Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-02-06T08:48:26.626Z Has data issue: false hasContentIssue false

On Pisier’s inequality for UMD targets

Published online by Cambridge University Press:  15 June 2020

Alexandros Eskenazis*
Affiliation:
Institut de Mathématiques de Jussieu, Sorbonne Université, 4, Place Jussieu, 75252 Paris Cedex 05, France
Rights & Permissions [Opens in a new window]

Abstract

We prove an extension of Pisier’s inequality (1986) with a dimension-independent constant for vector-valued functions whose target spaces satisfy a relaxation of the UMD property.

Type
Article
Copyright
© Canadian Mathematical Society 2020

1 Introduction

Let $(X,\|\cdot \|_X)$ be a Banach space. For $p\in [1,\infty )$ , the vector-valued $L_p$ norm of a function $f:\Omega \to X$ defined on a measure space $(\Omega ,\mathscr {F},\unicode{x3bc} )$ is given by $\|f\|_{L_p(\Omega ,\unicode{x3bc} ;X)}^p = \int _\Omega \|f(\unicode{x3c9} )\|_X^p\mathop {}\!\mathrm {d}\unicode{x3bc} (\unicode{x3c9} )$ . When $\Omega $ is a finite set and $\unicode{x3bc} $ is the normalized counting measure, we will simply write $\|f\|_{L_p(\Omega ;X)}$ .

Let $\mathscr {C}_n=\{-1,1\}^n$ be the discrete hypercube. For $i\in \{1,\dots ,n\}$ , the ith partial derivative of a function $f:\mathscr {C}_n\to X$ is defined by

(1) $$ \begin{align} \forall \ \varepsilon\in\mathscr{C}_n, \ \ \ \partial_if(\varepsilon) \stackrel{\mathrm{def}}{=} \frac{f(\varepsilon)-f(\varepsilon_1,\dots ,\varepsilon_{i-1},-\varepsilon_i,\varepsilon_{i+1},\dots ,\varepsilon_n)}{2}. \end{align} $$

In [Reference PisierPis86], Pisier showed that for every $n\in \mathbb N$ and $p\in [1,\infty )$ , every $f:\mathscr {C}_n\to X$ satisfies

(2)

with $\mathfrak {P}_p^n(X) \leqslant 2e\log n$ . Showing that $\mathfrak {P}_p^n(X)$ is bounded by a constant depending only on p and the geometry of the given Banach space X, is of fundamental importance in the theory of nonlinear type (see [Reference PisierPis86Reference Naor and SchechtmanNS02]). The first positive and negative results in this direction were obtained by Talagrand in [Reference TalagrandTal93], who showed that $\mathfrak {P}_p^n(\mathbb R) \asymp _p1$ and $\mathfrak {P}_p^n(\ell _\infty ) \asymp _p\log n$ for every $p\in [1,\infty )$ .

Talagrand’s dimension-independent scalar-valued inequality (2) was greatly generalized in the range $p\in (1,\infty )$ by Naor and Schechtman [Reference Naor and SchechtmanNS02]. Recall that a Banach space $(X,\|\cdot \|_X)$ is called a UMD space if for every $p\in (1,\infty )$ , there exists a constant $\unicode{x3b2} _p\in (0,\infty )$ such that for every $n\in \mathbb N$ , every probability space $(\Omega , \mathscr {F},\unicode{x3bc} )$ and every filtration $\{\mathscr {F}_i\}_{i=0}^n$ of sub- $\unicode{x3c3} $ -algebras of $\mathscr {F}$ , every martingale $\{\mathscr {M}_i:\Omega \to X\}_{i=0}^n$ adapted to $\{\mathscr {F}_i\}_{i=0}^n$ satisfies

(3) $$ \begin{align} \max_{\unicode{x3b4}=(\delta_1,\ldots,\delta_n)\in\mathscr{C}_n}\Big\| \sum_{i=1}^n \delta_i (\mathscr{M}_i-\mathscr{M}_{i-1}) \Big\|_{L_p(\Omega,\unicode{x3bc};X)} \leqslant \beta_p \|\mathscr{M}_n-\mathscr{M}_0\|_{L_p(\Omega,\unicode{x3bc};X)}. \end{align} $$

The least constant $\unicode{x3b2} _p\in (0,\infty )$ for which (3) holds is called the $\text{UMD}_p$ constant of X and is denoted by $\unicode{x3b2} _p(X)$ . In [Reference Naor and SchechtmanNS02], Naor and Schechtman proved that for every UMD Banach space X and $p\in (1,\infty )$ ,

(4) $$ \begin{align} \mathop{\mathrm{sup}}\limits_{n\in\mathbb N}\mathfrak{P}_p^n(X) \leqslant \beta_p(X). \end{align} $$

Their result was later strengthened by Hytönen and Naor [Reference Hytönen and NaorHN13] in terms of the random martingale transform inequalities of Garling; see [Reference GarlingGar90]. Recall that a Banach space $(X,\|\cdot \|_X)$ is a $\text{UMD}^+$ space if for every $p\in (1,\infty )$ there exists a constant $\unicode{x3b2} _p^+\in (0,\infty )$ such that for every martingale $\{\mathscr {M}_i:\Omega \to X\}_{i=0}^n$ as before, we have

(5) $$ \begin{align} \Big(\frac{1}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n} \Big\| \sum_{i=1}^n \delta_i (\mathscr{M}_i-\mathscr{M}_{i-1}) \Big\|^p_{L_p(\Omega,\unicode{x3bc};X)}\Big)^{1/p} \leqslant \beta_p^+ \|\mathscr{M}_n-\mathscr{M}_0\|_{L_p(\Omega,\unicode{x3bc};X)}. \end{align} $$

Similarly, X is a $\text{UMD}^-$ Banach space if for every $p\in (1,\infty )$ there exists a constant $\unicode{x3b2} _p^-\in (0,\infty )$ such that for every martingale $\{\mathscr {M}_i:\Omega \to X\}_{i=0}^n$ as before, we have

(6) $$ \begin{align} \|\mathscr{M}_n-\mathscr{M}_0\|_{L_p(\Omega,\unicode{x3bc};X)} \leqslant \beta_p^- \Big(\frac{1}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n} \Big\| \sum_{i=1}^n \delta_i (\mathscr{M}_i-\mathscr{M}_{i-1}) \Big\|^p_{L_p(\Omega,\unicode{x3bc};X)}\Big)^{1/p}. \end{align} $$

The least positive constants $\unicode{x3b2} _p^+, \unicode{x3b2} _p^-$ for which (5) and (6) hold are respectively called the $\text{UMD}_p^+$ and $\text{UMD}_p^-$ constants of X and are denoted by $\unicode{x3b2} _p^+(X)$ and $\unicode{x3b2} _p^-(X)$ . In [Reference Hytönen and NaorHN13], Hytönen and Naor showed that for every Banach space X whose dual $X^\ast $ is a $\text{UMD}^+$ space and $p\in (1,\infty )$ ,

(7) $$ \begin{align} \mathop{\mathrm{sup}}\limits_{n\in\mathbb N} \mathfrak{P}_p^n(X) \leqslant \beta_{p/(p-1)}^+(X^\ast). \end{align} $$

In fact, in [Reference Hytönen and NaorHN13, Theorem 1.4], the authors proved a generalization (see (28)) of inequality (2) for a family of n functions $\{f_i:\mathscr {C}_n\to X\}_{i=1}^n$ under the assumption that the dual of X is $\text{UMD}^+$ .

The main result of the present note is a different inequality of this nature with respect to a Fourier-analytic parameter of X. For a Banach space $(X,\|\cdot \|_X)$ and $p\in (1,\infty )$ , let $\mathfrak {s}_p(X)\in (0,\infty ]$ be the least constant $\mathfrak {s} \in (0,\infty ]$ such that the following holds. For every probability space $(\Omega , \mathscr {F},\unicode{x3bc} )$ , $n\in \mathbb N$ and filtration $\{\mathscr {F}_i\}_{i=1}^n$ of sub- $\unicode{x3c3} $ -algebras of $\mathscr {F}$ with corresponding vector-valued conditional expectations $\{\mathscr {E}_i\}_{i=1}^n$ , every sequence of functions $\{f_i:\Omega \to X\}_{i=1}^n$ satisfies

(8) $$ \begin{align} \Big(\frac{1}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n} \Big\| \sum_{i=1}^n \delta_i\mathscr{E}_i f_i\Big\|_{L_p(\Omega,\unicode{x3bc};X)}^p\Big)^{1/p} \leqslant \mathfrak{s}\Big( \frac{1}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n} \Big\| \sum_{i=1}^n \delta_if_i\Big\|_{L_p(\Omega,\unicode{x3bc};X)}^p\Big)^{1/p}. \end{align} $$

The square function inequality (8) originates in Stein’s classical work [Reference SteinSte70], where he showed that $\mathfrak {s}_p(\mathbb R) \asymp _p 1$ for every $p\in (1,\infty )$ . In the vector-valued setting which is of interest here, it has been proved by Bourgain in [Reference BourgainBou86] that for every $\text{UMD}^+$ Banach space and $p\in (1,\infty )$ ,

(9) $$ \begin{align} \mathfrak{s}_p(X) \leqslant\beta_p^+(X). \end{align} $$

For a function $f:\mathscr {C}_n\to X$ and $i\in \{0,1,\dots ,n\}$ denote by

(10) $$ \begin{align} \forall \ \varepsilon\in\mathscr{C}_n, \ \ \ \mathscr{E}_i f (\varepsilon) \stackrel{\mathrm{def}}{=} \frac{1}{2^{n-i}} \sum_{\delta_{i+1},\ldots,\delta_n\in\{-1,1\}} f(\varepsilon_1,\dots ,\varepsilon_i,\delta_{i+1},\dots ,\delta_n), \end{align} $$

so that $\mathscr {E}_n f = f$ and $\mathscr {E}_0 f = \frac {1}{2^n} \sum _{\unicode{x3b4} \in \mathscr {C}_n} f(\unicode{x3b4} )$ . The main result of this note is the following theorem.

Theorem 1 Fix $p\in (1,\infty )$ and let $(X,\|\cdot \|_X)$ be a Banach space with $\mathfrak {s}_p(X)<\infty $ . If, additionally, X is a $\text{UMD}^-$ space, then for every $n\in \mathbb N$ and functions $f_1,\dots ,f_n:\mathscr {C}_n\to X$ , we have

(11) $$ \begin{align} \Big\| \sum_{i=1}^n (\mathscr{E}_i f_i - \mathscr{E}_{i-1}f_i)\Big\|_{L_p(\mathscr{C}_n;X)} \leqslant \mathfrak{s}_p(X) \beta_p^-(X) \Big(\frac{1}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n} \Big\| \sum_{i=1}^n \delta_i \partial_i f_i\Big\|_{L_p(\mathscr{C}_n;X)}^p\Big)^{1/p}. \end{align} $$

Choosing $f_1=\cdots =f_n=f$ , we deduce that the constants in Pisier’s inequality (2) satisfy

(12) $$ \begin{align} \mathop{\mathrm{sup}}\limits_{n\in\mathbb N} \mathfrak{P}_p^n(X) \leqslant \mathfrak{s}_p(X) \beta_p^-(X). \end{align} $$

Combining (12) with Bourgain’s inequality (9), we deduce that $\mathrm {sup}_{n\in \mathbb N} \mathfrak {P}_p^n(X) \leqslant \unicode{x3b2} _p^+(X)\unicode{x3b2} _p^-(X)$ , which is weaker than Naor and Schechtman’s bound (4). Nevertheless, it appears to be unknown (see [Reference PisierPis16, p. 197]) whether every Banach space X with $\mathfrak {s}_p(X)<\infty $ is necessarily a $\text{UMD}^+$ space. Therefore, it is conceivable that there exist Banach spaces X for which inequality (12) does not follow from the previously known results of [Reference Naor and SchechtmanNS02Reference Hytönen and NaorHN13]. We will see in Proposition 5 below that if the dual $X^\ast $ of a Banach space X is $\text{UMD}^+$ , then X satisfies the assumptions of Theorem 1. Therefore, Theorem 1 also contains the aforementioned result of [Reference Hytönen and NaorHN13].

Moreover, Theorem 1 implies an inequality similar to [Reference Hytönen and NaorHN13, Theorem 1.4] (see also Remark 3 below for comparison), under different assumptions. We will need some standard terminology from discrete Fourier analysis. Recall that every function $f:\mathscr {C}_n\to X$ can be expanded in a Walsh series as

(13) $$ \begin{align} f = \sum_{A\subseteq\{1,\ldots,n\}} \widehat{f}(A) w_A, \end{align} $$

where $\widehat {f}(A)\in X$ and the Walsh function $w_A:\mathscr {C}_n\to \{-1,1\}$ is given by $w_A(\varepsilon ) = \prod _{i\in A}\varepsilon _i$ for $\varepsilon =(\varepsilon _1,\dots ,\varepsilon _n)\in \mathscr {C}_n$ and $A\neq \varnothing $ . As usual, we agree that $w_\varnothing \equiv 1$ . Moreover, the fractional hypercube Laplacian of a function $f:\mathscr {C}_n\to X$ is given by

(14) $$ \begin{align} \forall \ \unicode{x3b1}\in\mathbb R, \ \ \ \ \Delta^\unicode{x3b1}\Big( \sum_{A\subseteq\{1,\ldots,n\}} \widehat{f}(A) w_A \Big) \stackrel{\mathrm{def}}{=} \sum_{\substack{A\subseteq\{1,\ldots,n\} \\ A\neq\varnothing}} |A|^\unicode{x3b1} \widehat{f}(A) w_A. \end{align} $$

Corollary 2 Fix $p\in (1,\infty )$ and let $(X,\|\cdot \|_X)$ be a Banach space with $\mathfrak {s}_p(X)<\infty $ . If, additionally, X is a $\text{UMD}^-$ space, then for every $n\in \mathbb N$ and functions $f_1,\dots ,f_n:\mathscr {C}_n\to X$ , we have

(15) $$ \begin{align} \Big\| \sum_{i=1}^n \Delta^{-1}\partial_i f_i \Big\|_{L_p(\mathscr{C}_n;X)} \leqslant \mathfrak{s}_p(X) \beta_p^-(X) \Big(\frac{1}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n} \Big\| \sum_{i=1}^n \delta_i \partial_i f_i\Big\|_{L_p(\mathscr{C}_n;X)}^p\Big)^{1/p}. \end{align} $$

Asymptotic notation In what follows we use the convention that for $a,b\in [0,\infty ]$ the notation $a\gtrsim b$ (respectively $a\lesssim b$ ) means that there exists a universal constant $c\in (0,\infty )$ such that $a\geqslant cb$ (respectively $a\leqslant cb$ ). Moreover, $a\asymp b$ stands for $(a\lesssim b)\wedge (a\gtrsim b)$ . The notations $\lesssim _\unicode{x3be} , \gtrsim _\chi $ and $\asymp _\unicode{x3c8} $ mean that the implicit constant c depends on $\unicode{x3be} , \chi $ and $\unicode{x3c8} $ respectively.

2 Proofs

We first present the proof of Theorem 1.

Proof Proof of Theorem 1

For a function $h:\mathscr {C}_n\to X$ and $i\in \{1,\dots ,n\}$ consider the averaging operator

(16) $$ \begin{align} \forall \ \varepsilon\in\mathscr{C}_n, \ \ \ \ \mathsf{E}_i h(\varepsilon) \stackrel{\mathrm{def}}{=} \frac{h(\varepsilon)+h(\varepsilon_1,\dots ,\varepsilon_{i-1},-\varepsilon_i,\varepsilon_{i+1},\dots ,\varepsilon_n)}{2} = (\mathsf{id}-\partial_i)h(\varepsilon), \end{align} $$

where $\mathsf{id}$ is the identity operator. Then, for every $i\in \{0,1,\dots ,n\}$ we have the identities

(17) $$ \begin{align} \mathscr{E}_i h= \mathsf{E}_{i+1} \circ\cdots\circ \mathsf{E}_n h = \mathbb{E}[h|\mathscr{F}_i], \end{align} $$

where $\mathscr {F}_i = \unicode{x3c3} (\varepsilon _1,\dots ,\varepsilon _i)$ . Since for every $i\in \{1,\dots ,n\}$ ,

(18) $$ \begin{align} \mathbb{E}\big[ \mathscr{E}_i f_i - \mathscr{E}_{i-1} f_i \big| \mathscr{F}_{i-1}\big] = 0, \end{align} $$

the sequence $\{\mathscr {E}_i f_i - \mathscr {E}_{i-1} f_i \}_{i=1}^n$ is a martingale difference sequence and thus the $\text{UMD}^-$ condition and (8) imply that

(19) $$ \begin{align} \Big\| \sum_{i=1}^n (\mathscr{E}_i f_i - \mathscr{E}_{i-1}f_i)\Big\|_{L_p(\mathscr{C}_n;X)} & \stackrel{(6)}{\leqslant} \beta_p^-(X) \Big( \frac{1}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n} \Big\| \sum_{i=1}^n \delta_i (\mathscr{E}_i f_i - \mathscr{E}_{i-1}f_i)\Big\|_{L_p(\mathscr{C}_n;X)}^p\Big)^{1/p} \nonumber\\ & \stackrel{(16)}{=} \beta_p^-(X) \Big( \frac{1}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n} \Big\| \sum_{i=1}^n \delta_i \mathscr{E}_i \partial_i f_i\Big\|_{L_p(\mathscr{C}_n;X)}^p\Big)^{1/p} \nonumber\\ & \stackrel{(8)}{\leqslant} \mathfrak{s}_p(X) \beta_p^-(X) \Big(\frac{1}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n} \Big\| \sum_{i=1}^n \delta_i \partial_i f_i\Big\|_{L_p(\mathscr{C}_n;X)}^p\Big)^{1/p} \end{align} $$

which completes the proof. ▪

We will now derive Corollary 2 from Theorem 1. The proof follows a symmetrization argument of [Reference Hytönen and NaorHN13].

Proof Proof of Corollary 2

As noticed in (19) above, (11) can be equivalently written as

(20) $$ \begin{align} \Big\| \sum_{i=1}^n \mathscr{E}_i \partial_i f_i \Big\|_{L_p(\mathscr{C}_n;X)} \leqslant \mathfrak{s}_p(X) \beta_p^-(X) \Big(\frac{1}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n} \Big\| \sum_{i=1}^n \delta_i \partial_i f_i\Big\|_{L_p(\mathscr{C}_n;X)}^p\Big)^{1/p}. \end{align} $$

Fix a permutation $\unicode{x3c0} \in S_n$ and consider the filtration $\{\mathscr {F}_i^\unicode{x3c0} \}_{i=0}^n$ given by $\mathscr {F}_i^\unicode{x3c0} = \unicode{x3c3} (\varepsilon _{\unicode{x3c0} (1)},\dots ,\varepsilon _{\unicode{x3c0} (i)})$ with corresponding conditional expectations $\{\mathscr {E}_i^\unicode{x3c0} \}_{i=0}^n$ . Repeating the argument of the proof of Theorem 1 for this filtration and the martingale difference sequence $\{\mathscr {E}_i^\unicode{x3c0} f_{\unicode{x3c0} (i)} - \mathscr {E}_{i-1}^\unicode{x3c0} f_{\unicode{x3c0} (i)}\}_{i=1}^n$ , we see that for every $\unicode{x3c0} \in S_n$ ,

(21) $$ \begin{align} \Big\| \sum_{i=1}^n \mathscr{E}_i^\unicode{x3c0} \partial_{\unicode{x3c0}(i)} f_{\unicode{x3c0}(i)} \Big\|_{L_p(\mathscr{C}_n;X)} & \leqslant \mathfrak{s}_p(X) \beta_p^-(X) \Big(\frac{1}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n} \Big\| \sum_{i=1}^n \delta_i \partial_{\unicode{x3c0}(i)} f_{\unicode{x3c0}(i)}\Big\|_{L_p(\mathscr{C}_n;X)}^p\Big)^{1/p} \nonumber\\ & =\mathfrak{s}_p(X) \beta_p^-(X) \Big(\frac{1}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n} \Big\| \sum_{i=1}^n \delta_i \partial_i f_i\Big\|_{L_p(\mathscr{C}_n;X)}^p\Big)^{1/p}, \end{align} $$

since $(\unicode{x3b4} _1,\dots ,\unicode{x3b4} _n)$ has the same distribution as $(\unicode{x3b4} _{\unicode{x3c0} (1)},\dots ,\unicode{x3b4} _{\unicode{x3c0} (n)})$ . An obvious adaptation of (10) along with (13) shows that for every $h:\mathscr {C}_n\to X$ ,

(22) $$ \begin{align} \mathscr{E}_i^\unicode{x3c0} h = \sum_{A\subseteq\{\unicode{x3c0}(1),\ldots,\unicode{x3c0}(i)\}} \widehat{h}(A) w_A \end{align} $$

where $\widehat {h}(A)$ are the Walsh coefficients of h. Therefore, expanding each $f_{\unicode{x3c0} (i)}$ as a Walsh series (13) we have

(23) $$ \begin{align} \forall \ i\in\{1,\dots ,n\}, \ \ \ \ \mathscr{E}^\pi_i\partial_{\unicode{x3c0}(i)} f_{\unicode{x3c0}(i)} = \sum_{\substack{A\subseteq\{1\ldots,n\} \\ \max \unicode{x3c0}^{-1}(A)=i}} \widehat{f_{\unicode{x3c0}(i)}}(A) w_A \end{align} $$

and therefore

(24) $$ \begin{align} \sum_{i=1}^n \mathscr{E}^\pi_i\partial_{\unicode{x3c0}(i)} f_{\unicode{x3c0}(i)} = \sum_{A\subseteq\{1,\ldots,n\}} \widehat{f_{\unicode{x3c0}(\max \unicode{x3c0}^{-1}(A))}}(A) w_A. \end{align} $$

Averaging (24) over all permutations $\unicode{x3c0} \in S_n$ and using the fact that $\unicode{x3c0} (\max \unicode{x3c0} ^{-1}(A))$ is uniformly distributed in A, we get

\begin{align*}\frac{1}{n!}\sum_{\unicode{x3c0}\in S_n} \sum_{i=1}^n \mathscr{E}^\pi_i\partial_{\unicode{x3c0}(i)} f_{\unicode{x3c0}(i)} &=\!\!\! \sum_{\substack{A\subseteq\{1,\ldots,n\}\\ A\neq\varnothing}} \frac{1}{|A|} \sum_{i\in A} \widehat{f_i}(A) w_A\\& = \sum_{i=1}^n \sum_{\substack{A\subseteq\{1,\ldots,n\} \\ i\in A}} \frac{1}{|A|} \widehat{f_i}(A) w_A = \sum_{i=1}^n \Delta^{-1}\partial_i f_i. \end{align*}

Hence, by convexity we finally deduce that

(25) $$ \begin{align} \Big\| \sum_{i=1}^n \Delta^{-1}\partial_i f_i\Big\|_{L_p(\mathscr{C}_n;X)} & \leqslant \frac{1}{n!}\sum_{\unicode{x3c0}\in S_n} \Big\| \sum_{i=1}^n \mathscr{E}_i^\unicode{x3c0} \partial_{\unicode{x3c0}(i)} f_{\unicode{x3c0}(i)} \Big\|_{L_p(\mathscr{C}_n;X)} \nonumber\\ & \stackrel{(21)}{\leqslant} \mathfrak{s}_p(X) \beta_p^-(X) \Big(\frac{1}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n} \Big\| \sum_{i=1}^n \delta_i \partial_i f_i\Big\|_{L_p(\mathscr{C}_n;X)}^p\Big)^{1/p}, \end{align} $$

which completes the proof. ▪

Remark 3 In [Reference Hytönen and NaorHN13], Hytönen and Naor obtained a different extension of Pisier’s inequality (2) for Banach spaces whose dual is $\text{UMD}^+$ . For a function $F:\mathscr {C}_n\times \mathscr {C}_n\to X$ and $i\in \{1,\dots ,n\}$ , let $F_i:\mathscr {C}_n\to X$ be given by

(26) $$ \begin{align} \forall \ \varepsilon\in\mathscr{C}_n, \ \ \ \ F_i(\varepsilon) \stackrel{\mathrm{def}}{=} \frac{1}{2^n}\sum_{\unicode{x3b4}\in\mathscr{C}_n} \delta_i F(\varepsilon,\unicode{x3b4}). \end{align} $$

In [Reference Hytönen and NaorHN13, Theorem 1.4], it was shown that for every $p\in (1,\infty )$ and every function $F:\mathscr {C}_n\times \mathscr {C}_n\to X$ ,

(27) $$ \begin{align} \Big\| \sum_{i=1}^n \Delta^{-1}\partial_i F_i\Big\|_{L_p(\mathscr{C}_n;X)} \leqslant \beta_{p/(p-1)}^+(X^\ast) \|F\|_{L_p(\mathscr{C}_n\times\mathscr{C}_n;X)}. \end{align} $$

In fact, since every Banach space whose dual is $\text{UMD}^+$ is K-convex (see [Reference PisierPis16] and Section 3 below) the validity of inequality (27) is equivalent to its validity for functions of the form $F(\varepsilon ,\unicode{x3b4} ) = \sum _{i=1}^n\unicode{x3b4} _i F_i(\varepsilon )$ , where $F_1,\dots ,F_n:\mathscr {C}_n\to X$ . In other words, [Reference Hytönen and NaorHN13, Theorem 1.4] is equivalent to the fact that if $X^\ast $ is $\text{UMD}^+$ , then for every $F_1,\dots ,F_n:\mathscr {C}_n\to X$ and $p\in (1,\infty )$ ,

(28) $$ \begin{align} \Big\| \sum_{i=1}^n \Delta^{-1}\partial_i F_i\Big\|_{L_p(\mathscr{C}_n;X)} \leqslant A_p(X) \Big(\frac{1}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n} \Big\| \sum_{i=1}^n \delta_i F_i\Big\|_{L_p(\mathscr{C}_n;X)}^p\Big)^{1/p}, \end{align} $$

up to the value of the constant $A_p(X)$ . In particular, applying (28) to $F_i=\partial _i f_i$ , one recovers Corollary 2, so inequality (28) of [Reference Hytönen and NaorHN13] is formally stronger than (15) in the class of spaces whose dual is $\text{UMD}^+$ .

3 Concluding Remarks

In this section we will compare our result with existing theorems in the literature. Recall that a Banach X space is K-convex if X does not contain the family $\{\ell _1^n\}_{n=1}^\infty $ with uniformly bounded distortion. We will need the following lemma.

Lemma 4 If a space $(X,\|\cdot \|_X)$ satisfies $\mathfrak {s}_p(X)<\infty $ for some $p\in (1,\infty )$ , then X is K-convex.

Proof It is well known since Stein’s work [Reference SteinSte70] that inequality (8) does not hold for $p\in \{1,\infty \}$ even for scalar valued functions. In fact, an inspection of the argument in [Reference SteinSte70, p. 105] shows that for every $n\in \mathbb N$ there existn functions $g_1,\dots ,g_n:\mathscr {C}_n\to \{0,1\}$ such that for every $q\in (2,\infty )$ ,

(29) $$ \begin{align} \Big\| \Big(\sum_{i=1}^n \big(\mathscr{E}_i g_i\big)^2\Big)^{1/2}\Big\|_{L_q(\mathscr{C}_n;\mathbb R)} \gtrsim \Big( \int_0^n y^{q/2} e^{-y}\mathop{}\!\mathrm{d} y \Big)^{1/q} \Big\| \Big(\sum_{i=1}^n g_i^2\Big)^{1/2}\Big\|_{L_q(\mathscr{C}_n;\mathbb R)}, \end{align} $$

where $\{\mathscr {E}_i\}_{i=0}^n$ are the conditional expectations (10). Using the fact that $L_\infty (\mathscr {C}_n;\mathbb R)$ is 2-isomorphic to $L_{n}(\mathscr {C}_n;\mathbb R)$ , we thus deduce that

(30) $$ \begin{align} \Big\| \Big(\sum_{i=1}^n \big(\mathscr{E}_i g_i\big)^2\Big)^{1/2}\Big\|_{L_\infty(\mathscr{C}_n;\mathbb R)} & \gtrsim \Big( \int_0^n y^{n/2} e^{-y}\mathop{}\!\mathrm{d} y \Big)^{1/n} \Big\| \Big(\sum_{i=1}^n g_i^2\Big)^{1/2}\Big\|_{L_\infty(\mathscr{C}_n;\mathbb R)} \\ & \asymp \sqrt{n}\Big\| \Big(\sum_{i=1}^n g_i^2\Big)^{1/2}\Big\|_{L_\infty(\mathscr{C}_n;\mathbb R)} \nonumber \end{align} $$

Therefore, by duality in $L_\infty (\mathscr {C}_n;\ell _2^n)$ and Khintchine’s inequality [Reference KhintchineKhi23], we deduce that there exist n functions $h_1,\ldots ,h_n:\mathscr {C}_n\to \mathbb R$ such that

(31) $$ \begin{align} \frac{1}{2^n}\sum_{\unicode{x3b4}\in\mathscr{C}_n}\Big\| \sum_{i=1}^n \delta_i \mathscr{E}_i h_i\Big\|_{L_1(\mathscr{C}_n;\mathbb R)} \gtrsim \frac{\sqrt{n}}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n} \Big\| \sum_{i=1}^n \delta_i h_i\Big\|_{L_1(\mathscr{C}_n;\mathbb R)}. \end{align} $$

Suppose that a Banach space X with $\mathfrak {s}_p(X)<\infty $ is not K-convex, so that there exists a constant $K\in [1,\infty )$ such that for every $n\in \mathbb N$ , there exists a linear operator $\mathsf{J}_n:L_1(\mathscr {C}_n;\mathbb R)\to X$ satisfying

(32) $$ \begin{align} \forall \ h\in L_1(\mathscr{C}_n;\mathbb R), \ \ \ \ \|h\|_{L_1(\mathscr{C}_n;\mathbb R)} \leqslant \|\mathsf{J}_nh\|_X \leqslant K\|h\|_{L_1(\mathscr{C}_n;\mathbb R)}. \end{align} $$

Consider the functions $H_1,\dots ,H_n:\mathscr {C}_n\to L_1(\mathscr {C}_n;\mathbb R)$ given by

(33) $$ \begin{align} \forall \ \varepsilon,\varepsilon'\in\mathscr{C}_n, \ \ \ \big[H_i(\varepsilon)\big](\varepsilon') = h_i(\varepsilon_1\varepsilon_1',\dots ,\varepsilon_n\varepsilon_n'), \end{align} $$

where $h_i\in L_1(\mathscr {C}_n;\mathbb R)$ are the functions satisfying (31). Then, for every $i\in \{1,\dots ,n\}$ , we have $[\mathscr {E}_iH_i(\varepsilon )](\varepsilon ') = \mathscr {E}_ih_i(\varepsilon _1\varepsilon _1',\dots ,\varepsilon _n\varepsilon _n')$ and, by translation invariance, for every $\varepsilon ,\unicode{x3b4} \in \mathscr {C}_n$ we have

\begin{align*} &\Big\| \sum_{i=1}^n \delta_i \mathscr{E}_i H_i(\varepsilon)\Big\|_{L_1(\mathscr{C}_n;\mathbb R)} = \Big\| \sum_{i=1}^n \delta_i \mathscr{E}_i h_i\Big\|_{L_1(\mathscr{C}_n;\mathbb R)}\quad\mbox{and}\\ & \Big\| \sum_{i=1}^n \delta_i H_i(\varepsilon)\Big\|_{L_1(\mathscr{C}_n;\mathbb R)} = \Big\| \sum_{i=1}^n \delta_i h_i\Big\|_{L_1(\mathscr{C}_n;\mathbb R)} \end{align*}

Therefore, considering the mappings $f_1,\dots ,f_n:\mathscr {C}_n\to X$ given by $f_i = \mathsf{J}_n \circ H_i$ , we see that

(34) $$ \begin{align} \Big(\frac{1}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n} \Big\| \sum_{i=1}^n \delta_i\mathscr{E}_i f_i\Big\|_{L_p(\mathscr{C}_n;X)}^p\Big)^{1/p} \gtrsim K^{-1} \sqrt{n} \Big( \frac{1}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n} \Big\| \sum_{i=1}^n \delta_if_i\Big\|_{L_p(\mathscr{C}_n;X)}^p\Big)^{1/p}, \end{align} $$

thus showing that $\mathfrak {s}_p(X)\gtrsim K^{-1} \sqrt {n}$ , which is a contradiction.▪

Recall that the X-valued Rademacher projection is defined to be

(35) $$ \begin{align} \mathsf{Rad}\Big( \sum_{A\subseteq\{1,\ldots,n\}} \widehat{f}(A) w_A\Big) \stackrel{\mathrm{def}}{=} \sum_{i=1}^n \widehat{f}(\{i\}) w_{\{i\}}. \end{align} $$

A deep theorem of Pisier [Reference PisierPis82] asserts that a Banach space is K-convex if and only if

(36) $$ \begin{align} \forall \ r\in(1,\infty), \ \ \ \ \mathsf{K}_r(X) \stackrel{\mathrm{def}}{=} \mathop{\mathrm{sup}}\limits_{n\in\mathbb N}\big\|\mathsf{Rad}\big\|_{L_r(\mathscr{C}_n;X)\to L_r(\mathscr{C}_n;X)} <\infty. \end{align} $$

In particular, it follows from Lemma 4 that $\mathfrak {s}_p(X)<\infty $ for some $p\in (1,\infty )$ implies that $\mathsf{K}_r(X)<\infty $ for every $r\in (1,\infty )$ . We proceed by showing that Banach spaces belonging to the class considered in [Reference Hytönen and NaorHN13, Theorem 1.4] satisfy the assumptions of Theorem 1.

Proposition 5 Let $(X,\|\cdot \|_X)$ be a Banach space. If $X^\ast $ is a $\text{UMD}^+$ space, then X is a $\text{UMD}^-$ space and $\mathfrak {s}_p(X)<\infty $ for every $p\in (1,\infty )$ .

Proof The fact that if $X^\ast $ is $\text{UMD}^+$ , then X is $\text{UMD}^-$ has been proved by Garling in [Reference GarlingGar90, Theorem 1], so we only have to prove that $\mathfrak {s}_p(X)<\infty $ . Let $f_1,\dots ,f_n:\mathscr {C}_n\to X$ and $G^\ast :\mathscr {C}_n\times \mathscr {C}_n\to X^\ast $ be such that

(37) $$ \begin{align} \Big(\frac{1}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n} \Big\| \sum_{i=1}^n \delta_i \mathscr{E}_i f_i\Big\|_{L_p(\mathscr{C}_n;X)}^p\Big)^{1/p} = \frac{1}{4^n} \sum_{\varepsilon,\unicode{x3b4}\in\mathscr{C}_n} \big\langle G^\ast(\varepsilon,\unicode{x3b4}),\sum_{i=1}^n\delta_i \mathscr{E}_if_i(\varepsilon)\big\rangle \end{align} $$

and $\|G^\ast \|_{L_q(\mathscr {C}_n\times \mathscr {C}_n;X^\ast )} = 1$ , where $\tfrac {1}{p}+\tfrac {1}{q}=1$ . Let $G_i^\ast :\mathscr {C}_n\to X^\ast $ be given by

(38) $$ \begin{align} \forall \ \varepsilon\in\mathscr{C}_n, \ \ \ \ G_i^\ast(\varepsilon) = \frac{1}{2^n}\sum_{\unicode{x3b4}\in\mathscr{C}_n} \delta_i G^\ast(\varepsilon,\unicode{x3b4}). \end{align} $$

Then, since $X^\ast $ is $\text{UMD}^+$ , we deduce that $X^\ast $ is also K-convex (this is proved in [Reference GarlingGar90] but it also follows by combining Bourgain’s inequality (9) with Lemma 4) and thus

(39) $$ \begin{align} \Big(\frac{1}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n} \Big\| \sum_{i=1}^n \delta_i G^\ast_i\Big\|_{L_q(\mathscr{C}_n;X^\ast)}^q\Big)^{1/q} \stackrel{(38)}{=} \Big(\frac{1}{4^n}\sum_{\varepsilon,\unicode{x3b4}\in\mathscr{C}_n} \big\| \mathsf{Rad}_\unicode{x3b4} G^\ast(\varepsilon,\unicode{x3b4})\big\|_X^q\Big)^{1/q} \leqslant \mathsf{K}_q(X^\ast). \end{align} $$

Hence, we have

(40) $$ \begin{align} &\Big(\frac{1}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n} \Big\| \sum_{i=1}^n \delta_i \mathscr{E}_i f_i\Big\|_{L_p(\mathscr{C}_n;X)}^p\Big)^{1/p} \stackrel{(37)\wedge(38)}{=} \frac{1}{4^n} \sum_{\varepsilon,\unicode{x3b4}\in\mathscr{C}_n} \big\langle \sum_{i=1}^n\delta_i G_i^\ast(\varepsilon),\sum_{i=1}^n\delta_i \mathscr{E}_if_i(\varepsilon)\big\rangle \\ & = \frac{1}{2^n}\sum_{\varepsilon\in\mathscr{C}_n} \langle G_i^\ast(\varepsilon), \mathscr{E}_if_i(\varepsilon)\rangle = \frac{1}{2^n}\sum_{\varepsilon\in\mathscr{C}_n} \langle \mathscr{E}_iG_i^\ast(\varepsilon), f_i(\varepsilon)\rangle \nonumber\\ &= \frac{1}{4^n} \sum_{\varepsilon,\unicode{x3b4}\in\mathscr{C}_n} \Big\langle \sum_{i=1}^n\delta_i \mathscr{E}_iG_i^\ast(\varepsilon),\sum_{i=1}^n\delta_i f_i(\varepsilon)\Big\rangle \nonumber\\ & \leqslant \Big(\frac{1}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n} \Big\| \sum_{i=1}^n \delta_i \mathscr{E}_i G^\ast_i\Big\|_{L_q(\mathscr{C}_n;X^\ast)}^q\Big)^{1/q} \cdot \Big(\frac{1}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n} \Big\| \sum_{i=1}^n \delta_i f_i\Big\|_{L_p(\mathscr{C}_n;X)}^p\Big)^{1/p}. \nonumber \end{align} $$

Therefore, combining (40) with (8) and (39), we deduce that

(41) $$ \begin{align} \Big(\frac{1}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n} & \Big\| \sum_{i=1}^n \delta_i \mathscr{E}_i f_i\Big\|_{L_p(\mathscr{C}_n;X)}^p\Big)^{1/p} \\ & \stackrel{(8)}{\leqslant} \mathfrak{s}_q(X^\ast) \Big(\frac{1}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n} \Big\| \sum_{i=1}^n \delta_i G^\ast_i\Big\|_{L_q(\mathscr{C}_n;X^\ast)}^q\Big)^{1/q} \cdot \Big(\frac{1}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n} \Big\| \sum_{i=1}^n \delta_i f_i\Big\|_{L_p(\mathscr{C}_n;X)}^p\Big)^{1/p} \nonumber\\ & \stackrel{(39)}{\leqslant} \mathfrak{s}_q(X^\ast) \mathsf{K}_q(X^\ast) \cdot \Big(\frac{1}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n} \Big\| \sum_{i=1}^n \delta_i f_i\Big\|_{L_p(\mathscr{C}_n;X)}^p\Big)^{1/p}, \nonumber \end{align} $$

which shows that $\mathfrak {s}_p(X) \leqslant \mathsf{K}_q(X^\ast ) \mathfrak {s}_q(X^\ast )$ .▪

We conclude by observing that spaces satisfying the assumptions of Theorem 1 are necessarily superreflexive (see [Reference PisierPis16, Chapter 11] for the relevant terminology).

Lemma 6 If a $\text{UMD}^-$ Banach space $(X,\|\cdot \|_X)$ satisfies $\mathfrak {s}_p(X)<\infty $ , then X is superreflexive.

Proof A theorem of Pisier [Reference PisierPis73] asserts that a Banach space X is K-convex if and only if X has nontrivial Rademacher type. Therefore, we deduce from Lemma 4 that if $\mathfrak {s}_p(X)<\infty $ for some $p\in (1,\infty )$ , then there exist $s\in (1,2]$ and $T_s(X)\in (0,\infty )$ such that

(42) $$ \begin{align} \forall \ x_1,\dots ,x_n\in X, \ \ \ \ \Big(\frac{1}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n}\Big\|\sum_{i=1}^n \delta_i x_i\Big\|_X^s\Big)^{1/s} \leqslant T_s(X) \Big(\sum_{i=1}^n \|x_i\|_X^s\Big)^{1/s}. \end{align} $$

Therefore, if X also satisfies the $\text{UMD}^-$ property, we deduce that for every X-valued martingale $\{\mathscr {M}_i:\Omega \to X\}_{i=0}^n$ ,

(43) $$ \begin{align} \|\mathscr{M}_n - \mathscr{M}_0\|_{L_s(\Omega,\unicode{x3bc};X)} & \leqslant \beta_s^-(X) \Big(\frac{1}{2^n} \sum_{\unicode{x3b4}\in\mathscr{C}_n} \Big\| \sum_{i=1}^n \delta_i (\mathscr{M}_i-\mathscr{M}_{i-1}) \Big\|^s_{L_s(\Omega,\unicode{x3bc};X)}\Big)^{1/s} \nonumber\\ & \stackrel{(42)}{\leqslant} \beta_s^-(X)T_s(X) \Big( \sum_{i=1}^n \|\mathscr{M}_i-\mathscr{M}_{i-1}\|^s_{L_s(\Omega,\unicode{x3bc};X)}\Big)^{1/s}, \end{align} $$

which means that X has martingale type s. Combining this with well-known results linking martingale type and superreflexivity (see [Reference PisierPis16, Chapters 10-11]), we reach the desired conclusion.▪

Therefore, Theorem 1 establishes that $\mathfrak {P}_p^n(X)\asymp _p 1$ for X in a (strict, see [Reference GarlingGar90Reference QiuQiu12]) subclass of all superreflexive spaces. According to a result of the author and A. Naor (see [Reference EskenazisEsk19, Chapter 4]), the bound $\mathfrak {P}_p^n(X) = o(\log n)$ holds for every superreflexive Banach space X and $p\in (1,\infty )$ .

Remark added in proofs. After the submission of this paper, Ivanisvili, van Handel and Volberg circulated a preprint [Reference Ivanisvili, van Handel and VolbergIvHV20] showing that a Banach space satisfies $\mathop {\mathrm {sup}} _n\mathfrak {P}_p^n(X)<\infty $ for every (equivalently, for some) $p\in [1,\infty )$ if and only if X has finite cotype.

Acknowledgment

I would like to thank Assaf Naor for helpful discussions.

Footnotes

The author was supported by a postdoctoral fellowship of the Fondation Sciences Mathématiques de Paris.

References

Bourgain, J., Vector-valued singular integrals and the ${H}^1$ -BMO duality. In: Probability theory and harmonic analysis (Cleveland, OH, 1983), Monogr. Textbooks Pure Appl. Math., 98, Dekker, New York, 1986, pp. 119.Google Scholar
Eskenazis, A., Geometric inequalities and advances in the ribe program. Ph.D. thesis, Princeton University, 2019.Google Scholar
Garling, D. J. H., Random martingale transform inequalities. In: Probability in Banach spaces 6 (Sandbjerg, 1986), Progr. Probab., 20, Birkhäuser Boston, Boston, MA, 1990, pp. 101119.CrossRefGoogle Scholar
Hytönen, T. and Naor, A., Pisier’s inequality revisited. Studia Math. 215(2013), 221235.CrossRefGoogle Scholar
Ivanisvili, P., van Handel, R., and Volberg, A., Rademacher type and Enflo type coincide. Ann. of Math. Preprint, 2020. https://arxiv.org/abs/2003.06345, 2020.Google Scholar
Khintchine, A., Über dyadische Brüche. Math. Z. 18(1923), 109116.CrossRefGoogle Scholar
Naor, A. and Schechtman, G., Remarks on non linear type and Pisier’s inequality. J. Reine Angew. Math. 552(2002), 213236.Google Scholar
Pisier, G., Sur les espaces de Banach qui ne contiennent pas uniformément de ${l}_n^1$ . C. R. Acad. Sci. Paris Sér. A-B 277(1973), A991–A994.Google Scholar
Pisier, G., Holomorphic semigroups and the geometry of Banach spaces. Ann. of Math. (2) 115(1982), 375392.CrossRefGoogle Scholar
Pisier, G., Probabilistic methods in the geometry of Banach spaces. In: Probability and analysis (Varenna, 1985), Lecture Notes in Math., 1206, Springer, Berlin, 1986, pp. 167241.CrossRefGoogle Scholar
Pisier, G., Martingales in Banach spaces. Cambridge Studies in Advanced Mathematics, 155, Cambridge University Press, Cambridge, 2016.Google Scholar
Qiu, Y., On the UMD constants for a class of iterated ${L}_p\left({L}_q\right)$ spaces. J. Funct. Anal. 263(2012), 24092429.CrossRefGoogle Scholar
Stein, E. M., Topics in harmonic analysis related to the Littlewood-Paley theory. Ann. Math. Studies, 60 (Princeton University Press, Princeton, N.J), University of Tokyo Press, Tokyo, 1970.Google Scholar
Talagrand, M., Isoperimetry, logarithmic Sobolev inequalities on the discrete cube, and Margulis’ graph connectivity theorem. Geom. Funct. Anal. 1993(3), 295314.Google Scholar