin [Reference Khinchin7] and of Roth [Reference Roth10], almost all real numbers and all irrational algebraic numbers are of type
$\tau =1$
. One can also consider generalised divisor functions, which were studied in [Reference Lü and Zhai9, Reference Zhai14] only for the case of homogeneous Beatty sequences.
2 Proof of Theorem 1.1
To prove the theorem, we need the concept of discrepancy. For a sequence
$u_{m}, m=1,2,\ldots\, $
, M, of points of
$\mathbb {R}/\mathbb {Z}$
, the discrepancy
$D(M)$
of the sequence is
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqn1.png?pub-status=live)
where the supremum is taken over all subintervals
$\mathcal {I}=(c, d)$
of the interval
$[0, 1), \mathcal {V} (\mathcal {I}, M)$
is the number of positive integers
$m\leq M$
such that
$u_{m}\in \mathcal {I}$
, and
$|\mathcal {I}| = d-c$
is the length of
$|\mathcal {I}|.$
Let
$D_{\alpha ,\beta }(M)$
denote the discrepancy of the sequence
$\{\alpha m+\beta \}, m=1,2,\ldots , M$
, where
$\{x\}=x-[x].$
We introduce several auxiliary lemmas.
Lemma 2.1 [Reference Banks and Shparlinski3].
Let
$\alpha>1.$
An integer m has the form
$m=[\alpha n+\beta ]$
for some integer n if and only if
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu14.png?pub-status=live)
The value of n is determined uniquely by
$m.$
Lemma 2.2 [Reference Kuipers and Niederreiter8, Ch. 2, Theorem 3.2].
Let
$\alpha $
be a fixed irrational number of finite type
$\tau <\infty .$
Then, for all
$\beta \in \mathbb {R},$
we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu15.png?pub-status=live)
as
$M\rightarrow \infty $
, where the function implied by
$o(1)$
depends only on
$\alpha .$
Lemma 2.3 [Reference Vinogradov13, page 32].
For any
$\Delta \in \mathbb {R}$
such that
$0<\Delta <1/8$
and
$\Delta \leq 1/2\min \{\gamma ,1-\gamma \},$
there exists a periodic function
$\Psi _{\Delta }(x)$
of period 1 such that:
-
(1)
$0\leq \Psi _{\Delta }(x) \leq 1 \mbox { for all } x\in \mathbb {R};$
-
(2)
$\Psi _{\Delta }(x)=\Psi (x) \mbox { if } \Delta \leq x\leq \gamma -\Delta \mbox { or } \gamma +\Delta \leq x\leq 1-\Delta $ where
$$ \begin{align*} \Psi(x)= \begin{cases} 1\ \ &\mbox{if}\ \,0<x\leq \gamma,\\ 0\ \ &\mbox{if}\ \,\gamma<x\leq 1; \end{cases} \end{align*} $$
-
(3)
$\Psi _{\Delta }(x)$ can be represented as a Fourier series
(2.2)where the coefficients$$ \begin{align} \Psi_{\Delta}(x)=\gamma+\sum_{j=1}^{\infty} g_{j}e({\kern1.5pt}jx)+h_{j}e(-jx), \end{align} $$
$g_{j}$ and
$h_{j}$ satisfy
$\max \{|g_{j}|, |h_{j}|\}\ll \min \{{\kern1.5pt}j^{-1},j^{-2}\Delta ^{-1}\}$ for
$j\geq 1$ .
Lemma 2.4. Let
$\alpha $
be of finite type
$\tau <\infty $
and let K be sufficiently large. For an integer
$w\geq 1,$
there exist
$a,q\in \mathbb {Z}, a/q\in \mathbb {Q}$
with
$(a,q)=1$
and
$K^{1/\tau -\varepsilon }w^{-1}<q\leq K$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu17.png?pub-status=live)
Proof. By the Dirichlet approximation theorem, there is a rational number
$a/q$
with
$(a,q)=1$
and
$q\leq K$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu18.png?pub-status=live)
that is,
$ \lVert qw\alpha \rVert \,\leq 1/K. $
Since
$\alpha $
is of type
$\tau <\infty ,$
for sufficiently large
$K,$
we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu19.png?pub-status=live)
Thus
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu20.png?pub-status=live)
which gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu21.png?pub-status=live)
Lemma 2.5 [Reference Iwaniec and Kowalski6, Section 13.5].
If
$\vert \alpha -a/q\vert \leq q^{-2}, a,q\in \mathbb {N}$
and
$(a,q)=1,$
then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu22.png?pub-status=live)
Proof of Theorem 1.1.
By the Dirichlet hyperbolic method,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqn3.png?pub-status=live)
However,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu23.png?pub-status=live)
By the well-known estimate
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu24.png?pub-status=live)
we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu25.png?pub-status=live)
Hence by Lemma 2.5,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqn4.png?pub-status=live)
Hence, by Lemma 2.4, (2.3) and (2.4), for all irrational
$\alpha $
of finite type
$\tau <\infty $
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu26.png?pub-status=live)
3 Proof of Theorem 1.4
It is easy to see that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu27.png?pub-status=live)
Hence, we can focus on the right-hand sum. The proof is similar to the argument of Theorem 1.1. Let
$\delta =\alpha ^{-1}(1-\beta )$
and
$M=[\alpha N+\beta ].$
Then by Lemma 2.1,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqn5.png?pub-status=live)
where
$\Psi (x)$
is the periodic function with period one for which
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu28.png?pub-status=live)
Let
$\Delta $
and
$\Psi _{\Delta }(x)$
satisfy the conditions of Lemma 2.3 with
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu29.png?pub-status=live)
From (3.1),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqn6.png?pub-status=live)
where
$\mathcal {V}(I,M)$
denotes the number of positive integers
$m\leq M$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu30.png?pub-status=live)
Since
$|I|\ll \Delta ,$
it follows from the definition (2.1) and Lemma 2.2 that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqn7.png?pub-status=live)
where the implied constant depends only on
$\alpha .$
By (2.2),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqn8.png?pub-status=live)
By Lemma 2.3, for
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqn9.png?pub-status=live)
we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqn10.png?pub-status=live)
Then by Theorem 1.1, (3.5) and (3.6),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqn11.png?pub-status=live)
where
$1\leq H\leq N^{2/(\tau +1)}$
and q is determined by (3.5) and (3.6) with
$K=N^{\tau /(\tau +1)}$
. Similarly,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqn12.png?pub-status=live)
However, the well-known bound
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu31.png?pub-status=live)
implies that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqn13.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqn14.png?pub-status=live)
where
$\Delta =N^{-1/(\tau +1)}.$
Inserting the bounds (3.7)–(3.10) into (3.4),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000181:S0004972722000181_eqnu32.png?pub-status=live)
where the implied constant depends on
$\alpha , \beta $
and
$\varepsilon .$
Substituting this bound and (3.3) into (3.2) and recalling the choice of
$\Delta =N^{-1/(\tau +1)}$
completes the proof of Theorem 1.4.
Acknowledgement
I am deeply grateful to the referee(s) for carefully reading the manuscript and making useful suggestions.