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Abstract

We consider sums involving the divisor function over nonhomogeneous (β � 0) Beatty sequences Bα,β :=
{[αn + β]}∞n=1 and show that

∑
n≤N, n∈Bα,β

d(n) = α−1
∑
m≤N

d(m) + O(N1−1/(τ+1)+ε),

where N is a sufficiently large integer, α is of finite type τ and β � 0. Previously, such estimates were only
obtained for homogeneous Beatty sequences or for almost all α.

2020 Mathematics subject classification: primary 11L20; secondary 11L07, 11B83.

Keywords and phrases: exponential sums, Beatty sequences, divisor problems.

1. Introduction

We investigate sums involving the divisor function over nonhomogeneous Beatty
sequences. The nonhomogeneous Beatty sequences of integers are defined by

Bα,β := {[αn + β]}∞n=1,

where α and β are fixed real numbers and β � 0. Here, [x] denotes the greatest integer
not larger than x. The distribution properties of such sequences are related to the type
of α. For an irrational number α, we define its type τ by the relation

τ := sup
{
θ ∈ R : lim

r→+∞
inf
r∈Z+

rθ‖rα‖ = 0
}
,

where ‖u‖ denotes the distance of u from the nearest integer. Thus, an irrational number
α is of type τ if and only if for every ε > 0, there is a constant c(τ,α) such that

r‖rα‖ ≥ c(τ,α)r−τ−ε+1.

For properties and extensions of the type, see [2, 3].
Let α > 1 and β be fixed real numbers with α positive, irrational and of finite

type τ = τ(α). The classical divisor function d(n) denotes the number of divisors
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of the integer n. There are precise estimates for sums of the divisor function over
homogeneous Beatty sequences. Abercrombie proved in [1] that for almost all α > 1
with respect to the Lebesgue measure,∑

n≤x, n∈Bα,0

d(n) = α−1
∑
n≤x

d(n) + O(x5/7+ε),

where the implied constant may depend on α and ε. This result was subsequently
improved and extended in various ways (see [2, 9, 11, 14]). Zhai [14] proved that for
almost all α > 1 with respect to the Lebesgue measure,∑

n≤x, n∈Bα,0

d(n) = α−1
∑
n≤x

d(n) + O(x1/2+ε),

where the implied constant may depend on α and ε. In fact, this result can be modified
to apply to an individual α.

The main aim of this paper is to generalise such sums to nonhomogeneous Beatty
sequences and an individual number α with an error term as strong as previous results
(obtained for almost all numbers). By the method of [2] or [14], it is not easy to obtain
such results for nonhomogeneous Beatty sequences and an individual α, and we borrow
some ideas from [3].

Before we focus on sums of the divisor function over Beatty sequences, we
investigate a related double exponential sum, analogous to a result of Vaughan [12].

THEOREM 1.1. Let α > 1 be a real number. Suppose that a, q, h ∈ N+ and H, x ≥ 1
with H � x. If

|α − a/q| ≤ 1/q2, (a, q) = 1,

then
∑
h≤H

∣∣∣∣∣
∑
n≤x

d(n)e(αhn)
∣∣∣∣∣ �
(
Hx1/2 + q + Hxq−1)xε.

Estimates for exponential functions twisted with divisor functions are classical
problems in analytic number theory. For example, Chowla [4] proved that for almost
all irrational α, ∑

1≤n≤x

d(n)e(αn) = o(x log x)

as x→ ∞. Erdös [5] improved the error term in this result to∑
1≤n≤x

d(n)e(αn) = O(x1/2 log x)

for almost all α. However, such estimates give no idea about the numbers α to which
the result applies. The estimates we obtain for such sums depend on the type of α and
we show that the estimate applies to any individual α whose rational approximations
satisfy certain hypotheses. In this way, we can derive estimates for specific values of α
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(or over interesting classes of α such as the class of algebraic numbers). For example,
we give the following consequence of Theorem 1.1.

COROLLARY 1.2. For all irrational α > 1 of finite type τ < ∞, h ∈ N+ and H, x ≥ 1
with H � x,

∑
h≤H

∣∣∣∣∣
∑
n≤x

d(n)e(αhn)
∣∣∣∣∣ � Hx1/2+ε + (Hx)1−1/(τ+1)+ε,

where the implied constant may depend on α and ε.

REMARK 1.3. Taking τ = 1 and H = 1 gives a similar upper bound for the sum∑
1≤n≤x

d(n)e(αn)

for individual numbers α of finite type τ < ∞.

By adapting the method of proving Theorem 1.1, we can obtain the following result
for inhomogeneous Beatty sequences.

THEOREM 1.4. Let α > 1 be a fixed irrational number of finite type τ < ∞ and β ∈ R
be fixed. Then there is a constant ε > 0 such that∑

n≤N, n∈Bα,β

d(n) = α−1
∑
m≤N

d(m) + O(N1−1/(τ+1)+ε),

where N is a sufficiently large integer and the implied constant depends only on α, β
and ε.

REMARK 1.5. Previously, such estimates were proved only for almost all α > 1 (not
for an individual α) and for homogeneous Beatty sequences. Our result also gives
almost all results for nonhomogeneous Beatty sequences because, by the theorems of
Khinchin [7] and of Roth [10], almost all real numbers and all irrational algebraic
numbers are of type τ = 1. One can also consider generalised divisor functions, which
were studied in [9, 14] only for the case of homogeneous Beatty sequences.

2. Proof of Theorem 1.1

To prove the theorem, we need the concept of discrepancy. For a sequence um,
m = 1, 2, . . . , M, of points of R/Z, the discrepancy D(M) of the sequence is

D(M) = sup
I∈[0,1)

∣∣∣∣∣
V(I, M)

M
− |I|
∣∣∣∣∣, (2.1)

where the supremum is taken over all subintervals I = (c, d) of the interval
[0, 1),V(I, M) is the number of positive integers m ≤ M such that um ∈ I, and
|I| = d − c is the length of |I|.

Let Dα,β(M) denote the discrepancy of the sequence {αm + β}, m = 1, 2, . . . , M,
where {x} = x − [x]. We introduce several auxiliary lemmas.
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LEMMA 2.1 [3]. Let α > 1. An integer m has the form m = [αn + β] for some integer n
if and only if

0 < {α−1(m − β + 1)} ≤ α−1.

The value of n is determined uniquely by m.

LEMMA 2.2 [8, Ch. 2, Theorem 3.2]. Let α be a fixed irrational number of finite type
τ < ∞. Then, for all β ∈ R, we have

Dα,β(M) ≤ M−1/τ+o(1),

as M → ∞, where the function implied by o(1) depends only on α.

LEMMA 2.3 [13, page 32]. For any Δ ∈ R such that 0 < Δ < 1/8 and Δ ≤
1/2 min{γ, 1 − γ}, there exists a periodic function ΨΔ(x) of period 1 such that:

(1) 0 ≤ ΨΔ(x) ≤ 1 for all x ∈ R;
(2) ΨΔ(x) = Ψ(x) if Δ ≤ x ≤ γ − Δ or γ + Δ ≤ x ≤ 1 − Δ where

Ψ(x) =

⎧⎪⎪⎨⎪⎪⎩
1 if 0 < x ≤ γ,
0 if γ < x ≤ 1;

(3) ΨΔ(x) can be represented as a Fourier series

ΨΔ(x) = γ +
∞∑

j=1

gje( jx) + hje(−jx), (2.2)

where the coefficients gj and hj satisfy max{|gj|, |hj|} � min{ j−1, j−2Δ−1} for j ≥ 1.

LEMMA 2.4. Let α be of finite type τ < ∞ and let K be sufficiently large. For an integer
w ≥ 1, there exist a, q ∈ Z, a/q ∈ Q with (a, q) = 1 and K1/τ−εw−1 < q ≤ K such that∣∣∣∣∣αw − a

q

∣∣∣∣∣ ≤
1

qK
.

PROOF. By the Dirichlet approximation theorem, there is a rational number a/q with
(a, q) = 1 and q ≤ K such that ∣∣∣∣∣αw − a

q

∣∣∣∣∣ <
1

qK
,

that is, ‖qwα‖ ≤ 1/K. Since α is of type τ < ∞, for sufficiently large K, we have

‖qwα‖ ≥ (qw)−τ−ε.

Thus

1/K ≥ ‖qwα‖ ≥ (qw)−τ−ε,

which gives

q ≥ K1/τ−εw−1. �
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LEMMA 2.5 [6, Section 13.5]. If |α − a/q| ≤ q−2, a, q ∈ N and (a, q) = 1, then
∑

1≤n≤M

min
{ x

n
,

1
2‖nα‖

}
� (M + q + xq−1) log 2qx.

PROOF OF THEOREM 1.1. By the Dirichlet hyperbolic method,
∑
h≤H

∣∣∣∣∣
∑

1≤n≤x

d(n)e(αhn)
∣∣∣∣∣ =
∑
h≤H

∣∣∣∣∣
∑

n1n2≤x

e(αhn1n2)
∣∣∣∣∣ ≤
∑
h≤H

2
∣∣∣∣∣
∑

n1n2≤x
n1≤n2

e(αhn1n2)
∣∣∣∣∣. (2.3)

However, ∣∣∣∣∣
∑

n1n2≤x
n1≤n2

e(αhn1n2)
∣∣∣∣∣ �

∑
n1≤x1/2

∣∣∣∣∣
∑

n2≤x/n1

e(αhn1n2)
∣∣∣∣∣.

By the well-known estimate
∑

1≤n≤x

e(αn) ≤ min
(
x,

1
2‖α‖

)
,

we have ∣∣∣∣∣
∑

n2≤x/n1

e(αhn1n2)
∣∣∣∣∣ ≤ min

( x
n1

,
1

2‖αhn1‖

)
.

Hence by Lemma 2.5,
∑
h≤H

∣∣∣∣∣
∑

n1n2≤x
n1≤n2

e(αhn1n2)
∣∣∣∣∣ �
∑
h≤H

∑
n1≤x1/2

min
( x
n1

,
1

2‖αhn1‖

)

� xε
∑

n≤Hx1/2

min
(Hx

n
,

1
2‖αn‖

)

� xε(Hx1/2 + q + Hxq−1) log 2qx. (2.4)

Hence, by Lemma 2.4, (2.3) and (2.4), for all irrational α of finite type τ < ∞,
∑
h≤H

∑
n≤x

d(n)e(αn) � Hx1/2+ε + (Hx)1−1/(τ+1)+ε.

This completes the proof of Theorem 1.1 and Corollary 1.2. �

3. Proof of Theorem 1.4

It is easy to see that
∑

n≤x, n∈Bα,β

d(n) =
∑

n≤(x−β)/α
d([αn + β]).
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Hence, we can focus on the right-hand sum. The proof is similar to the argument of
Theorem 1.1. Let δ = α−1(1 − β) and M = [αN + β]. Then by Lemma 2.1,

∑
n≤N

d([αn + β]) =
∑
m≤M

0<{γm+δ}≤γ

d(m) + O(1) =
∑
m≤M

d(m)Ψ(γm + δ) + O(1), (3.1)

where Ψ(x) is the periodic function with period one for which

Ψ(x) =

⎧⎪⎪⎨⎪⎪⎩
1 if 0 < x ≤ γ,
0 if γ < x ≤ 1.

Let Δ and ΨΔ(x) satisfy the conditions of Lemma 2.3 with

0 < Δ < 1/8 and Δ ≤ min{γ, 1 − γ}/2.

From (3.1),
∑
n≤N

d([αn + β]) =
∑
m≤M

d(m)Ψ(γm + δ) + O(1)

=
∑
m≤M

d(m)ΨΔ(γm + δ) + O(1 +V(I, M) log N), (3.2)

whereV(I, M) denotes the number of positive integers m ≤ M such that

{γm + δ} ∈ I = [0,Δ) ∪ (γ − Δ, γ + Δ) ∪ (1 − Δ, 1).

Since |I| � Δ, it follows from the definition (2.1) and Lemma 2.2 that

V(I, M) � ΔN + N(1−1)/τ+ε, (3.3)

where the implied constant depends only on α. By (2.2),
∑
m≤M

d(m)ΨΔ(γm + δ)

= γ
∑
m≤M

d(m) +
∞∑

k=1

gke(δk)
∑
m≤M

d(m)e(γkm) +
∞∑

k=1

hke(−δk)
∑
m≤M

d(m)e(−γkm).

(3.4)

By Lemma 2.3, for

|γ − a/q| ≤ 1/qK, (3.5)

we have

K1/τ ≤ q ≤ K. (3.6)
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Then by Theorem 1.1, (3.5) and (3.6),∑
k≤N2/(τ+1)

gke(δk)
∑
m≤M

d(m)e(γkm) � Nε
∑
k∼H

gke(δk)
∑
m≤M

d(m)e(γkm)

� Nε(N1/2 + q + N/q)

� N1−1/(τ+1)+ε, (3.7)

where 1 ≤ H ≤ N2/(τ+1) and q is determined by (3.5) and (3.6) with K = Nτ/(τ+1).
Similarly, ∑

k≤N2/(τ+1)

gke(−δk)
∑
m≤M

d(dm + c)e(−γkm) � N1−1/(τ+1)+ε. (3.8)

However, the well-known bound∑
m≤M

d(m)e(γkm) � N(log N)2

implies that∑
k≥N2/(τ+1)

gke(δk)
∑
m≤M

d(dm + c)e(γkm) � N1+ε
∑

k≥N2/(τ+1)

k−2Δ−1 � N1−1/(τ+1)+ε (3.9)

and ∑
k≥N2/(τ+1)

gke(−δk)
∑
m≤M

d(m)e(−γkm) � N1+ε
∑

k≥N2/(τ+1)

k−2Δ−1 � N1−1/(τ+1)+ε, (3.10)

where Δ = N−1/(τ+1). Inserting the bounds (3.7)–(3.10) into (3.4),∑
m≤M

d(m)ΨΔ(γm + δ) = γ
∑
m≤M

d(m) + O(N1−1/(τ+1)+ε),

where the implied constant depends on α, β and ε. Substituting this bound and (3.3)
into (3.2) and recalling the choice of Δ = N−1/(τ+1) completes the proof of Theorem 1.4.
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