1 Introduction
Let
$\mathbb {N}$
be the set of all nonnegative integers. For a set
$A\subseteq \mathbb {N}$
, let
$R_{1}(A,n)$
,
$R_{2}(A,n)$
and
$R_{3}(A,n)$
denote the number of solutions of
$a_1+a_2=n, a_1,a_2\in A$
;
$a_1+a_2=n, a_1, a_2\in A, a_1<a_2$
and
$a_1+a_2=n, a_1,a_2\in A, a_1\leq a_2$
, respectively. For
$i=1,2,3$
, Sárközy asked whether there exist two sets A and B with
$|(A\cup B)\setminus (A\cap B)|=+\infty $
such that
$R_{i}(A,n)=R_{i}(B,n)$
for all sufficiently large integers n. We call this problem the Sárközy problem. In 2002, Dombi [Reference Dombi2] proved that the answer is negative for
$i=1$
and positive for
$i=2$
. For
$i=3$
, Chen and Wang [Reference Chen and Wang1] proved that the answer is also positive. In 2004, Lev [Reference Lev3] provided a new proof by using generating functions. Later, Sándor [Reference Sándor5] determined the partitions of
$\mathbb {N}$
into two sets with the same representation functions by using generating functions. In 2008, Tang [Reference Tang6] provided a simple proof by using the characteristic function.
In 2012, Yang and Chen [Reference Yang and Chen7] first considered the Sárközy problem with weighted representation functions. For any positive integers
$k_1,\ldots ,k_t$
and any set
$A\subseteq \mathbb {N}$
, let
$R_{k_1,\ldots ,k_t}(A,n)$
be the number of solutions of the equation
$n=k_1a_1+\cdots +k_ta_t$
with
$a_1,\ldots ,a_t\in A$
. They posed the following question.
Problem 1.1 [Reference Yang and Chen7, Problem 1]
Does there exist a set
$A\subseteq \mathbb {N}$
such that
$R_{k_1,\ldots ,k_t}(A,n)=R_{k_1,\ldots ,k_t}(\mathbb {N}\setminus A,n)$
for all
$n\geq n_0$
?
They answered this question for
$t=2$
and proved the following results.
Theorem 1.2 [Reference Yang and Chen7, Theorem 1].
If
$k_1$
and
$k_2$
are two integers with
$k_2>k_1\geq 2$
and
$(k_1,k_2)=1$
, then there does not exist any set
$A\subseteq \mathbb {N}$
such that
$R_{k_1,k_2}(A,n)=R_{k_1,k_2} (\mathbb {N}\setminus A,n)$
for all sufficiently large integers n.
Theorem 1.3 [Reference Yang and Chen7, Theorem 2].
If k is an integer with
$k>1$
, then there exists a set
$A\subseteq \mathbb {N}$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqn1.png?pub-status=live)
for all integers
$n\geq 1$
.
Furthermore, if
$0\in A$
, then (1.1) holds for all integers
$n\geq 1$
if and only if
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqnu1.png?pub-status=live)
where
$[x,y]=\{n:n\in \mathbb {Z},x\leq n\leq y\}$
.
Later, Li and Ma [Reference Li and Ma4] proved the same results by using generating functions.
Let g be a fixed integer. In this paper, we consider whether there exists a set
$A\subseteq \mathbb {N}$
such that
$R_{k_1,k_2}(A,n)-R_{k_1,k_2}(\mathbb {N}\setminus A,n)=g$
for all
$n\geq n_0$
. First, we answer this problem in the negative if
$k_1$
and
$k_2$
are two integers with
$2\le k_1<k_2$
and
$(k_1,k_2)=1$
.
Theorem 1.4. Let g be a fixed integer. If
$k_1$
and
$k_2$
are two integers with
$2\le k_1<k_2$
and
$(k_1,k_2)=1$
, then there does not exist any set
$A\subseteq \mathbb {N}$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqnu2.png?pub-status=live)
for all sufficiently large integers n.
Similar to Theorem 1.3, we seek a set
$A\subseteq \mathbb {N}$
such that
$R_{1,k}(A,n)-R_{1,k}(\mathbb {N}\setminus A,n)=g$
for all integers
$n\geq 1$
. In fact, if
$|g|>1$
, then such a set A does not exist by the simple observation that
$0\le R_{1,k}(A,n)\le 1$
and
$0\le R_{1,k}(\mathbb {N}\setminus A,n)\le 1$
for all positive integers
$n<k$
. So we only need to consider the case
$g=1$
.
Theorem 1.5. If k is an integer with
$k>1$
, then there exists a set
$A\subseteq \mathbb {N}$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqn2.png?pub-status=live)
for all integers
$n\ge 1$
.
Furthermore, (1.2) holds for all integers
$n\geq 1$
if and only if
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqnu3.png?pub-status=live)
2 Proofs
Lemma 2.1. Let
$k_1<k_2$
be two positive integers,
$\{a(n)\}_{n=-\infty }^{+\infty }$
be a sequence of integers with
$a(n)=0$
for
$n<0$
and
$A\subseteq \mathbb {N}$
. Then the equality
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqn3.png?pub-status=live)
holds for all nonnegative integers n if and only if
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqnu4.png?pub-status=live)
holds for all nonnegative integers n, where
$\chi _A(i)$
is the characteristic function of A, that is,
$\chi _A(i) = 1$
if
$i\in A$
and
$\chi _A(i) = 0$
if
$i\notin A$
.
Proof. Let
$f(x)$
be the generating function associated with A, that is,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqnu5.png?pub-status=live)
Then,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqnu6.png?pub-status=live)
Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqnu7.png?pub-status=live)
It follows that (2.1) holds for all nonnegative integers n if and only if
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqnu8.png?pub-status=live)
that is,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqn4.png?pub-status=live)
Note that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqnu9.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqnu10.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqnu11.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqnu12.png?pub-status=live)
It follows from (2.2) that for all nonnegative integers n,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqnu13.png?pub-status=live)
This completes the proof of Lemma 2.1.
Lemma 2.2. Let
$n_0$
be a positive integer and
$k_1<k_2$
be two positive integers with
$(k_1,k_2)=1$
and
$A\subseteq \mathbb {N}$
be a set with
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqn5.png?pub-status=live)
If
$n\ge k_1+k_2+n_0$
and
$\chi _{A}(n)+\chi _{A}(n+1)=1$
, then
$k_2\mid n+1$
.
Proof. Since
$\chi _{A}(n)+\chi _{A}(n+1)=1$
, it follows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqn6.png?pub-status=live)
By (2.3),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqnu14.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqnu15.png?pub-status=live)
It follows from (2.4) that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqnu16.png?pub-status=live)
Let t and r be integers with
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqnu17.png?pub-status=live)
If
$r\ge 1$
, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqnu18.png?pub-status=live)
which is a contradiction. Hence,
$r=0$
and
$(n+1)k_1=tk_2$
. Noting that
$(k_1,k_2)=1$
, we have
$k_2\mid n+1$
. This completes the proof of Lemma 2.2.
Proof of Theorem 1.4.
Let g be an integer and let
$k_1,k_2$
be integers with
$2\le k_1<k_2$
and
$(k_1,k_2)=1$
. Suppose that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqn7.png?pub-status=live)
for all integers
$n\ge n_0$
. Let
$\{a(n)\}_{n=-\infty }^{+\infty }$
be a sequence of integers with
$a(n)=0$
for
$n<0$
and
$a(n)=g$
for all integers
$n\ge n_0$
. It follows from Lemma 2.1 that for all integers
$i\ge k_1+k_2+n_0$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqn8.png?pub-status=live)
If A is a finite set, then
$R_{k_1,k_2}(A,n)=0$
for all sufficiently large integers n, and
$R_{k_1,k_2} (\mathbb {N}\setminus A,n)$
cannot be a fixed constant as
$n\rightarrow +\infty $
, which implies that (2.5) cannot hold. So A is an infinite set. Similarly,
$\mathbb {N}\setminus A$
is also an infinite set.
Since
$2\le k_1<k_2$
, it follows that there exists an integer
$t>1$
such that
$k_2< k_1^{t}$
. Note that both A and
$\mathbb {N}\setminus A$
are infinite sets. So there exists an integer
$n=k_1^{\alpha }k_2^{\beta }h-1>(k_1+k_2+n_0)^{t+1}$
such that
$n\in A$
and
$n+1\notin A$
, where
$\alpha $
and
$\beta $
are nonnegative integers and h is a positive integer with
$(h,k_1k_2)=1$
. It follows from (2.6) and Lemma 2.2 that
$k_2\mid n+1$
and
$\beta \ge 1$
. Since
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqnu19.png?pub-status=live)
it follows that
$k_1^{\alpha +\beta }>k_1+k_2+n_0$
or
$h>k_1+k_2+n_0$
. Hence, for any
$0\le i\le \beta $
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqn9.png?pub-status=live)
By (2.6),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqn10.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqn11.png?pub-status=live)
Since
$k_1^{\alpha }k_2^{\beta }h=n+1\notin A$
and
$k_1^{\alpha }k_2^{\beta }h-1=n\in A$
, it follows from (2.8) and (2.9) that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqnu20.png?pub-status=live)
By Lemma 2.2,
$k_2\mid k_1^{\alpha +1}k_2^{\beta -1}h$
and so
$\beta \ge 2$
. Continuing this procedure yields
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqnu21.png?pub-status=live)
By (2.7) and Lemma 2.2, we also have
$k_2\mid k_1^{\alpha +\beta }h$
, which is impossible. Hence, there does not exist any set
$A\subseteq \mathbb {N}$
such that (2.5) holds for all sufficiently large integers n. This completes the proof of Theorem 1.4.
Proof of Theorem 1.5.
Suppose that there is a set A such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqn12.png?pub-status=live)
for all integers
$n\ge 1$
. Then
$0 \in A$
and (2.10) holds for all integers
$n\ge 0$
. Let
$\{a(n)\}_{n=-\infty }^{+\infty }$
be a sequence of integers with
$a(n)=0$
for
$n<0$
and
$a(n)=1$
for
$n\ge 0$
. By Lemma 2.1,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqnu22.png?pub-status=live)
for all nonnegative integers n if and only if
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqnu23.png?pub-status=live)
for all nonnegative integers n, that is,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqnu24.png?pub-status=live)
Thus,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250122144111663-0939:S0004972723001053:S0004972723001053_eqnu25.png?pub-status=live)