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On Pisier’s inequality for UMD targets

Alexandros Eskenazis

Abstract. We prove an extension of Pisier’s inequality (1986) with a dimension-independent constant
for vector-valued functions whose target spaces satisfy a relaxation of the UMD property.

1 Introduction

Let (X, |- |x) be a Banach space. For p € [1, o), the vector-valued L, norm of a
function f : QO - X defined on a measure space (Q, J, p) is given by HfHIL),,(Q,p;X) =
Jo |f(@)]% dp(w). When Q is a finite set and y is the normalized counting measure,
we will simply write || ||, (q;x)-

Let C, = {-1,1}" be the discrete hypercube. For i€ {1,...,n}, the ith partial
derivative of a function f : €, — X is defined by

(1) VSGG,,,, a,f(s) déf f(s)_f(sl)---)si;'l)_si)ei+l)---)SH).
In [Pis86], Pisier showed that for every n €N and p€[1,00), every f:C, > X
satisfies

@ -5 Z 5 )| (5 ) HZ o]
with P7(X) < 2elogn. Showing that P (X) is bounded by a constant depending
only on p and the geometry of the given Banach space X, is of fundamental importance
in the theory of nonlinear type (see [Pis86, NS02]). The first positive and negative
results in this direction were obtained by Talagrand in [Tal93], who showed that
P (R) xp Land P (Leo) xp logn for every p € [1, 00).

Talagrand’s dimension-independent scalar-valued inequality (2) was greatly gen-
eralized in the range p € (1, o) by Naor and Schechtman [NS02]. Recall that a Banach
space (X, || - | x) is called a UMD space if for every p € (1, o0), there exists a constant
Bp € (0,00) such that for every n € N, every probability space (2, J,u) and every
filtration {JF; }_; of sub- o-algebras of F, every martingale {M; : Q — X}/, adapted
to {F; }1, satisfies

L (en;x) ¥ Ly(Cy X))
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3) Zs (M - M, 1)H oy < B 1M =Ml 00

The least constant B, € (0, 00) for which (3) holds is called the UMD, constant of
X and is denoted by B,(X). In [NS02], Naor and Schechtman proved that for every
UMD Banach space X and p € (1, o),

(4) sug‘ﬁ’;(X) <Bp(X).

Their result was later strengthened by Hytoénen and Naor [HN13] in terms of the
random martingale transform inequalities of Garling; see [Gar90]. Recall that a
Banach space (X, || - | x) isa UMD space if for every p € (1, o0) there exists a constant
B, € (0, 00) such that for every martingale {M; : Q - X}'_ as before, we have

S ] DU URE VTN T 1. R e

(Q,H;X))

Similarly, X is a UMD~ Banach space if for every p € (1, 00) there exists a constant
B, € (0, 00) such that for every martingale {M; : Q - X}7_ as before, we have

(6) |V MOHLP(QHX) B1"(2n Z HZS (M =2 1)HL (QHX))I/P'

The least positive constants 8, §, for which (5) and (6) hold are respectively called the
UMD, and UMD, constants of X and are denoted by p, (X) and B, (X). In [HNI3],
Hytdnen and Naor showed that for every Banach space X whose dual X* isa UMD™
spaceand p € (1,00),

) sup 3 (X) < By o) (X7).

In fact, in [HN13, Theorem1.4], the authors proved a generalization (see (28)) of
inequality (2) for a family of n functions { f; : €,, - X}, under the assumption that

the dual of X is UMD".
The main result of the present note is a different inequality of this nature with
respect to a Fourier-analytic parameter of X. For a Banach space (X, |- |x) and

pe(l,00),lets,(X) e (0,00] be the least constant s € (0, oo] such that the following
holds. For every probability space (Q,F, i), n € N and filtration {F;}"_; of sub- o-
algebras of F with corresponding vector-valued conditional expectations {&;}%,,
every sequence of functions { fi+ Q — X}, satisfies

Y
(8) (an HZ&, A ) s (znée HZ i

The square function inequality (8) originates in Stein’s classical work [Ste70], where
he showed that 5,(IR) <, 1 for every p € (1, 0). In the vector-valued setting which
is of interest here, it has been proved by Bourgain in [Bou86] that for every UMD*
Banach space and p € (1, o),

€) 5p(X) <P, (X).

Lp(Q,1:X) L(QPX))
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284 A. Eskenazis

For a function f : €, - X and i € {0,1,..., n} denote by

1
100 Veelw Eif(e)E —— Y flen..o €081 80),
2 Sit1s-»0n€{-11}
sothat&,f = fand &g f = 37 Ysee, f(8). The main result of this note is the following
theorem.

Theorem 1 Fix p € (1,00) and let (X, | - | x) be a Banach space with s,(X) < co. If,
additionally, X is a UMD™ space, then for every n € N and functions fi,..., fu: Cp —
X, we have

W | S, &) gsp(x)ﬁ;(x)(i > S o0 )1/p_
i=1 Ly (CwsX) 2" see, Vi Lp(CusX)
Choosing fi = --- = f, = f, we deduce that the constants in Pisier’s inequality (2) satisfy

(12) sup ¥, (X) <5, (X)B, (X).

Combining (12) with Bourgain's inequality (9), we deduce that sup,, .\ (X) <
B, (X)B,(X), which is weaker than Naor and Schechtman’s bound (4). Nevertheless,
it appears to be unknown (see [Pisl6, p. 197]) whether every Banach space X with
$p(X) < oo is necessarily a UMD space. Therefore, it is conceivable that there exist
Banach spaces X for which inequality (12) does not follow from the previously known
results of [NS02, HN13]. We will see in Proposition 5 below that if the dual X* of a
Banach space X is UMD, then X satisfies the assumptions of Theorem 1. Therefore,
Theorem 1 also contains the aforementioned result of [HN13].

Moreover, Theorem 1 implies an inequality similar to [HN13, Theorem 1.4] (see also
Remark 3 below for comparison), under different assumptions. We will need some
standard terminology from discrete Fourier analysis. Recall that every function f :
C, — X can be expanded in a Walsh series as

(13) f= 3 FflAwa

Ac{l,...,n}
where f(A) € X and the Walsh function w, : G, — {-1,1} is given by wy(e) =

[Ticacifore=(e1,...,€,) € C,and A # @. As usual, we agree that wy = 1. Moreover,
the fractional hypercube Laplacian of a function f : C, - X is given by

(14) VaeR, 2% Y Flawa )€ X [ARF(A)wa.
Ac{l,...,n} Ac{l,...,n}
A+

Corollary 2 Fix p € (1,00) and let (X, || - || x) be a Banach space with s,(X) < co. If,
additionally, X is a UMD™ space, then for every n € N and functions fi,..., fu: Cp —
X, we have

(15) H znj A9 i ’ )l/p.
i=1

<5 (08,00(5; =1 >0,

Lp(CusX Ly(Cy;X)
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Asymptotic notation In what follows we use the convention that for a, b € [0, o0]
the notation a 2 b (respectively a < b) means that there exists a universal constant
c € (0,00) suchthata > cb (respectlvelya < ¢b). Moreover, a < b stands for (a < b) A
(a 2 b). The notations g, 2, and <, mean that the implicit constant c depends on , y
and y respectively.

2 Proofs

We first present the proof of Theorem 1.

Proof of Theorem1  For a function h:C, - X and i€ {l,...,n} consider the
averaging operator

(16)

veee, Ehe) def h(e) +h(sl,...,s,-;,—s,-,em,...,sﬂ) (id - 9:)h(e),
where id is the identity operator. Then, for every i € {0,1, ..., n} we have the identities
(17) &ih=E;yo--0E,h=E[hTF;],
where F; = o(ey, ..., ¢&;). Since for every i € {1,...,n},
(18) E[&:fi - Eiifi|Fia] =0

the sequence {&;f; — €;_1fi}", is a martingale difference sequence and thus the
UMD condition and (8) imply that

S st o < B0 Z IS0@n-canl )"
1
(16)61,( )( Z HZssaf, . X)) P
(19) < s, (0B X)( Z HZ i, L(er X))/P
which completes the proof. ]

We will now derive Corollary 2 from Theorem 1. The proof follows a symmetriza-
tion argument of [HNI3].

Proof of Corollary2  As noticed in (19) above, (11) can be equivalently written as

n 1/p
20 Ei0ifi <5p(X)B,(X) i0ifi .
0 H; / Ly(€4:X) (X8, ( Z HZ ouf, Ly(€, X))
Fix a permutation meS, and consider the filtration {F7}7, given by F} =
0(€n(1)» - - - » €(i)) With corresponding conditional expectations {€] }"_ . Repeating

the argument of the proof of Theorem 1 for this filtration and the martingale difference
sequence {&] fr(i) = €1 fr(i) } 11> We see that for every m € S,,,
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1/p
Ly(Cu x))

1/p
Ly(C, x)) ’

since (81, ..., 0,) has the same distribution as (1. ..>8x(s)). An obvious adap-
tation of (10) along with (13) shows that for every h: C, — X,

<5 (0B, (05 P Hzé G

Lp(Cu;X)

I3 €m0 e

(21) = 5,08, ()5 P Hz |

(22) Eh= 3 HA)ws
Ac{n(1),...,n(i)}

where 71( A) are the Walsh coefficients of . Therefore, expanding each fr(i) asa Walsh
series (13) we have

(23) Vie{l,..onh, € ifaiy= Do Fan(A)wa
Ac{l...,n}
max ! (A)=i

and therefore

n
(24) ZE?an(i)fn(i) = Z fn(maxn‘l(A))(A)WA
i=1 Ac{1l

.....

Averaging (24) over all permutations 7t € S, and using the fact that t(max ™! (A)) is
uniformly distributed in A, we get

- Z 25 On(iyfay = 20 }|A| > fi(A)ywa

'nes i=1 Ac{l,..., i€cA
A+Z
n
=y Fi(A)wy = ZA 19, fi.
i= Ac{l, ) |A\
i€A

Hence, by convexity we finally deduce that

|37 i % %

L(e iX) n‘

(5) e 008,00(5 P PETN

Lp(Cu;X)

/p
Lp(Cy X)) ’

which completes the proof. ]
Remark 3 In [HNI3], Hytonen and Naor obtained a different extension of Pisier’s
inequality (2) for Banach spaces whose dual is UMD™. Fora function F: C, x €,, > X
andie€{l,...,n},letF;: €, > X be given by

(26) VeeC, Fi(e)% L 2n 2 BiF(e,9).
668
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In [HN13, Theorem 1.4], it was shown that for every p € (1, 00) and every function
F:C,xC, > X,

n
27) | > a7ar < B0 XF L, (euxerin)-
i=1

LP(G,,;X)

In fact, since every Banach space whose dual is UMD™ is K-convex (see [Pisl6]
and Section 3 below) the validity of inequality (27) is equivalent to its validity for
functions of the form F(e, 8) = Y7, §;F;(¢), where Fy,...,F,:C, > X. In other
words, [HN13, Theorem 1.4] is equivalent to the fact that if X* is UMD, then for
every Fy,...,F,:C, > Xand p € (1, ),

<Ap(X (2“5e HZ iF;

up to the value of the constant A,(X). In particular, applying (28) to F; = 0; f;, one
recovers Corollary 2, so inequality (28) of [FIN13] is formally stronger than (15) in the
class of spaces whose dual is UMD,

2 | S AT9,F,
i=1

) /p
Ly(CuX) Ly(esx))

3 Concluding Remarks

In this section we will compare our result with existing theorems in the literature.
Recall that a Banach X space is K-convex if X does not contain the family {¢]'}32,
with uniformly bounded distortion. We will need the following lemma.

Lemma 4 If a space (X, | - |x) satisfies s,(X) < oo for some p € (1,00), then X is
K-convex.

Proof It is well known since Stein’s work [Ste70] that inequality (8) does not hold
for p € {1, 00} even for scalar valued functions. In fact, an inspection of the argument
in [Ste70, p. 105] shows that for every n € N there existn functions g,..., g, : €, >
{0,1} such that for every g € (2, o),

@ (5 Ee)) ], ez (e a) |(2e) ]

where {€;}_, are the conditional expectations (10). Using the fact that Lo, (C,;; R) is
2-isomorphic to L, (€,;R), we thus deduce that

n 1/2 B 1/
(30) H(; i6:)’) HL o ? [ Yo dy) n

val(£)"]

Therefore, by duality in Lo, (C,;¢%) and Khintchine’s inequality [Khi23], we deduce
that there exist n functions hy, ..., h, : €, = R such that

w L [Seen = [Son
6&@

L (e R) Lq(erﬁR),

n

(%

LN(CH;R)

1/2
g) |

Loo(en;]R)

Li(C, ]R) 2 Li(CuR)
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Suppose that a Banach space X with 5,(X) < co is not K-convex, so that there exists
a constant K € [1,00) such that for every n € N, there exists a linear operator J,
Li(€C,;R) — X satisfying

(32) VheLi(CusR), |kl e.r) < dnhlx < K|h|L e, r)-
Consider the functions Hy, ..., H, : €, > L;(C,;R) given by
(33) Ve e eCu [Hi(e)](€)=hi(eare),. .. enel),

where h; € L1(C,;R) are the functions satisfying (31). Then, for every i € {1,...,n},
we have [&;H;(¢)](¢) = Ehi(ere], ..., eq€),) and, by translation invariance, for
every &, 8 € C,, we have

and

H Zn;&&H,-(e)

Li(CusR) - H ;(Sigihi

=[[>:m

Therefore, considering the mappings fi, ..., f, : C, - X given by f; = J, o H;, we see
that

o0 (53 IS ae]

Li(CusR)

H ééiHi(e)

Li(CuR) Li(CR)

/p
Ly(€, X>) ’

_1\/_(2"5e HZ 1f1

thus showing that s,(X) 2 K™'\/n, which is a contradiction. [

Ly(€, X))

Recall that the X-valued Rademacher projection is defined to be

(35) Rad( Y f(A)wA)de Zf {iP)win-

Ac{l,...,n}
A deep theorem of Pisier [Pis82] asserts that a Banach space is K-convex if and
only if

def
(36) Vre(loo), K,(X)'= sup ||Rad||Lr(en_X)_>L (@) <
e & ; (Cus

In particular, it follows from Lemma 4 that s,(X) < co for some p € (1, c0) implies
that K,(X) < oo for every r € (1, 00). We proceed by showing that Banach spaces
belonging to the class considered in [HNI13, Theorem 1.4] satisfy the assumptions of
Theorem 1.

Proposition 5 Let (X, || - | x) be a Banach space. If X* is a UMD space, then X is a
UMD’ space and s,(X) < oo for every p € (1, 00).

Proof  The fact that if X* is UMD, then X is UMD has been proved by Garling in
[Gar90, Theorem 1], so we only have to prove that 5, (X) < co.Let fi,..., fn : C, = X
and G* : G, x G, - X* be such that

@ (%3 |Seeal 1

. X))l/p=4— S (G*(e6), ZSSf, (e))

£,0eC,
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and |G|, (e,xe,:x+) = 1, where Ly é =1 Let G : C, —» X" be given by

]

(38) Veel,, G(e)——ZGG(eG)
8eCy,

Then, since X* is UMD", we deduce that X* is also K-convex (this is proved in
[Gar90] but it also follows by combining Bourgain’s inequality (9) with Lemma 4)

and thus
(39)
1
(5 21506 ) (55, Z, IRota6"@0l) " <k,

Hence, we have

(40)

(e 2 e
(Gi(e),Eifie)) =—Z (€iG7 (e), fi(e))

Ve (37aG8) 1 5 (25 G} (¢), ZG Eifile))

Ly(Cn X)) 4 £,8eC, i=1

o £eC, eeC,
52@ (2686‘ (), 26ﬁ )
/9 1 1/p
(2" 68, HZ6 &G Lo(Cy X*)) (2“ aze: lf’ Ly(C, X)) '
Therefore, combining (40) with (8) and (39), we deduce that
(41)
1/p
(2n ZHZ i 'f' L,(C, X))
* Y
Yool 3 1Sl X*)) Gzl )"
(?)EAX*)KAX*»( x HZ e X>)“1
which shows that s, (X) < Ky (X*)s,(X*). |

We conclude by observing that spaces satisfying the assumptions of Theorem 1 are
necessarily superreflexive (see [Pis16, Chapter 11] for the relevant terminology).

Lemma 6 If a UMD~ Banach space (X, |- |x) satisfies 5,(X) < oo, then X is
superreflexive.

Proof A theorem of Pisier [Pis73] asserts that a Banach space X is K-convex if and
only if X has nontrivial Rademacher type. Therefore, we deduce from Lemma 4 that
if s,(X) < oo for some p € (1, 00), then there exist s € (1,2] and T;(X) € (0, 00) such
that
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1 n
(42) Vxl,...,xn e X, (2_”526: ”Z;S,'X,'
eC, i=

s \1/s n 1/s
) <n@O(Xlwlx)
i=1
Therefore, if X also satisfies the UMD™ property, we deduce that for every X-valued
martingale {M; : Q - X},

1
M = Mo v

Lo(Q,uX) S BS_(X)( > ” é&i(M; _Mi‘l)“s )1/5

21 pyrch Lo (Q,1X)

(42) n s 1/s
(43) < B COTO( X IM: = Mial o))

i=1

which means that X has martingale type s. Combining this with well-known results
linking martingale type and superreflexivity (see [Pis16, Chapters 10-11]), we reach the
desired conclusion. ]

Therefore, Theorem 1 establishes that Py(X) <, 1 for X in a (strict, see
[Gar90, Qiul2]) subclass of all superreflexive spaces. According to a result of the
author and A. Naor (see [Esk19, Chapter 4]), the bound B} (X) = o(log ) holds for
every superreflexive Banach space X and p € (1, 00).

Remark added in proofs. After the submission of this paper, Ivanisvili, van Handel
and Volberg circulated a preprint [I[VHV20] showing that a Banach space satisfies
sup, P, (X) < oo for every (equivalently, for some) p € [1, 00) if and only if X has
finite cotype.

Acknowledgment I would like to thank Assaf Naor for helpful discussions.
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