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On Pisier’s inequality for UMD targets

Alexandros Eskenazis

Abstract. We prove an extension of Pisier’s inequality (1986) with a dimension-independent constant

for vector-valued functions whose target spaces satisfy a relaxation of the UMD property.

1 Introduction

Let (X , ∥ ⋅ ∥X) be a Banach space. For p ∈ [1,∞), the vector-valued Lp norm of a

function f ∶ Ω → X defined on a measure space (Ω,F, µ) is given by ∥ f ∥pLp(Ω,µ;X) =
∫Ω ∥ f (ω)∥pX dµ(ω). When Ω is a finite set and µ is the normalized countingmeasure,
we will simply write ∥ f ∥Lp(Ω;X).

Let Cn = {−1, 1}n be the discrete hypercube. For i ∈ {1, . . . , n}, the ith partial
derivative of a function f ∶ Cn → X is defined by

∀ ε ∈ Cn , ∂ i f (ε) def= f (ε) − f (ε1 , . . . , ε i−1 ,−ε i , ε i+1 , . . . , εn)
2

.(1)

In [Pis86], Pisier showed that for every n ∈ N and p ∈ [1,∞), every f ∶ Cn → X
satisfies

∥ f − 1

2n
∑
δ∈Cn

f (δ)∥
Lp(Cn ;X)

⩽Pn
p(X)( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ i∂ i f ∥
p

Lp(Cn ;X)
)1/p ,(2)

with Pn
p(X) ⩽ 2e log n. Showing that Pn

p(X) is bounded by a constant depending
only on p and the geometry of the givenBanach spaceX, is of fundamental importance
in the theory of nonlinear type (see [Pis86, NS02]). �e first positive and negative
results in this direction were obtained by Talagrand in [Tal93], who showed that
Pn

p(R) ≍p 1 andPn
p(ℓ∞) ≍p log n for every p ∈ [1,∞).

Talagrand’s dimension-independent scalar-valued inequality (2) was greatly gen-
eralized in the range p ∈ (1,∞) byNaor and Schechtman [NS02]. Recall that a Banach
space (X , ∥ ⋅ ∥X) is called a UMD space if for every p ∈ (1,∞), there exists a constant
βp ∈ (0,∞) such that for every n ∈ N, every probability space (Ω,F, µ) and every
filtration {Fi}ni=0 of sub- σ-algebras ofF, every martingale {Mi ∶ Ω → X}ni=0 adapted
to {Fi}ni=0 satisfies
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max
δ=(δ1 , . . . ,δn)∈Cn

∥
n

∑
i=1

δ i(Mi −Mi−1)∥
Lp(Ω,µ;X)

⩽ βp∥Mn −M0∥Lp(Ω,µ;X) .(3)

�e least constant βp ∈ (0,∞) for which (3) holds is called the UMDp constant of
X and is denoted by βp(X). In [NS02], Naor and Schechtman proved that for every
UMD Banach space X and p ∈ (1,∞),

sup
n∈N

Pn
p(X) ⩽ βp(X).(4)

�eir result was later strengthened by Hytönen and Naor [HN13] in terms of the
random martingale transform inequalities of Garling; see [Gar90]. Recall that a
Banach space (X , ∥ ⋅ ∥X) is aUMD+ space if for every p ∈ (1,∞) there exists a constant
β+p ∈ (0,∞) such that for every martingale {Mi ∶ Ω → X}ni=0 as before, we have

( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ i(Mi −Mi−1)∥
p

Lp(Ω,µ;X)
)1/p ⩽ β+p∥Mn −M0∥Lp(Ω,µ;X) .(5)

Similarly, X is a UMD− Banach space if for every p ∈ (1,∞) there exists a constant
β−p ∈ (0,∞) such that for every martingale {Mi ∶ Ω → X}ni=0 as before, we have

∥Mn −M0∥Lp(Ω,µ;X) ⩽ β−p( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ i(Mi −Mi−1)∥
p

Lp(Ω,µ;X)
)1/p .(6)

�e least positive constants β+p , β
−
p forwhich (5) and (6) hold are respectively called the

UMD+p and UMD−p constants of X and are denoted by β+p(X) and β−p(X). In [HN13],

Hytönen and Naor showed that for every Banach space X whose dual X∗ is a UMD+

space and p ∈ (1,∞),
sup
n∈N

Pn
p(X) ⩽ β+p/(p−1)(X∗).(7)

In fact, in [HN13, �eorem 1.4], the authors proved a generalization (see (28)) of
inequality (2) for a family of n functions { f i ∶ Cn → X}ni=1 under the assumption that
the dual of X is UMD+.

�e main result of the present note is a different inequality of this nature with
respect to a Fourier-analytic parameter of X. For a Banach space (X , ∥ ⋅ ∥X) and
p ∈ (1,∞), let sp(X) ∈ (0,∞] be the least constant s ∈ (0,∞] such that the following
holds. For every probability space (Ω,F, µ), n ∈ N and filtration {Fi}ni=1 of sub- σ-
algebras of F with corresponding vector-valued conditional expectations {Ei}ni=1,
every sequence of functions { f i ∶ Ω → X}ni=1 satisfies

( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ iEi f i∥
p

Lp(Ω,µ;X)
)1/p ⩽ s( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ i f i∥
p

Lp(Ω,µ;X)
)1/p .(8)

�e square function inequality (8) originates in Stein’s classical work [Ste70], where
he showed that sp(R) ≍p 1 for every p ∈ (1,∞). In the vector-valued setting which
is of interest here, it has been proved by Bourgain in [Bou86] that for every UMD+

Banach space and p ∈ (1,∞),
sp(X) ⩽ β+p(X).(9)
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284 A. Eskenazis

For a function f ∶ Cn → X and i ∈ {0, 1, . . . , n} denote by
∀ ε ∈ Cn , Ei f (ε) def= 1

2n−i
∑

δ i+1 , . . . ,δn∈{−1,1}

f (ε1 , . . . , ε i , δ i+1 , . . . , δn),(10)

so thatEn f = f andE0 f = 1
2n ∑δ∈Cn

f (δ).�emain result of this note is the following
theorem.

�eorem 1 Fix p ∈ (1,∞) and let (X , ∥ ⋅ ∥X) be a Banach space with sp(X) <∞. If,
additionally, X is a UMD− space, then for every n ∈ N and functions f1 , . . . , fn ∶ Cn →

X, we have

∥
n

∑
i=1

(Ei f i − Ei−1 f i)∥
Lp(Cn ;X)

⩽ sp(X)β−p(X)( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ i∂ i f i∥
p

Lp(Cn ;X)
)1/p .(11)

Choosing f1 = ⋯ = fn = f , we deduce that the constants in Pisier’s inequality (2) satisfy

sup
n∈N

Pn
p(X) ⩽ sp(X)β−p(X).(12)

Combining (12) with Bourgain’s inequality (9), we deduce that supn∈NP
n
p(X) ⩽

β+p(X)β−p(X), which is weaker than Naor and Schechtman’s bound (4). Nevertheless,
it appears to be unknown (see [Pis16, p. 197]) whether every Banach space X with
sp(X) <∞ is necessarily a UMD+ space. �erefore, it is conceivable that there exist
Banach spacesX for which inequality (12) does not follow from the previously known
results of [NS02, HN13]. We will see in Proposition 5 below that if the dual X∗ of a
Banach space X is UMD+, then X satisfies the assumptions of�eorem 1.�erefore,
�eorem 1 also contains the aforementioned result of [HN13].

Moreover,�eorem 1 implies an inequality similar to [HN13,�eorem 1.4] (see also
Remark 3 below for comparison), under different assumptions. We will need some
standard terminology from discrete Fourier analysis. Recall that every function f ∶
Cn → X can be expanded in a Walsh series as

f = ∑
A⊆{1, . . . ,n}

f̂ (A)wA,(13)

where f̂ (A) ∈ X and the Walsh function wA ∶ Cn → {−1, 1} is given by wA(ε) =
∏i∈A ε i for ε = (ε1 , . . . , εn) ∈ Cn and A ≠ ∅. As usual, we agree thatw∅ ≡ 1. Moreover,
the fractional hypercube Laplacian of a function f ∶ Cn → X is given by

∀ α ∈ R, ∆α( ∑
A⊆{1, . . . ,n}

f̂ (A)wA) def= ∑
A⊆{1, . . . ,n}

A≠∅

∣A∣α f̂ (A)wA.(14)

Corollary 2 Fix p ∈ (1,∞) and let (X , ∥ ⋅ ∥X) be a Banach space with sp(X) <∞. If,
additionally, X is a UMD− space, then for every n ∈ N and functions f1 , . . . , fn ∶ Cn →

X, we have

∥
n

∑
i=1

∆−1∂ i f i∥
Lp(Cn ;X)

⩽ sp(X)β−p(X)( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ i∂ i f i∥
p

Lp(Cn ;X)
)1/p .(15)
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Asymptotic notation In what follows we use the convention that for a, b ∈ [0,∞]
the notation a ≳ b (respectively a ≲ b) means that there exists a universal constant
c ∈ (0,∞) such that a ⩾ cb (respectively a ⩽ cb).Moreover, a ≍ b stands for (a ≲ b) ∧
(a ≳ b).�e notations ≲ξ , ≳χ and ≍ψ mean that the implicit constant c depends on ξ, χ
and ψ respectively.

2 Proofs

We first present the proof of�eorem 1.

Proof of�eorem 1 For a function h ∶ Cn → X and i ∈ {1, . . . , n} consider the
averaging operator

∀ ε ∈ Cn , Eih(ε) def= h(ε) + h(ε1 , . . . , ε i−1 ,−ε i , ε i+1 , . . . , εn)
2

= (id − ∂ i)h(ε),
(16)

where id is the identity operator.�en, for every i ∈ {0, 1, . . . , n}we have the identities
Eih = Ei+1 ○ ⋯ ○ Enh = E[h∣Fi],(17)

where Fi = σ(ε1 , . . . , ε i). Since for every i ∈ {1, . . . , n},
E[Ei f i − Ei−1 f i ∣Fi−1] = 0,(18)

the sequence {Ei f i − Ei−1 f i}ni=1 is a martingale difference sequence and thus the
UMD− condition and (8) imply that

∥
n

∑
i=1

(Ei f i − Ei−1 f i)∥
Lp(Cn ;X)

(6)⩽ β−p(X)( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ i(Ei f i − Ei−1 f i)∥
p

Lp(Cn ;X)
)1/p

(16)= β−p(X)( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ iEi∂ i f i∥
p

Lp(Cn ;X)
)1/p

(8)⩽ sp(X)β−p(X)( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ i∂ i f i∥
p

Lp(Cn ;X)
)1/p(19)

which completes the proof. ∎

We will now derive Corollary 2 from�eorem 1.�e proof follows a symmetriza-
tion argument of [HN13].

Proof of Corollary 2 As noticed in (19) above, (11) can be equivalently written as

∥
n

∑
i=1

Ei∂ i f i∥
Lp(Cn ;X)

⩽ sp(X)β−p(X)( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ i∂ i f i∥
p

Lp(Cn ;X)
)1/p .(20)

Fix a permutation π ∈ Sn and consider the filtration {Fπ
i }ni=0 given by F

π
i =

σ(επ(1) , . . . , επ(i)) with corresponding conditional expectations {Eπ
i }ni=0. Repeating

the argument of the proof of�eorem 1 for this filtration and themartingale difference
sequence {Eπ

i fπ(i) − E
π
i−1 fπ(i)}ni=1, we see that for every π ∈ Sn ,
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∥
n

∑
i=1

E
π
i ∂π(i) fπ(i)∥

Lp(Cn ;X)
⩽ sp(X)β−p(X)( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ i∂π(i) fπ(i)∥
p

Lp(Cn ;X)
)1/p

= sp(X)β−p(X)( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ i∂ i f i∥
p

Lp(Cn ;X)
)1/p ,(21)

since (δ1 , . . . , δn) has the same distribution as (δπ(1) , . . . , δπ(n)). An obvious adap-
tation of (10) along with (13) shows that for every h ∶ Cn → X,

E
π
i h = ∑

A⊆{π(1), . . . ,π(i)}

ĥ(A)wA(22)

where ĥ(A) are theWalsh coefficients of h.�erefore, expanding each fπ(i) as aWalsh
series (13) we have

∀ i ∈ {1, . . . , n}, E
π
i ∂π(i) fπ(i) = ∑

A⊆{1. . . ,n}
max π−1(A)=i

f̂π(i)(A)wA(23)

and therefore

n

∑
i=1

E
π
i ∂π(i) fπ(i) = ∑

A⊆{1, . . . ,n}

̂fπ(max π−1(A))(A)wA.(24)

Averaging (24) over all permutations π ∈ Sn and using the fact that π(max π−1(A)) is
uniformly distributed in A, we get

1

n!
∑
π∈Sn

n

∑
i=1

E
π
i ∂π(i) fπ(i) = ∑

A⊆{1, . . . ,n}
A≠∅

1

∣A∣∑i∈A f̂ i(A)wA

=
n

∑
i=1

∑
A⊆{1, . . . ,n}

i∈A

1

∣A∣ f̂ i(A)wA =
n

∑
i=1

∆−1∂ i f i .

Hence, by convexity we finally deduce that

∥
n

∑
i=1

∆−1∂ i f i∥
Lp(Cn ;X)

⩽ 1

n!
∑
π∈Sn

∥
n

∑
i=1

E
π
i ∂π(i) fπ(i)∥

Lp(Cn ;X)

(21)⩽ sp(X)β−p(X)( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ i∂ i f i∥
p

Lp(Cn ;X)
)1/p ,(25)

which completes the proof. ∎

Remark 3 In [HN13], Hytönen and Naor obtained a different extension of Pisier’s
inequality (2) for Banach spaceswhose dual is UMD+. For a function F ∶ Cn × Cn → X
and i ∈ {1, . . . , n}, let Fi ∶ Cn → X be given by

∀ ε ∈ Cn , Fi(ε) def= 1

2n
∑
δ∈Cn

δ iF(ε, δ).(26)
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In [HN13, �eorem 1.4], it was shown that for every p ∈ (1,∞) and every function
F ∶ Cn × Cn → X,

∥
n

∑
i=1

∆−1∂ iFi∥
Lp(Cn ;X)

⩽ β+p/(p−1)(X∗)∥F∥Lp(Cn×Cn ;X) .(27)

In fact, since every Banach space whose dual is UMD+ is K-convex (see [Pis16]
and Section 3 below) the validity of inequality (27) is equivalent to its validity for
functions of the form F(ε, δ) = ∑n

i=1 δ iFi(ε), where F1 , . . . , Fn ∶ Cn → X. In other
words, [HN13, �eorem 1.4] is equivalent to the fact that if X∗ is UMD+, then for
every F1 , . . . , Fn ∶ Cn → X and p ∈ (1,∞),

∥
n

∑
i=1

∆−1∂ iFi∥
Lp(Cn ;X)

⩽ Ap(X)( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ iFi∥
p

Lp(Cn ;X)
)1/p ,(28)

up to the value of the constant Ap(X). In particular, applying (28) to Fi = ∂ i f i , one
recovers Corollary 2, so inequality (28) of [HN13] is formally stronger than (15) in the
class of spaces whose dual is UMD+.

3 Concluding Remarks

In this section we will compare our result with existing theorems in the literature.
Recall that a Banach X space is K-convex if X does not contain the family {ℓn1 }∞n=1
with uniformly bounded distortion. We will need the following lemma.

Lemma 4 If a space (X , ∥ ⋅ ∥X) satisfies sp(X) <∞ for some p ∈ (1,∞), then X is
K-convex.

Proof It is well known since Stein’s work [Ste70] that inequality (8) does not hold
for p ∈ {1,∞} even for scalar valued functions. In fact, an inspection of the argument
in [Ste70, p. 105] shows that for every n ∈ N there existn functions g1 , . . . , gn ∶ Cn →

{0, 1} such that for every q ∈ (2,∞),
∥(

n

∑
i=1

(Ei g i)2)
1/2∥

Lq(Cn ;R)
≳ (∫

n

0
yq/2e−y dy)1/q∥(

n

∑
i=1

g2i )
1/2∥

Lq(Cn ;R)
,(29)

where {Ei}ni=0 are the conditional expectations (10). Using the fact that L∞(Cn ;R) is
2-isomorphic to Ln(Cn ;R), we thus deduce that

∥(
n

∑
i=1

(Ei g i)2)
1/2∥

L∞(Cn ;R)
≳ (∫

n

0
yn/2e−y dy)1/n∥(

n

∑
i=1

g2i )
1/2∥

L∞(Cn ;R)
(30)

≍√n∥(
n

∑
i=1

g2i )
1/2∥

L∞(Cn ;R)

�erefore, by duality in L∞(Cn ; ℓ
n
2 ) and Khintchine’s inequality [Khi23], we deduce

that there exist n functions h1 , . . . , hn ∶ Cn → R such that

1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ iEih i∥
L1(Cn ;R)

≳

√
n

2n
∑
δ∈Cn

∥
n

∑
i=1

δ ih i∥
L1(Cn ;R)

.(31)
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Suppose that a Banach space X with sp(X) <∞ is not K-convex, so that there exists
a constant K ∈ [1,∞) such that for every n ∈ N, there exists a linear operator Jn ∶
L1(Cn ;R)→ X satisfying

∀ h ∈ L1(Cn ;R), ∥h∥L1(Cn ;R) ⩽ ∥Jnh∥X ⩽ K∥h∥L1(Cn ;R).(32)

Consider the functions H1 , . . . ,Hn ∶ Cn → L1(Cn ;R) given by

∀ ε, ε′ ∈ Cn , [H i(ε)](ε′) = h i(ε1ε′1 , . . . , εnε′n),(33)

where h i ∈ L1(Cn ;R) are the functions satisfying (31). �en, for every i ∈ {1, . . . , n},
we have [EiH i(ε)](ε′) = Eih i(ε1ε′1 , . . . , εnε′n) and, by translation invariance, for
every ε, δ ∈ Cn we have

∥
n

∑
i=1

δ iEiH i(ε)∥
L1(Cn ;R)

= ∥
n

∑
i=1

δ iEih i∥
L1(Cn ;R)

and

∥
n

∑
i=1

δ iH i(ε)∥
L1(Cn ;R)

= ∥
n

∑
i=1

δ ih i∥
L1(Cn ;R)

�erefore, considering themappings f1 , . . . , fn ∶ Cn → X given by f i = Jn ○H i , we see
that

( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ iEi f i∥
p

Lp(Cn ;X)
)1/p ≳ K−1√n( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ i f i∥
p

Lp(Cn ;X)
)1/p ,(34)

thus showing that sp(X) ≳ K−1√n, which is a contradiction. ∎

Recall that the X-valued Rademacher projection is defined to be

Rad( ∑
A⊆{1, . . . ,n}

f̂ (A)wA) def=
n

∑
i=1

f̂ ({i})w{i} .(35)

A deep theorem of Pisier [Pis82] asserts that a Banach space is K-convex if and
only if

∀ r ∈ (1,∞), Kr(X) def= sup
n∈N
∥Rad∥

Lr(Cn ;X)→Lr(Cn ;X)
<∞.(36)

In particular, it follows from Lemma 4 that sp(X) <∞ for some p ∈ (1,∞) implies
that Kr(X) <∞ for every r ∈ (1,∞). We proceed by showing that Banach spaces
belonging to the class considered in [HN13, �eorem 1.4] satisfy the assumptions of
�eorem 1.

Proposition 5 Let (X , ∥ ⋅ ∥X) be a Banach space. If X∗ is a UMD+ space, then X is a
UMD− space and sp(X) <∞ for every p ∈ (1,∞).
Proof �e fact that if X∗ is UMD+, thenX is UMD− has been proved by Garling in
[Gar90,�eorem 1], so we only have to prove that sp(X) <∞. Let f1 , . . . , fn ∶ Cn → X
and G∗ ∶ Cn × Cn → X∗ be such that

( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ iEi f i∥
p

Lp(Cn ;X)
)1/p = 1

4n
∑

ε ,δ∈Cn

⟨G∗(ε, δ),
n

∑
i=1

δ iEi f i(ε)⟩(37)
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and ∥G∗∥Lq(Cn×Cn ;X∗) = 1, where 1
p +

1
q = 1. Let G∗i ∶ Cn → X∗ be given by

∀ ε ∈ Cn , G∗i (ε) = 1

2n
∑
δ∈Cn

δ iG
∗(ε, δ).(38)

�en, since X∗ is UMD+, we deduce that X∗ is also K-convex (this is proved in
[Gar90] but it also follows by combining Bourgain’s inequality (9) with Lemma 4)
and thus

( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ iG
∗
i ∥

q

Lq(Cn ;X∗)
)1/q (38)= ( 1

4n
∑

ε ,δ∈Cn

∥RadδG∗(ε, δ)∥qX)
1/q ⩽ Kq(X∗).

(39)

Hence, we have

( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ iEi f i∥
p

Lp(Cn ;X)
)1/p (37)∧(38)= 1

4n
∑

ε ,δ∈Cn

⟨
n

∑
i=1

δ iG
∗
i (ε),

n

∑
i=1

δ iEi f i(ε)⟩
(40)

= 1

2n
∑
ε∈Cn

⟨G∗i (ε),Ei f i(ε)⟩ = 1

2n
∑
ε∈Cn

⟨EiG
∗
i (ε), f i(ε)⟩

= 1

4n
∑

ε ,δ∈Cn

⟨
n

∑
i=1

δ iEiG
∗
i (ε),

n

∑
i=1

δ i f i(ε)⟩

⩽ ( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ iEiG
∗
i ∥

q

Lq(Cn ;X∗)
)1/q ⋅ ( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ i f i∥
p

Lp(Cn ;X)
)1/p .

�erefore, combining (40) with (8) and (39), we deduce that

( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ iEi f i∥
p

Lp(Cn ;X)
)1/p

(41)

(8)⩽ sq(X∗)( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ iG
∗
i ∥

q

Lq(Cn ;X∗)
)1/q ⋅ ( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ i f i∥
p

Lp(Cn ;X)
)1/p

(39)⩽ sq(X∗)Kq(X∗) ⋅ ( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ i f i∥
p

Lp(Cn ;X)
)1/p ,

which shows that sp(X) ⩽ Kq(X∗)sq(X∗). ∎

We conclude by observing that spaces satisfying the assumptions of�eorem 1 are
necessarily superreflexive (see [Pis16, Chapter 11] for the relevant terminology).

Lemma 6 If a UMD− Banach space (X , ∥ ⋅ ∥X) satisfies sp(X) <∞, then X is
superreflexive.

Proof A theorem of Pisier [Pis73] asserts that a Banach space X is K-convex if and
only if X has nontrivial Rademacher type.�erefore, we deduce from Lemma 4 that
if sp(X) <∞ for some p ∈ (1,∞), then there exist s ∈ (1, 2] and Ts(X) ∈ (0,∞) such
that
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∀ x1 , . . . , xn ∈ X , ( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ ix i∥
s

X
)1/s ⩽ Ts(X)(

n

∑
i=1

∥x i∥sX)
1/s
.(42)

�erefore, if X also satisfies the UMD− property, we deduce that for every X-valued
martingale {Mi ∶ Ω → X}ni=0,

∥Mn −M0∥Ls(Ω,µ;X) ⩽ β−s (X)( 1

2n
∑
δ∈Cn

∥
n

∑
i=1

δ i(Mi −Mi−1)∥
s

Ls(Ω,µ;X)
)1/s

(42)⩽ β−s (X)Ts(X)(
n

∑
i=1

∥Mi −Mi−1∥sLs(Ω,µ;X))
1/s
,(43)

which means that X has martingale type s. Combining this with well-known results
linkingmartingale type and superreflexivity (see [Pis16, Chapters 10-11]), we reach the
desired conclusion. ∎

�erefore, �eorem 1 establishes that Pn
p(X) ≍p 1 for X in a (strict, see

[Gar90, Qiu12]) subclass of all superreflexive spaces. According to a result of the
author and A. Naor (see [Esk19, Chapter 4]), the boundPn

p(X) = o(log n) holds for
every superreflexive Banach space X and p ∈ (1,∞).

Remark added in proofs. A�er the submission of this paper, Ivanisvili, van Handel
and Volberg circulated a preprint [IvHV20] showing that a Banach space satisfies
supn P

n
p(X) <∞ for every (equivalently, for some) p ∈ [1,∞) if and only if X has

finite cotype.

Acknowledgment I would like to thank Assaf Naor for helpful discussions.
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