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Abstract

We consider sums involving the divisor function over nonhomogeneous (8 # 0) Beatty sequences B,z :=
{lan + B}, and show that

Z din) = o™ Z d(m) + O(N'-V/@+Drey

n<N, n€B,p m<N
where N is a sufficiently large integer, « is of finite type T and 8 # 0. Previously, such estimates were only
obtained for homogeneous Beatty sequences or for almost all .
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1. Introduction

We investigate sums involving the divisor function over nonhomogeneous Beatty
sequences. The nonhomogeneous Beatty sequences of integers are defined by
Bafﬁ = {[an +ﬁ]};o=1,

where @ and (8 are fixed real numbers and 8 # 0. Here, [x] denotes the greatest integer
not larger than x. The distribution properties of such sequences are related to the type
of a. For an irrational number @, we define its type 7 by the relation

r:=sup{feR: lim inf /’|ral| =0},
r—+oo reZ*
where ||u|| denotes the distance of u from the nearest integer. Thus, an irrational number
a is of type 7 if and only if for every € > 0, there is a constant ¢(7, @) such that
—T—&+1

rlra|l = c(t,a)r

For properties and extensions of the type, see [2, 3].
Let @ > 1 and 8 be fixed real numbers with « positive, irrational and of finite
type 7 = t(a). The classical divisor function d(n) denotes the number of divisors
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of the integer n. There are precise estimates for sums of the divisor function over
homogeneous Beatty sequences. Abercrombie proved in [1] that for almost all @ > 1
with respect to the Lebesgue measure,

> dm=at Y dm) + 0T,

n<x,n€By n<x

where the implied constant may depend on « and &. This result was subsequently
improved and extended in various ways (see [2, 9, 11, 14]). Zhai [14] proved that for
almost all @ > 1 with respect to the Lebesgue measure,

> dmw=a ) dm) + o),

n<x,n€B, n<x

where the implied constant may depend on « and ¢. In fact, this result can be modified
to apply to an individual a.

The main aim of this paper is to generalise such sums to nonhomogeneous Beatty
sequences and an individual number @ with an error term as strong as previous results
(obtained for almost all numbers). By the method of [2] or [14], it is not easy to obtain
such results for nonhomogeneous Beatty sequences and an individual @, and we borrow
some ideas from [3].

Before we focus on sums of the divisor function over Beatty sequences, we
investigate a related double exponential sum, analogous to a result of Vaughan [12].

THEOREM 1.1. Let a > 1 be a real number. Suppose that a,q,h € N* and H,x > 1
with H < x. If

|CY_a/C]| < l/qza (a’CI) = L
then

Z Z d(n)e(ahn)| < (Hx'"? + g + Hxq~")x".

h<H n<x

Estimates for exponential functions twisted with divisor functions are classical
problems in analytic number theory. For example, Chowla [4] proved that for almost
all irrational «,

D" dme(an) = oxlogx)
1<n<x
as x — oo. Erdos [5] improved the error term in this result to
> dmyetan) = 0" logx)
1<n<x

for almost all . However, such estimates give no idea about the numbers @ to which
the result applies. The estimates we obtain for such sums depend on the type of @ and
we show that the estimate applies to any individual @ whose rational approximations
satisfy certain hypotheses. In this way, we can derive estimates for specific values of «
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(or over interesting classes of @ such as the class of algebraic numbers). For example,
we give the following consequence of Theorem 1.1.

COROLLARY 1.2. For all irrational a > 1 of finite type T < co,h € N* and H,x > 1

with H < x,
Z Z d(n)e(ahn)

h<H n<x

< Hxl/2+£ + (Hx)l—l/(‘r+1)+£’

where the implied constant may depend on « and €.

REMARK 1.3. Taking 7 = 1 and H = 1 gives a similar upper bound for the sum

Z d(n)e(an)

1<n<x

for individual numbers « of finite type T < oco.

By adapting the method of proving Theorem 1.1, we can obtain the following result
for inhomogeneous Beatty sequences.

THEOREM 1.4. Let @ > 1 be a fixed irrational number of finite type T < oo and 3 € R
be fixed. Then there is a constant € > 0 such that

Z d(n) = a/*l Z d(m) + O(lel/(‘r+l)+8)’

n<N, n€B,p m<N

where N is a sufficiently large integer and the implied constant depends only on a,f3
and €.

REMARK 1.5. Previously, such estimates were proved only for almost all @ > 1 (not
for an individual @) and for homogeneous Beatty sequences. Our result also gives
almost all results for nonhomogeneous Beatty sequences because, by the theorems of
Khinchin [7] and of Roth [10], almost all real numbers and all irrational algebraic
numbers are of type 7 = 1. One can also consider generalised divisor functions, which
were studied in [9, 14] only for the case of homogeneous Beatty sequences.

2. Proof of Theorem 1.1

To prove the theorem, we need the concept of discrepancy. For a sequence u,,,
m=1,2,..., M, of points of R/Z, the discrepancy D(M) of the sequence is

VI, M)

DM) = sup 7

I€[0,1)

-]

: @2.1)

where the supremum is taken over all subintervals 7 = (c,d) of the interval
[0,1),V(I,M) is the number of positive integers m < M such that u,, € 7, and
|Z| = d — c is the length of |7].

Let D, (M) denote the discrepancy of the sequence {am + 8}, m=1,2,...,M,
where {x} = x — [x]. We introduce several auxiliary lemmas.
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LEMMA 2.1 [3]. Let a > 1. An integer m has the form m = [an + 8] for some integer n
if and only if

O<{a'm-p+1y<al
The value of n is determined uniquely by m.

LEMMA 2.2 [8, Ch. 2, Theorem 3.2]. Let @ be a fixed irrational number of finite type
T < 00, Then, for all B € R, we have

Dafﬂ(M) < M_I/T+0(1),
as M — oo, where the function implied by o(1) depends only on «.

LEMMA 2.3 [13, page 32]. For any A€R such that 0 <A< 1/8 and A<
1/2min{y, 1 — v}, there exists a periodic function Yx(x) of period 1 such that:

(1) 0<War(x) <1forallxeR,;
2) YaA) =YX ifA<x<y—-Aory+A<x<1-Awhere

1 if0 <
Y= TO<xsy
0 ify<x<l,

(3) Wa(x) can be represented as a Fourier series

Wa() =y + ) gje(jx) + hye(=j), 22)
j=1

where the coefficients g; and h; satisfy max{|gjl, |hj|} < min{;~",j2A™"} forj > 1.

LEMMA 2.4. Let a be of finite type T < oo and let K be sufficiently large. For an integer
w > 1, there exist a,q € Z,a/q € Q with (a,q) = 1 and K™ *w™! < g < K such that

1

aw — —| < —.

ql gk

PROOF. By the Dirichlet approximation theorem, there is a rational number a/q with
(a,q) = 1 and g < K such that

‘ a

1
aw - —| <

ql gk’
that is, ||gwa|| < 1/K. Since « is of type T < oo, for sufficiently large K, we have

‘ a

llgwell > (gw)™*.
Thus
1/K = ligwaell = (gw)™*,
which gives

q> K" O
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LEMMA 2.5 [6, Section 13.5]. If |l —a/q| < q%,a,q € N and (a,q) = 1, then

1
Z min{f, —} < (M + q +xq ") log 2¢x.
n 2|nal

1<n<M
PROOF OF THEOREM 1.1. By the Dirichlet hyperbolic method,

Z Z d(n)e(ahn)| = Z Z e(ahniny)| < Zz Z e(ahnins)

h<H ' 1<n=<x h<H " niny<x h<H ~nmny<x
ni<ny

However,

Z e(ahniny)| < Z ‘ Z e(ahniny)

niny<x ni<xl/2 na<x/m
ny<np

By the well-known estimate

Z e(an) < min (x, ﬁ),

1<n<x
we have

< min( al ! )
B ny 2llahny|| )/

‘ Z e(ahniny)

ny<x/ny

Hence by Lemma 2.5,

Z Z e(ahniny)

(X 1
<2, ), m‘“(n_l’znahmu)

h<H nin;<x h<H pn;<x/2
ny <np
. . (Hx 1
< X E min — ol
n an
0t llan|

< x*(Hx'"? + g + Hxq ") log 2¢x.
Hence, by Lemma 2.4, (2.3) and (2.4), for all irrational « of finite type 7 < oo,
D0 d(melan) < Hx'/* + (Hx)' -/,

h<H n<x

This completes the proof of Theorem 1.1 and Corollary 1.2.

3. Proof of Theorem 1.4

It is easy to see that

D> dm= ) d(an+B)).

n<x, n€B, g n<(x—p)/a
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Hence, we can focus on the right-hand sum. The proof is similar to the argument of
Theorem 1.1. Let 6 = @~'(1 — 8) and M = [aN + j3]. Then by Lemma 2.1,

Dlden+ph = > dm+0()= Y dm¥ym+6)+01), (31
n<N m<M m<M
O<{ym+6}<y
where W(x) is the periodic function with period one for which
1 if0 <v,
wy={ LOSTEY
0 ify<x<l
Let A and W (x) satisfy the conditions of Lemma 2.3 with

0<A<1/8 and A <min{y,1-vy}/2.

From (3.1),
Ddlan+B) = " dm)Plym +6) + O(1)
n<N m<M
= " dm)¥alym +6) + O(1 + VI, M)log ), (3.2)
m<M

where V(I, M) denotes the number of positive integers m < M such that
fym+6el=[0,MD)U(y—A,y+ AU -A1).
Since |I| <« A, it follows from the definition (2.1) and Lemma 2.2 that
VI, M) < AN + NU-D/Tre) (3.3)

where the implied constant depends only on a. By (2.2),

D dm¥atym + 6)

m<M

=y Z d(m) + i gre(5k) Z d(m)e(ykm) + i hye(~ok) Z d(m)e(—ykm).
=1 =1

m<M k m<M K m<M
(3.4)
By Lemma 2.3, for
ly —alql < 1/4K, (3.5)
we have
K'"<q<K. (3.6)
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Then by Theorem 1.1, (3.5) and (3.6),
gre(Sk) Z d(m)e(ykm) < N* Z gre(k) Z d(m)e(ykm)

k<N2/(@+1) m<M k~H m<M

< N°(N'? + g+ N/q)

< Nl—l/(T+1)+£’ (37)
where 1 < H < N?@D and ¢ is determined by (3.5) and (3.6) with K = N7/*D,
Similarly,

gre(—ok) Z d(dm + ¢)e(—ykm) < N'7V/T+Dre, (3.8)
k<N2/(x+1) ms<M ’

However, the well-known bound
D" dmye(ykm) < N(log Ny’
m<M
implies that
gre(Sk) Z d(dm + c)e(ykm) < N'*¢ Z K2A7! < NIVEEDE (3 9)
k>N2/@+D) m<M k>N2/@+D)
and

gke(—ék)Zd(m)e(—ykm) < N'*e Z K2A7H <« NIUGEDre (3 10y

k>N2/G@+1) m<M k>N?2/@+1)

where A = N~/ nserting the bounds (3.7)—(3.10) into (3.4),
D dm¥atym+6) =y ). dm) + ON'-HE+Dw),

ms<M m<M

where the implied constant depends on «, 8 and €. Substituting this bound and (3.3)
into (3.2) and recalling the choice of A = N~/ completes the proof of Theorem 1.4.
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