1 Introduction
Let
$\mathbb {N}$
be the set of all nonnegative integers. For
$A\subseteq \mathbb {N} $
,
$h\geq 2$
, the h-fold sum of A, denoted
$hA$
, is the set of sums of h not necessarily distinct elements of A and
$h^{\wedge }A$
is the set of sums of h distinct elements of A. Let W be a nonempty subset of
$\mathbb {N}$
. Denote by
${F}^{\ast }(W)$
the set of all finite, nonempty subsets of W. Given positive integers
$g,h \geq 2$
, denote
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu1.png?pub-status=live)
For
$i = 0,1,\ldots ,h-1$
, let
$W_i^{(h)}=\{n\in \mathbb {N}: n\equiv i\pmod h\}$
and let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu2.png?pub-status=live)
The set A is an asymptotic basis of order h if
$hA$
contains all sufficiently large integers. An asymptotic basis A of order h is minimal if
$A\setminus \{a\}$
is not an asymptotic basis of order h for every nonnegative integer
$a\in A$
. In 1974, Nathanson [Reference Nathanson4] first gave an explicit construction of a minimal asymptotic basis of order
$2$
by using properties of binary representations. In 2010, Jańczak and Schoen [Reference Jańczak and Schoen3] constructed a dense minimal asymptotic basis of order two. Nathanson’s method has been widely used in the construction of minimal asymptotic bases. For related problems concerning minimal asymptotic bases, see [Reference Chen and Tang2, Reference Nathanson6, Reference Sun7]. The study of asymptotic bases and minimal asymptotic bases is closely related to the famous Erdős–Turán conjecture in additive number theory (see [Reference Alladi and Krantz1, Reference Nathanson, Chudnovsky and Chudnovsky5]).
It is natural to introduce a parallel concept of minimal restricted asymptotic bases. We call A a restricted asymptotic basis of order h if
$h^{\wedge }A$
contains all sufficiently large integers. A restricted asymptotic basis A of order h is minimal if
$A\setminus \{a\}$
is not a restricted asymptotic basis of order h for every nonnegative integer
$a\in A$
. Does there exist a minimal restricted asymptotic basis of order h?
Our study begins with a result of Sun and Tao on minimal asymptotic bases.
Theorem 1.1 [Reference Sun and Tao8]
Let
$h \geq 2$
. Then for any
$g \geq h$
, the set
$\mathcal {A}_{g,h}$
is a minimal asymptotic basis of order h.
We obtain the following results.
Proposition 1.2. For
$k\geq 0$
,
$g\geq 2$
:
-
(1)
$2g^{2k+1}\notin 2^{\wedge }\mathcal {A}_{g,2}$ ;
-
(2)
$2g^{3k+2}+1\notin 3^{\wedge }\mathcal {A}_{g,3}$ ;
-
(3)
$2\cdot 4^{4k+3}+5\notin 4^{\wedge }\mathcal {A}_{4,4}$ .
Theorem 1.3. Let
$h\geq 4$
. Then for any
$g\geq \max \{h,5\}$
, the set
$\mathcal {A}_{g,h}$
is a minimal restricted asymptotic basis of order h.
2 A preliminary lemma
Lemma 2.1. Given positive integers
$h\geq 2$
,
$g\geq 5$
and
$u\geq 2$
, let the g-adic representation of n be
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu3.png?pub-status=live)
where
$0 \leq i_1<\cdots <i_{u}$
and
$1\leq e_j\leq g-1$
for
$j=1,\ldots ,u-1$
. Then
$n\in (u+1)^{\wedge }\mathcal {A}_{g,h}$
.
Proof. If
$i_{u-1}<i_{u}-1$
, or if
$i_{u-1}= i_{u}-1$
,
$e_{u-1}\notin \{1,g-1\}$
, then because
$g\geq 5$
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu4.png?pub-status=live)
we see that
$n\in (u+1)^{\wedge }\mathcal {A}_{g,h}$
.
If
$i_{u-1}= i_{u}-1$
and
$e_{u-1}=1 $
, then because
$g\geq 5$
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu5.png?pub-status=live)
we see that
$n\in (u+1)^{\wedge }\mathcal {A}_{g,h}$
.
If
$i_{u-1}= i_{u}-1$
and
$e_{u-1}=g-1 $
, then because
$g\geq 5$
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu6.png?pub-status=live)
again
$n\in (u+1)^{\wedge }\mathcal {A}_{g,h}$
.
This completes the proof of Lemma 2.1.
3 Proof of Proposition 1.2
(1) Assume that
$2g^{2k+1}=a_0+a_1\in 2^{\wedge }\mathcal {A}_{g,2}$
with
$0<a_0<a_1$
. Then
$a_0<g^{2k+1}$
and
$a_1<2g^{2k+1}$
. Since
$a_0,a_1\in \mathcal {A}_{g,2}$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu7.png?pub-status=live)
which is a contradiction. Hence,
$2g^{2k+1}\notin 2^{\wedge }\mathcal {A}_{g,2}\ \text{for all } g\geq 2$
.
(2) Assume that
$2g^{3k+2}+1\in 3^{\wedge }\mathcal {A}_{g,3}$
. Write
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqn1.png?pub-status=live)
Then
$a_1<g^{3k+2}$
and
$a_2<2g^{3k+2}$
. By (3.1), there exists at least one
$a_i\in A_g(W_0^{(3)})$
.
If
$a_2\notin A_g(W_{2}^{(3)})$
, then
$a_2\leq (g-1)(g^1+g^4+\cdots +g^{3k+1}).$
Thus,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu8.png?pub-status=live)
which is a contradiction.
If
$a_2\in A_g(W_{2}^{(3)})$
, then
$a_2\leq (g-1)(g^2+g^5+\cdots +g^{3k-1})+g^{3k+2}.$
Thus,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu9.png?pub-status=live)
which is a contradiction.
Hence,
$2g^{3k+2}+1\notin 3^{\wedge }\mathcal {A}_{g,3}$
for all
$g\geq 2$
.
(3) Assume that
$2\cdot 4^{4k+3}+5\in 4^{\wedge }\mathcal {A}_{4,4}$
. Write
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqn2.png?pub-status=live)
Then
$a_{3}<2\cdot 4^{4k+3}$
.
If
$a_3\notin A_4(W_{3}^{(4)})$
, then
$a_3\leq 3(4^2+4^6+\cdots +4^{4k+2})$
. Since
$2\cdot 4^{4k+3}+5\equiv 5 \pmod {16},$
it follows from (3.2) that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu10.png?pub-status=live)
which is a contradiction.
If
$a_3\in A_4(W_{3}^{(4)})$
, then
$a_3\leq 3(4^3+4^7+\cdots +4^{4k-1})+4^{4k+3}$
. If
$a_2\geq 4^{4k+3}$
, then we have
$a_2+a_3>2\cdot 4^{4k+3}+5$
, which is a contradiction. It follows that
$a_2<4^{4k+3}$
. Again by (3.2) and
$2\cdot 4^{4k+3}+5\equiv 5 \pmod {16},$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu11.png?pub-status=live)
which is a contradiction.
Hence,
$2\cdot 4^{4k+3}+5\notin 4^{\wedge }\mathcal {A}_{4,4}$
.
This completes the proof of Proposition 1.2.
4 Proof of Theorem 1.3
By Theorem 1.1,
$\mathcal {A}_{g,h}$
is a minimal asymptotic basis of order h. Thus, we only need to prove that
$\mathcal {A}_{g,h}$
is a restricted asymptotic basis of order h.
Let
$n\geq g^{(h-2)^2+1}$
and let the g-adic representation of n be
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu12.png?pub-status=live)
where
$0 \leq i_1<\cdots <i_{t}$
and
$1\leq e_j\leq g-1$
for
$j=1,\ldots ,t$
.
Case 1:
$t=1$
. Then
$i_1\geq h$
. Note that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu13.png?pub-status=live)
where
$\delta =0$
if
$e_1=1$
and otherwise
$\delta =1$
. Hence,
$n\in h^{\wedge }\mathcal {A}_{g,h}$
.
Case 2:
$2 \leq t \leq h-2$
. If there exists a
$k\in \{2,\ldots ,t\}$
such that
$i_{k}-i_{k-1}>h-t$
, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu14.png?pub-status=live)
where
$\delta =0$
if
$e_k=1$
and otherwise
$\delta =1$
. Hence,
$n\in h^{\wedge }\mathcal {A}_{g,h}$
.
If
$i_{k}-i_{k-1}\leq h-t$
for all
$k\in \{2,\ldots ,t\}$
, then by
$n\geq g^{(h-2)^2+1}$
, we have
$i_1\geq h-t$
. Otherwise, if
$i_1<h-t$
, then
$i_t<t(h-t)$
, so that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu15.png?pub-status=live)
which is a contradiction. Thus,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu16.png?pub-status=live)
where
$\delta =0$
if
$e_1=1$
and otherwise
$\delta =1$
. Hence,
$n\in h^{\wedge }\mathcal {A}_{g,h}$
.
Case 3:
$t = h-1$
. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu17.png?pub-status=live)
where
$0 \leq i_1<\cdots <i_{h-1}$
,
$1\leq e_j\leq g-1$
for
$j=1,\ldots ,h-1$
.
If there exists a
$k\in \{1,\ldots ,h-1\}$
such that
$3 \leq e_k \leq g-1$
, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu18.png?pub-status=live)
where
$I=\{1,\ldots ,h-1\}$
, and thus
$n\in h^{\wedge }\mathcal {A}_{g,h}$
.
Now we consider what happens if
$1\leq e_j\leq 2$
for
$j=1,\ldots ,h-1$
.
(a) Suppose
$e_{h-1}=1$
. Then by Lemma 2.1,
$n\in h^{\wedge }\mathcal {A}_{g,h}$
.
(b) Suppose
$e_1=e_2=\cdots =e_{h-2}=e_{h-1}=2$
.
If there exist
$i_u<i_v $
with
$1\leq u,v\leq h-1$
such that
$i_u \equiv i_v \pmod h$
, then because
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu19.png?pub-status=live)
and
$i_v \geq h$
, we have
$n\in h^{\wedge }\mathcal {A}_{g,h}$
.
If
$i_s\not \equiv i_t\pmod h$
for
$1\leq s\neq t\leq h-1$
, then because
$h\geq 4$
, there exist
$i_v\ (\geq 1)$
,
$i_u$
with
$u,v \in \{1,2,\ldots ,h-1\}$
such that
$i_v \equiv i_u+1 \pmod h$
. Since
$g\geq 5$
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu20.png?pub-status=live)
$n\in h^{\wedge }\mathcal {A}_{g,h}$
.
(c) Suppose
$e_{h-1}=2$
,
$e_{k}=1$
for some
$k\in \{2,\ldots ,h-2\}$
. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu21.png?pub-status=live)
where
$K=\{1,\ldots ,k-1\}$
and
$I=\{k+1,\ldots ,h-1\}$
. By Lemma 2.1,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu22.png?pub-status=live)
and so
$n\in h^{\wedge }\mathcal {A}_{g,h}$
.
(d) Suppose
$e_{h-1}=e_{h-2}=\cdots =e_2=2$
,
$e_1=1$
. If
$i_1>0$
, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu23.png?pub-status=live)
and so
$n\in h^{\wedge }\mathcal {A}_{g,h}$
.
If
$i_1=0$
, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu24.png?pub-status=live)
(d1) There exists a
$k\in \{2,\ldots ,h-1\}$
such that
$i_{k}\equiv 0\pmod h$
. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu25.png?pub-status=live)
Thus,
$n\in h^{\wedge }\mathcal {A}_{g,h}$
.
(d2) Suppose
$i_{k}\not \equiv 0\pmod h$
for all
$k\in \{2,\ldots ,h-1\}$
.
If
$h\geq 5$
, then one of the following two cases must occur.
Case (i): There exist
$i_u<i_v $
with
$2\leq u,v\leq h-1$
such that
$i_u \equiv i_v \pmod h$
. Since
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu26.png?pub-status=live)
and
$i_v>h$
, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu27.png?pub-status=live)
Thus,
$n \in h^{\wedge }\mathcal {A}_{g,h}$
.
Case (ii):
$i_s\not \equiv i_t\pmod h$
for
$2\leq s\neq t\leq h-1$
. Then there exist
$i_v\ (\geq 1)$
,
$i_u$
for some
$u,v \in \{2,\ldots ,h-1\}$
such that
$i_v \equiv i_u+1 \pmod h$
. Because
$g\geq 5$
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu28.png?pub-status=live)
we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu29.png?pub-status=live)
Thus,
$n \in h^{\wedge }\mathcal {A}_{g,h}$
.
Now suppose
$h=4$
. Since
$i_2,i_3\not \equiv 0\pmod 4$
, there is one further case in addition to (i) and (ii), namely,
$\{i_2\pmod 4, i_3\pmod 4\}=\{1\pmod 4, 3\pmod 4\}$
. We may assume that
$i_{2}\equiv 1\pmod 4$
. Because
$g\geq 5$
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230509150418721-0640:S0004972722001083:S0004972722001083_eqnu30.png?pub-status=live)
we have
$n\in 4^{\wedge }\mathcal {A}_{g,4}$
.
Case 4:
$t \geq h$
.
Write
$I=\{i_{1},\ldots ,i_{t}\}$
. Since
$\lvert I\rvert \geq h$
, it is possible to write I as a union of h nonempty sets
$I_{1},\ldots ,I_{h}$
, where each
$I_{j}$
is a subset of some
$W^{(h)}_{k}$
. It follows that
$n \in h^{\wedge }\mathcal {A}_{g,h}$
.
This completes the proof of Theorem 1.3.