1 Introduction
Two sets
$A,B$
of positive integers are called additive complements, if
$A+B$
contains all sufficiently large integers. Let
$A=\{a_1<a_2<\cdots \}$
be a set of positive integers. Denote by
$A(x)$
the counting function of A and by
$a^*(x)$
the largest element in
$A\bigcap [1,x]$
. If additive complements
$A,B$
satisfy
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqnu3.png?pub-status=live)
then we call such
$A,B$
exact additive complements. In 2001, Ruzsa [Reference Ruzsa2] introduced the following notation which is powerful for the proof of additive complements. Let
${m>a_1}$
be an integer and let
$k=A(m)$
. Denote by
$L(m)$
the smallest number l for which there are integers
$b_1,\ldots ,b_l$
such that the numbers
$a_i+b_j,1\leqslant i\leqslant k, 1\leqslant j\leqslant l$
, contain every residue modulo m. Obviously,
$L(m)\geqslant m/k$
.
Theorem 1.1 (Ruzsa [Reference Ruzsa2]).
If
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqn1.png?pub-status=live)
then A has an exact complement.
Theorem 1.2 (Ruzsa [Reference Ruzsa2]).
Let A be a set satisfying
${A(2x)}/{A(x)}\rightarrow 1$
. The following are equivalent.
-
(a) A has an exact complement.
-
(b)
$A(m)L(m)/m\rightarrow 1$ .
-
(c) There is a sequence
$m_1\kern1.5pt{<}\kern1.5pt m_2\kern1.5pt{<}\kern1.2pt\cdots $ of positive integers such that
${A(m_{i+1})/ A(m_i)\kern1.2pt{\rightarrow}\kern1.2pt 1}$ and
$A(m_i)L(m_i)/m_i\rightarrow 1$ .
Theorem 1.3 (Ruzsa [Reference Ruzsa3]).
For exact additive complements
$A,B$
with
${A(2x)}/ {A(x)}\rightarrow 1$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqnu4.png?pub-status=live)
In 2019, Chen and Fang [Reference Chen and Fang1] improved Theorem 1.3 by removing the exact condition. Chen and Fang also showed in [Reference Chen and Fang1] that Theorem 1.3 is the best possible.
Theorem 1.4 (Chen and Fang [Reference Chen and Fang1]).
There exist exact additive complements
$A,B$
with
${A(2x)}/{A(x)}\rightarrow 1$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqnu5.png?pub-status=live)
for infinitely many positive integers x.
In this paper, under condition (1.1) from [Reference Ruzsa2], we obtain the following result.
Theorem 1.5. For exact additive complements
$A,B$
with (1.1),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqn2.png?pub-status=live)
Moreover, we also show that
${a^*(x)}/{A(x)^2}$
is the best possible.
Theorem 1.6. There exist exact additive complements
$A,B$
with (1.1) such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqn3.png?pub-status=live)
2 Proofs of the main results
Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqnu6.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqnu7.png?pub-status=live)
The ideas used in the proofs of the main results come from [Reference Chen and Fang1–Reference Ruzsa3]. We use the following lemma of Ruzsa in the proof of Theorem 1.5.
Lemma 2.1 [Reference Ruzsa3, Lemma 2.1].
Let U and V be finite sets of integers and let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqnu8.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqnu9.png?pub-status=live)
Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqnu10.png?pub-status=live)
Proof of Theorem 1.5.
Assume the contrary. Suppose that (1.2) does not hold. Then there exist a positive number
$\delta _0(<1)$
and a sequence
$x_1<x_2<\cdots <x_k<\cdots $
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqn4.png?pub-status=live)
We know that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqnu11.png?pub-status=live)
Since
$a^*(x_k)\in A$
and
$a^*(x_k)+b>x_k$
for all
$b\in B$
with
$x_k-a^*(x_k)<b\leqslant x_k$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqnu12.png?pub-status=live)
Thus,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqnu13.png?pub-status=live)
From Ruzsa’s Lemma 2.1,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqn5.png?pub-status=live)
Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqnu14.png?pub-status=live)
Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqn6.png?pub-status=live)
Now we need a lower bound for
$|D|$
. We consider the following two cases.
Case 1:
$a^*(x_k)>\frac 12x_k$
for infinitely many k. By (1.1),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqnu15.png?pub-status=live)
Thus, in this case, by Theorem 1.3 and
$A(x)B(x)/x\rightarrow 1$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqnu16.png?pub-status=live)
for sufficiently large k. It follows from (2.2) and (2.3) that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqnu17.png?pub-status=live)
for sufficiently large k, which is in contradiction with (2.1).
Case 2:
$a^*(x_k)\leqslant \tfrac 12x_k$
for infinitely many k. By (1.1),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqnu18.png?pub-status=live)
Thus, in this case, by Theorem 1.3 and
$A(x)B(x)/x\rightarrow 1$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqnu19.png?pub-status=live)
for sufficiently large k. It follows from (2.2) and (2.3) that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqnu20.png?pub-status=live)
for sufficiently large k, which is in contradiction with (2.1).
This completes the proof of Theorem 1.5.
Proof of Theorem 1.6.
Let
$a_1=1$
and
$a_2=4$
. We construct the sequence
$a_3,a_4,\dots $
with
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqn7.png?pub-status=live)
and a sequence
$n_1,n_2,\dots $
such that
$a_1,a_2,\dots ,a_{n_k}$
form a complete residue system modulo
$n_k$
and
$n_k\mid a_{n_k}$
. We get such a sequence by a greedy algorithm: let
$n_1=2$
, and if
$n_1,n_2,\dots ,n_k$
are already defined, then let
$n_{k+1}=a_{n_k}$
. Since
$a_1,\dots ,a_{n_k}$
are distinct residues modulo
$a_{n_k}$
, we can choose
$a_{n_k+1},\dots ,a_{n_{k+1}}$
such that
$a_{m+1}\gg m^4a_m$
for
${m=n_k,\ldots , n_{k+1}-1}$
,
$a_{n_k}\mid a_{a_{n_k}}$
and
$a_1,\dots ,a_{n_{k+1}}$
form a complete residue system modulo
$n_{k+1}$
.
For every positive integer k, we further take
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqnu21.png?pub-status=live)
Then
$a_i+b_j$
for
$1\leqslant i\leqslant p, 1\leqslant j\leqslant {a_{n_k}}/{n_k}$
, form a complete residue system modulo
$a_{n_k}$
. From the definition of
$L(a_{n_k})$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqn8.png?pub-status=live)
For the set
$A=\{a_k\}_{k=1}^{\infty }$
and every positive integer k, define
$q_k$
by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqn9.png?pub-status=live)
Define the same sets
$A,B$
as in [Reference Ruzsa2, Theorem 3] (replacing
$m_k$
by
$a_k$
) and write
${A_k=A\bigcap [1,a_k]}$
. Take
$U_k\subseteq [1,a_k]$
so that
$|U_k|=L(a_k)$
and
$A_k+U_k$
contains every residue module
$a_k$
. Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqnu22.png?pub-status=live)
Let
$q_ka_k\leqslant x\leqslant q_{k+1}a_{k+1}$
. The sequence
$\{q_k\}_{k=1}^{\infty }$
defined in (2.6) is increasing to infinity by (2.4) and
$A(q_ka_k)\sim A(a_k)$
. (In fact,
$A(q_ka_k)=k=A(a_k)$
by (2.6).) By the same proof as in [Reference Ruzsa2, Theorem 3],
$A,B$
are additive complements and
$A(x)B(x)\sim x$
. Thus, the set A with (2.4) has an exact complement B. Obviously, such an A with (2.4) satisfies (1.1).
Finally, we prove that (1.3) holds for infinitely many
$x_k$
. For x with
$q_ka_k\leqslant x<(q_{k+1}-1)a_{k+1}$
, we have
$k\leqslant A(x)\leqslant k+1$
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqn10.png?pub-status=live)
By Theorem 1.2(b),
$L(a_{k-1})\leqslant {2a_{k-1}}/{(k-1)} \mbox { for large } k$
. From (2.6),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqnu23.png?pub-status=live)
It is easy to see that, for large k,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqnu24.png?pub-status=live)
It follows from (2.7) that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqn11.png?pub-status=live)
Choose
$x_k=a_{n_k+1}$
, where
$n_k$
is the index satisfying (2.5). Then by (2.8),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241105084020078-0853:S0004972723001016:S0004972723001016_eqnu25.png?pub-status=live)
This completes the proof of Theorem 1.6.