1 Introduction
Let ${\mathbb C}$ be the complex plane. For $c \in {\mathbb C}$ and $r> 0$ , let ${\mathbb D}(c,r) := \{ z \in {\mathbb C} : |z-c| < r \}$ and $\overline {\mathbb D}(c,r) := \{ z \in {\mathbb C} : |z-c| \leq r \}$ . In particular, we denote the unit disk by ${\mathbb D} := {\mathbb D}(0,1)$ . Let ${\mathcal A}({\mathbb D})$ be the class of analytic functions in the unit disk ${\mathbb D}$ endowed with the topology of uniform convergence on every compact subset of ${\mathbb D}$ . Denote by $\mathcal {A}_0$ functions f in ${\mathcal A}({\mathbb D})$ normalised by $f(0) = f'(0)-1 = 0$ . Further, let $\mathcal {S}$ denote the standard subclass of $\mathcal {A}_0$ of normalised univalent functions in ${\mathbb D}$ . A function f in $\mathcal {A}_0$ is called starlike (respectively convex) if f is univalent and $f(\mathbb {D})$ is starlike with respect to $0$ (respectively convex). Let $\mathcal {S}^*$ and $\mathcal {CV}$ denote the classes of starlike and convex functions, respectively. It is well known that a function $f\in \mathcal {A}_0$ is in $\mathcal {S}^*$ if and only if $\mathrm {Re}\,(zf'(z)/f(z))>0$ and in $\mathcal {CV}$ if and only if $\mathrm {Re} \, \{ zf''(z)/f'(z) \} +1> 0$ for $z\in \mathbb {D}$ .
Let ${\mathcal F}$ be a subclass of ${\mathcal A}({\mathbb D})$ and $z_0 \in {\mathbb D}$ . The upper and lower estimates,
where the $M_j$ and $m_j$ are nonnegative constants, are respectively called distortion and rotation theorems at $z_0$ for ${\mathcal F}$ . These estimates deal only with the absolute value or argument of $f'(z_0)$ . If one wants to study the complex value $f'(z_0)$ itself, it is necessary to consider the variability region of $f'(z_0)$ when f ranges over ${\mathcal F}$ , that is, to consider the set $\{ f'(z_0) : f \in {\mathcal F } \}$ . For example [Reference Duren4, Ch. 2, Exercises 10, 11 and 13],
For $f \in \mathcal {CV}$ , an easy consequence of Schwarz’s lemma is that $|f''(0)| \leq 2$ . For fixed $z_0 \in {\mathbb D}$ and $\lambda \in \overline {\mathbb D}$ , Gronwall [Reference Gronwall7] obtained the sharp lower and upper estimates for $|f'(z_0)|$ when $f \in \mathcal {CV}$ satisfies the additional condition $f''(0) = 2 \lambda $ (see also [Reference Finkelstein5]). Let
If $| \lambda | =1 $ , then, by Schwarz’s lemma, for $f \in \mathcal {CV}$ the condition $f''(0) = 2 \lambda $ forces $f(z) \equiv z/(1-\lambda z)$ and hence $\widetilde {V} (z_0, \lambda ) = \{ \log 1/(1-\lambda z_0)^2 \}$ . Since $\widetilde {V}(e^{-i \theta }z_0, e^{i \theta }\lambda ) = \widetilde {V}(z_0, \lambda )$ for all $\theta \in {\mathbb R}$ , without loss of generality we may assume that $0 \leq \lambda < 1$ . In 2006, Yanagihara [Reference Yanagihara20] obtained the following extension of Gronwall’s result.
Theorem 1.1. For any $z_0 \in {\mathbb D} \backslash \{ 0 \}$ and $0 \leq \lambda < 1$ , the set $\widetilde {V} (z_0, \lambda ) $ is a convex closed Jordan domain surrounded by the curve
Theorem 1.1 can be equivalently written as follows.
Theorem 1.2. Let ${\mathbb H} = \{ w \in {\mathbb C} : \text {Re} \, w> 0 \}$ . For any $z_0 \in {\mathbb D} \backslash \{ 0 \}$ and $0 \leq \lambda < 1$ , the variability region
coincides with the convex closed Jordan domain defined in Theorem 1.1.
Theorem 1.1 is a direct consequence of Theorem 1.2 with $g(z) = 1 + zf''(z)/f'(z)$ . For similar results, we refer to [Reference Ali and Vasudevarao1 Reference Ali and Vasudevarao1, Reference Ponnusamy, Vasudevarao and Yanagihara13, Reference Ul-Haq18, Reference Yanagihara19, Reference Yanagihara21] and the references therein.
Recently, the present authors [Reference Ali, Allu and Yanagihara2] extended Theorem 1.2 to the most general setting.
Let $\Omega $ be a simply connected domain in ${\mathbb C}$ with $\Omega \not = {\mathbb C}$ and let P be a conformal map of ${\mathbb D}$ onto $\Omega $ . Let ${\mathcal F}_\Omega $ be the class of analytic functions g in ${\mathbb D}$ with $g( {\mathbb D}) \subset \Omega $ . Then the map $P^{-1} \circ g$ maps ${\mathbb D}$ into ${\mathbb D}$ . For $c = (c_0,c_1, \ldots , c_n ) \in {\mathbb C}^{n+1}$ , let
Let $H^\infty ({\mathbb D})$ be the Banach space of analytic functions f in ${\mathbb D}$ with the norm defined by $\| f \|_\infty = \sup _{z \in {\mathbb D}} |f(z)|$ , and $H_1^\infty ({\mathbb D}) = \{ \omega \in H^\infty ({\mathbb D}) : \| \omega \|_\infty \leq 1 \}$ be the closed unit ball of $H^\infty ({\mathbb D})$ . The coefficient body ${\mathcal C}(n)$ defined by
is a compact and convex subset of ${\mathbb C}^{n+1}$ . The coefficient body ${\mathcal C}(n)$ has been completely characterised by Schur [Reference Schur15, Reference Schur and Gohberg16]. For a detailed treatment, we refer to [Reference Foias and Frazho6, Ch. I] and [Reference Bakonyi and Constantinescu3, Ch. 1].
We call $c = (c_0, \ldots , c_n )$ the Carathéodory data of length $n+1$ . For given Carathéodory data $c =(c_0,\ldots ,c_n) \in {\mathbb C}^{n+1}$ , the Schur parameter $\gamma = (\gamma _0 , \ldots , \gamma _k)$ , $k=0,1, \ldots , n$ , is defined as follows.
For $j=0,1,\ldots $ , define recursively $c^{({\kern1.5pt}j)} = (c_0^{({\kern1.5pt}j)},c_1^{({\kern1.5pt}j)}, \ldots , c_{n-j}^{({\kern1.5pt}j)})$ and $\gamma _j = c_0^{({\kern1.5pt}j)}$ by
with $c ^{(0)} =c = (c_0,\ldots ,c_n)$ . In the jth step ( $j=0,1,\ldots $ ), if $|\gamma _j|> 1$ , then we put $k=j$ and $\gamma = ( \gamma _0, \ldots , \gamma _j )$ ; if $|\gamma _j | =1$ , then we put $k=n$ and, for $p=j+1, \ldots , n$ , we take
if $|\gamma _j | < 1$ , then we proceed to the $({\kern1.5pt}j+1)$ th step. Applying this procedure recursively, we obtain the Schur parameter $\gamma = ( \gamma _0 , \ldots , \gamma _k )$ , $k=0, \ldots , n$ , of $c =(c_0, \ldots , c_n)$ .
When $|\gamma _0|<1, \ldots , |\gamma _n| < 1$ , each of $c=(c_0, \ldots , c_n )= c^{(0)}$ and $\gamma = (\gamma _0, \ldots , \gamma _n )$ is uniquely determined by the other. For an explicit representation of $\gamma $ in terms of c, we refer to [Reference Schur15, Reference Schur and Gohberg16]. For given $c=(c_0, \ldots , c_n) \in {\mathbb C}^{n+1}$ , Schur [Reference Schur15, Reference Schur and Gohberg16] proved that $c \in \text {Int} \, {\mathcal C}(n)$ , $c \in \partial {\mathcal C}(n)$ and $c \not \in {\mathcal C}(n)$ are respectively equivalent to the conditions:
-
(C1) $k=n$ and $|\gamma _i|<1$ for $i=1,2,\ldots ,n$ ;
-
(C2) $k=n$ and $|\gamma _0|<1, \ldots , |\gamma _{i-1}|<1$ , $|\gamma _i|=1$ , $\gamma _{i+1}= \cdots = \gamma _n=0$ for some i with $i=0, \ldots , n$ ; and
-
(C3) neither $\mathrm {\mathbf {(C1)}}$ nor $\mathrm {\mathbf {(C2)}}$ holds.
For $c \in \text {Int} \, {\mathcal C}(n)$ , the Schur parameter can be computed as follows. Let $\omega \in H_1^\infty ({\mathbb D})$ be such that $\omega (z) = c_0+ c_1 z + \cdots + c_n z^n + \cdots $ . Define
Then $\gamma _p = \omega _p(0)$ and $\omega _p(z) = c_0^{(p)}+c_1^{(p)}z+ \cdots + c_{n-p}^{(p)}z^{n-p} + \cdots $ for $p=0,1, \ldots , n$ . For a detailed proof, we refer to [Reference Foias and Frazho6, Ch. 1].
For $a \in {\mathbb D}$ , define $\sigma _a \in \mbox {Aut} ( {\mathbb D})$ by
For $\varepsilon \in \overline {\mathbb D}$ and the Schur parameter $\gamma =( \gamma _0,\ldots , \gamma _n)$ of $c \in \text {Int} \, {\mathcal C}(n)$ , let
Then $\omega _{\gamma , \varepsilon } \in H_1^\infty ({\mathbb D})$ with Carathéodory data c, that is, $\omega _{\gamma , \varepsilon }(z) = c_0+c_1z+\cdots + c_nz^n + \cdots $ . By using the Schur algorithm, the present authors [Reference Ali, Allu and Yanagihara2] obtained the following general result for the region of variability.
Theorem 1.3 [Reference Ali, Allu and Yanagihara2]
Let $n \in {\mathbb N} \cup \{ 0 \}$ , $j \in \{-1,0, 1,2 , \ldots \}$ and $c =(c_0, \ldots , c_n) \in {\mathbb C}^{n+1}$ be Carathéodory data. Let $\Omega $ be a convex domain in ${\mathbb C}$ with $\Omega \not = {\mathbb C}$ and P be a conformal map of ${\mathbb D}$ onto $\Omega $ . For each fixed $z_0 \in {\mathbb D} \backslash \{0 \}$ , let
-
(i) If $c = (c_0, \ldots , c_n ) \in \text {Int} \,{\mathcal C}(n)$ and $\gamma =(\gamma _0, \ldots , \gamma _n )$ is the Schur parameter of c, then $Q_{\gamma , j}(z_0, \varepsilon )$ defined by (1.1) is a convex univalent function of $\varepsilon \in \overline {\mathbb D}$ and
$$ \begin{align*}V_\Omega^j (z_0,c) = Q_{\gamma , j}(z_0, \overline{\mathbb D} ) := \{ Q_{\gamma , j}(z_0, \varepsilon ) : \varepsilon \in \overline{\mathbb D} \}. \end{align*} $$Furthermore,$$ \begin{align*}\int_0^{z_0} \zeta^j \{ g(\zeta ) - g(0) \} \, d \zeta = Q_{\gamma , j}(z_0, \varepsilon ) \end{align*} $$for some $g \in {\mathcal F}_\Omega (c )$ and $\varepsilon \in \partial {\mathbb D}$ if and only if $g (z) \equiv P( \omega _{\gamma , \varepsilon } (z ))$ . -
(ii) If $c \in \partial {\mathcal C}(n)$ and $\gamma =( \gamma _0, \ldots , \gamma _i, 0, \ldots , 0 )$ is the Schur parameter of c, then $V_\Omega ^j (z_0,c )$ reduces to a set consisting of a single point $w_0$ , where
$$ \begin{align*}w_0 = \int_0^{z_0} \zeta^j \{ P( \sigma_{\gamma_0} ( \zeta \sigma_{\gamma_1}(\cdots \zeta \sigma_{\gamma_{i-1}} (\gamma_i \zeta ) \cdots )))- P(c_0) \} \, d \zeta. \end{align*} $$ -
(iii) If $c \not \in {\mathcal C}(n)$ , then $V_\Omega ^j (z_0,c ) = \emptyset $ .
In the present article, we first show that in the case $n=0$ , $j=-1$ and $c=0$ , the conclusion of Theorem 1.3 holds when one weakens the assumption that $\Omega $ is convex to $\Omega $ is starlike with respect to $P(0)$ (Theorem 2.1). We then present several applications of Theorems 1.3 and 2.1 to obtain the precise variability region for several well-known subclasses of analytic and univalent functions. We also obtain certain subordination results.
2 Main results
Before we state our first result, let us recall the definition of subordination. For two analytic functions f and g in $\mathbb {D}$ , we say that f is subordinate to g, written as $f \prec g$ or $f(z) \prec g(z)$ , if there exists an analytic function $\omega : \mathbb {D} \rightarrow \mathbb {D}$ with $\omega (0)=0$ such that $f(z)= g(\omega (z))$ for $z\in \mathbb {D}$ . If g is univalent in $\mathbb {D}$ , the subordination $f \prec g$ is equivalent to $f(0)= g(0)$ and $f(\mathbb {D})\subseteq g(\mathbb {D})$ .
Theorem 2.1. Let $b \in {\mathbb C}$ , $z_0 \in {\mathbb D} \backslash \{ 0 \}$ and $\Omega $ be a starlike domain with respect to b satisfying $\Omega \not = {\mathbb C}$ . Let P be a conformal map of ${\mathbb D}$ onto $\Omega $ with $P(0) =b$ . Then the region of variability
is a convex closed Jordan domain that coincides with the set $K ( \overline {\mathbb D}(0, |z_0| ) )$ , where $K(z) = \int _0^z \zeta ^{-1} (P(\zeta ) -b) \, d \zeta $ . Furthermore, for $| \varepsilon | =1$ and $g \in {\mathcal F}_\Omega $ with $g(0) = b$ , the relation $\int _0^{z_0} \zeta ^{-1}(g(\zeta ) - b) \, d \zeta = K(\varepsilon z_0)$ holds if and only if $g(z) \equiv P ( \varepsilon z )$ .
Proof. Let $g \in {\mathcal A} ({\mathbb D})$ be such that $g(0)=b$ and $g({\mathbb D}) \subset \Omega $ . Then g is subordinate to P. By using a result of Suffridge [Reference Suffridge17], we may conclude that
Thus, there exists $\omega \in H_1^\infty ({\mathbb D})$ with $\omega (0)=0$ and $\int _0^z \zeta ^{-1} \{g(\zeta ) -b \}\, d \zeta = K(\omega (z))$ and so
For $\varepsilon \in \overline {\mathbb D}$ , let $g_\varepsilon (z) = P(\varepsilon z)$ . Then $g_\varepsilon (0) = P(0) = b$ and $g_\varepsilon ({\mathbb D}) = P({\mathbb D})=\Omega $ . Therefore,
and hence $K(\overline {\mathbb D}(0,|z_0|)) \subset V_\Omega ^{-1} (z_0,0)$ .
We now deal with the uniqueness. Suppose that
for some g with $g(0)=b$ and $g({\mathbb D}) \subset \Omega $ and $| \varepsilon | =1$ . Then there exists $\omega \in H_1^\infty ({\mathbb D})$ with $\omega (0)=0$ such that $\int _0^z \zeta ^{-1} \{g(\zeta ) -b \} \, d \zeta = K(\omega (z))$ . From (2.1), $K( \omega (z_0)) = K ( \varepsilon z_0 )$ . Since K is a convex univalent function, $\omega (z_0) = \varepsilon z_0$ . It follows from Schwarz’s lemma that $\omega (z) \equiv \varepsilon z$ . Consequently, $g(z) \equiv P(\varepsilon z)$ .
2.1 The class $\mathcal {CV} (\Omega )$
Suppose that $\Omega $ is a simply connected domain with $1 \in \Omega $ . Define
Let P be the conformal map of $\mathbb {D}$ onto $\Omega $ with $P(0)=1$ . Then $1+zf''(z)/f'(z)\prec P$ for each $f\in \mathcal {CV}(\Omega )$ . For $\alpha \in \mathbb {R}$ , let $\mathbb {H}_{\alpha }:=\{z\in \mathbb {C}: \mathrm {Re}\, z>\alpha \}$ and $\mathbb {H}_{0}=\mathbb {H}$ . If $\Omega = {\mathbb H}$ and $P(z)=(1+z)/(1-z)$ , then $\mathcal {CV}({\mathbb H}) = \mathcal {CV}$ is the well-known class of normalised convex functions in ${\mathbb D}$ . If $\Omega \subset {\mathbb H}$ , then $\mathcal {CV}(\Omega )$ is a subclass of $\mathcal {CV}$ . For $0 \leq \alpha < 1$ , $\mathcal {CV}(\alpha ):=\mathcal {CV}(\mathbb {H}_{\alpha })$ is the class of convex functions of order $\alpha $ . In this case, we have $P(z) \kern-0.6pt =\kern-0.6pt \{1 \kern-0.5pt +\kern-0.5pt (1\kern-0.5pt -2 \alpha )z\}/(1\kern-0.5pt -z)$ . If $0 \kern-0.5pt<\kern-0.5pt \beta \kern-0.5pt\leq\kern-0.5pt 1$ , then $\mathcal {CV}_{\beta }\kern-0.5pt:=\mathcal {CV}( \{ w \in {\mathbb C}\kern-0.5pt : |\kern-1.5pt\arg \, w| \kern-0.5pt<\kern-0.5pt \pi \beta /2\})$ is the class of strongly convex functions of order $\beta $ and $P(z) = \{(1+z)/(1-z)\}^\beta $ .
As an application of Theorem 2.1, we determine the variability region of $\log f'(z_0)$ when f ranges over $\mathcal {CV}(\Omega )$ .
Theorem 2.2. Let $\Omega $ be a starlike domain with respect to $1$ and P be a conformal map of ${\mathbb D}$ onto $\Omega $ with $P(0)=1$ . Then, for each fixed $z_0 \in {\mathbb D} \backslash \{ 0 \}$ , the region of variability
is a convex closed Jordan domain that coincides with the set $K( \overline {\mathbb D}(0,|z_0|))$ , where $K(z) = \int _0^z \zeta ^{-1} (P( \zeta )- 1) \, d \zeta $ is a convex univalent function in ${\mathbb D}$ . Furthermore, $\log f'(z_0) = K( \varepsilon z_0)$ for some $\varepsilon $ with $|\varepsilon | =1$ and $f \in \mathcal {CV}( \Omega )$ if and only if $f(z) = \varepsilon ^{-1}F(\varepsilon z)$ , where $F(z)= \int _0^z e^{K(\zeta )} \, d \zeta $ .
Proof. Let $c = 0 \in {\mathbb C}^1$ be given Carathéodory data of length one. In that case, ${\mathcal F}_\Omega (0)= \{ g \in {\mathcal A}({\mathbb D}): g({\mathbb D}) \subset \Omega \text { and } (P^{-1} \circ g) (0) = 0 \}$ . It is easy to see that the map
is bijective. Indeed, since $g(z) = 1+ zf''(z)/f'(z)$ is analytic in ${\mathbb D}$ , $f'(z)$ does not have zeros in ${\mathbb D}$ and so
where $\log f'$ is a single-valued branch of the logarithm of $f'$ with $\log f'(0) = 0$ . The conclusions now follow from Theorem 2.1 and (2.2).
As an application of Theorem 1.3, we determine the variability region of $\log f'(z_0)$ when f ranges over $\mathcal {CV}(\Omega )$ with the conditions $f''(0) = 2 \lambda $ and $f'''(0) = 6 \mu $ . Here $z_0 \in {\mathbb D} \backslash \{ 0 \}$ ; $\lambda , \mu \in {\mathbb C}$ are arbitrarily preassigned values. By letting $\Omega $ be one of the particular domains mentioned above, we can determine variability regions of $\log f'(z_0)$ for various subclasses of $\mathcal {CV}$ .
Let $\Omega $ be a simply connected domain with $\Omega \not = {\mathbb C}$ and P be a conformal map of ${\mathbb D}$ onto $\Omega $ with $P(z)= \alpha _0 + \alpha _1 z + \alpha _2z^2 + \cdots $ . Let g be an analytic function in ${\mathbb D}$ with $g(z)= b_0+b_1 z + b_2 z^2 +\cdots $ satisfying $g({\mathbb D}) \subset \Omega $ . For simplicity, we assume that $P(0)=g(0)$ , that is, $\alpha _0 =b_0$ . Let
Then
By Schwarz’s lemma, $|b_1| \leq |\alpha _1|$ with equality if and only if $g(z) = P(\varepsilon z)$ for some ${\varepsilon \in \partial {\mathbb D}}$ . Let $\gamma = (\gamma _0,\gamma _1,\gamma _2)$ be the Schur parameter of the Carathéodory data $c = (0,c_1,c_2)$ . Then $\gamma _0 = \omega (0) = c_0 = 0$ and
A simple computation shows that
For $f \in \mathcal {CV}( \Omega )$ and $k \in {\mathbb N}$ , let $a_k(f) = f^{(k)}(0)/k!$ . Also let $g(z) = 1 + zf''(z)/f'(z) = 1+b_1z +b_2z^2 +\cdots $ . Then
Let $ {\mathcal A} (2 , \Omega ) = \{ a_2(f) : f \in \mathcal {CV} ( \Omega )\}.$ By Schwarz’s lemma, ${\mathcal A} (2 , \Omega ) = \overline {\mathbb D}(0, |\alpha _1|/2)$ . For $f \in \mathcal {CV}(\Omega )$ and $\lambda \in \partial {\mathcal A} (2 , \Omega )$ , we have $a_2 (f) = \lambda $ if and only if $f(z) \equiv \gamma _1^{-1}F(\gamma _1 z)$ , where $\gamma _1 = 2 \lambda / \alpha _1$ . By applying Theorem 1.3 with $n=1$ and $j=-1$ , we obtain the following generalisation of Theorem 1.1.
Theorem 2.3. Let $\Omega $ be a convex domain with $1 \in \Omega $ and P be a conformal map of ${\mathbb D}$ onto $\Omega $ with $P(z)=1+ \alpha _1 z + \cdots $ . For $\lambda \in {\mathbb C}$ with $|\lambda | \leq |\alpha _1|/2 $ and $z_0 \in {\mathbb D} \backslash \{ 0 \}$ , consider the variability region
-
(i) If $|\lambda |= |\alpha _1|/2 $ , then $V_{\mathcal {CV}(\Omega )}(z_0,\lambda )$ reduces to a set consisting of a single point $w_0$ , where $w_0 = \int _0^{z_0} \zeta ^{-1} \{ P(\gamma _1 \zeta )- 1 \} \, d \zeta $ with $\gamma _1 = 2 \lambda /\alpha _1$ .
-
(ii) If $|\lambda | < |\alpha _1|/2 $ , then $V_{\mathcal {CV}(\Omega )}(z_0,\lambda ) = Q_{\gamma _1}(z_0, \overline {\mathbb D} )$ , where $\gamma _1 = 2 \lambda /\alpha _1$ and
$$ \begin{align*}Q_{\gamma_1}(z_0, \varepsilon ) = \int_0^{z_0} \zeta^{-1} \bigg\{ P \bigg( \zeta \frac{\varepsilon \zeta + \gamma_1} {1+ \overline{\gamma_1} \varepsilon \zeta} \bigg) -1 \bigg\} \, d \zeta \end{align*} $$is a convex, univalent and analytic function of $\varepsilon \in \overline {\mathbb D}$ . Furthermore, $ \log f'(z_0) = Q_{\gamma _1}(z_0, \varepsilon ) $ for some $\varepsilon \in \partial {\mathbb D}$ and $f \in \mathcal {CV}( \Omega )$ with $a_2(f) = \lambda $ if and only if$$ \begin{align*}f(z) = \int_0^z e^{Q_{\gamma_1}(\zeta , \varepsilon )} \, d \zeta , \quad z \in {\mathbb D}. \end{align*} $$
Next let $ {\mathcal A} (3 , \Omega ) = \{ (a_2(f), a_3(f) ) \in {\mathbb C}^2 : f \in \mathcal {CV}( \Omega ) \}$ and, for $\lambda , \mu \in {\mathbb C}$ , let $\gamma _1 := \gamma _1 (\lambda ,\mu )$ and $\gamma _2 := \gamma _2 (\lambda , \mu )$ be given by
and
Then $(\lambda , \mu ) \in {\mathcal A} (3 , \Omega )$ if and only if one of the following conditions holds:
-
(a) $|\gamma _1 (\lambda , \mu ) | = 1 $ and $\gamma _2 ( \lambda , \mu )=0$ ;
-
(b) $|\gamma _1 (\lambda , \mu ) | < 1 $ and $ | \gamma _2 ( \lambda , \mu ) |=1$ ;
-
(c) $|\gamma _1 (\lambda , \mu ) | < 1 $ and $| \gamma _2 ( \lambda , \mu )| < 1$ .
In case (a), for $f \in \mathcal {CV}( \Omega )$ , $(a_2(f), a_3(f)) = (\lambda , \mu )$ if and only if $g(z) = P(\gamma _1 z )$ , that is, $f(z) = \gamma _1 F(\gamma _1 z)$ , where $\gamma _1 = \gamma _1(\lambda , \mu )$ . Similarly, in case (b), for $f \in \mathcal {CV}( \Omega )$ , $(a_2(f), a_3(f)) = (\lambda , \mu ) $ if and only if $g(z) = P(z \sigma _{\gamma _1}( \gamma _2 z) )$ , that is,
We note that $(\lambda , \mu ) \in \partial {\mathcal A} (3 , \Omega )$ if and only if either (a) or (b) holds.
Suppose that (c) holds, that is, $(\lambda , \mu ) \in \text {Int} \, {\mathcal A} (3 , \Omega )$ . Then, for $f \in \mathcal {CV}( \Omega )$ , $(a_2(f), a_3(f)) = (\lambda , \mu )$ if and only if there exists $\omega ^* \in H_1^\infty ({\mathbb D})$ such that
Let
Then, for any fixed $\varepsilon \in \overline {\mathbb D}$ , $Q_{\gamma _1, \gamma _2}(z, \varepsilon )$ is an analytic function of $z \in {\mathbb D}$ and, for each fixed $z \in {\mathbb D}$ , $Q_{\gamma _1, \gamma _2}(z, \varepsilon )$ is an analytic function of $\varepsilon \in \overline {\mathbb D}$ . Theorem 1.3 leads to the following result.
Theorem 2.4. Let $\Omega $ be a convex domain with $1 \in \Omega $ and P be a conformal map of ${\mathbb D}$ onto $\Omega $ with $P(z)=1+ \alpha _1 z + \cdots $ . Let $(\lambda , \mu ) \in {\mathbb C}^2$ and $\gamma _1 = \gamma _1(\lambda , \mu )$ and $\gamma _2 = \gamma _2(\lambda , \mu )$ be defined by (2.6) and (2.7), respectively. For $z_0 \in {\mathbb D} \backslash \{ 0 \}$ , consider the variability region
-
(i) If $|\gamma _1(\lambda , \mu )|=1$ and $|\gamma _2(\lambda , \mu )| =0$ , then $V_{\mathcal {CV}(\Omega )}(z_0,\lambda ,\mu )$ reduces to a set consisting of a single point $w_0$ , where $w_0 = \int _0^{z_0} \zeta ^{-1} \{ P(\gamma _1 \zeta )- 1 \} \, d \zeta $ .
-
(ii) If $|\gamma _1(\lambda , \mu )| <1$ and $|\gamma _2(\lambda , \mu )| =1$ , then $V_{\mathcal {CV}(\Omega )}(z_0,\lambda ,\mu )$ reduces to a set consisting of a single point $w_0$ , where $w_0 = \int _0^{z_0} \zeta ^{-1} \{ P(\zeta \sigma _{\gamma _1}( \gamma _2 \zeta ))- 1 \} \, d \zeta $ .
-
(iii) If $|\gamma _1(\lambda , \mu )| <1$ and $|\gamma _2(\lambda , \mu )| <1$ , that is, $(\lambda , \mu ) \in \text {Int} \, {\mathcal A}(3, \Omega )$ , then $Q_{\gamma _1, \gamma _2}(z_0, \varepsilon )$ defined by (2.8) is a convex, univalent and analytic function of $\varepsilon \in \overline {\mathbb D}$ and
$$ \begin{align*}V_{\mathcal{CV}(\Omega)}(z_0,\lambda,\mu) = Q_{\gamma_1, \gamma_2}(z_0, \overline{\mathbb D}). \end{align*} $$Furthermore, $\log f'(z_0) = Q_{\gamma _1, \gamma _2}(z_0, \varepsilon )$ for some $\varepsilon $ with $| \varepsilon | =1$ and $f \in \mathcal {CV}( \Omega ) $ with $(a_2(f),a_3(f)) = (\lambda , \mu )$ if and only if$$ \begin{align*}f(z) = \int_0^z \exp \bigg[ \int_0^{\zeta_1} \zeta_2^{-1} \{ P ( z \sigma_{\gamma_1}(z \sigma_{\gamma_2}(\varepsilon \zeta_2 ))) - 1 \} \, d \zeta_2 \bigg] \, d \zeta_1. \end{align*} $$
Remark 2.5. For a simply connected domain $\Omega $ with $1 \in \Omega $ , define
Then $f \in \mathcal {CV} (\Omega )$ if and only if $zf'(z) \in \mathcal {S}^*( \Omega )$ . Thus, we can easily translate the theorems of this section to results about variability regions of $\log \{ f(z_0)/z_0 \}$ when f ranges over $\mathcal {S}^* ( \Omega )$ with or without the conditions $f''(0) = \lambda $ and $f'''(0) = \mu $ .
2.2 Uniformly convex functions
For $0\le k < \infty $ , the class $k\mbox {-}\mathcal {UCV}$ of k-uniformly convex functions is $\mathcal {CV}(\Omega _k)$ , where $\Omega _k:=\{ w \in {\mathbb C} : \text {Re} \, w> k |w-1| \}$ . Here $\Omega _k$ is a convex domain containing $1$ , bounded by a conic section. The conformal map $P_k$ that maps the unit disk $\mathbb {D}$ conformally onto $\Omega _k$ is given by
where $A=(2/\pi )\operatorname {\mathrm {\operatorname {arc}}}\cos k$ , $u(z)=(z-\sqrt {x})/(1-\sqrt {x}z)$ and $K(x)$ is the elliptic integral defined by
For more details concerning uniformly convex functions, we refer to [Reference Kanas and Wiśniowska10, Reference Ronning14]. When $k=0$ , the class $0\mbox {-}\mathcal {UCV}$ is essentially the same as $\mathcal {CV}$ . Let $P_k(z)= 1+\alpha _{k1}z+\alpha _{k2}z^2+\cdots $ . Then it is a simple exercise to see that
Let $f\in k\mbox {-}\mathcal {UCV}$ be of the form $f(z)=z+a_2z+a_3z^2+\cdots $ and $g(z)=1+zf''(z)/f'(z)$ . Then, from (2.3) and (2.5), we obtain $|a_2|\le \alpha _{k1}/2$ . For $z_0 \in {\mathbb D} \backslash \{ 0 \}$ and $|\lambda |\le \alpha _{k1}/2$ , consider the region of variability
The following corollary is a simple consequence of Theorem 2.3.
Corollary 2.6. Let $z_0 \in {\mathbb D} \backslash \{ 0 \}$ and $\lambda \in {\mathbb C}$ with $|\lambda | \leq \alpha _{1k}/2$ . Let $\gamma _1 = 2 \lambda /\alpha _{1k}$ .
-
(i) If $|\gamma _1 |= 1 $ , then $V_{k\mbox {-}\mathcal {UCV}}(z_0,\lambda )=\{w_0\}$ , where $w_0 = \int _0^{z_0} \zeta ^{-1} \{ P_k(\gamma _1 \zeta )- 1 \} \, d \zeta $ .
-
(ii) If $|\gamma _1 |<1 $ , then $V_{k\mbox {-}\mathcal {UCV}}(z_0,\lambda ) = Q_{\gamma _1}(z_0, \overline {\mathbb D} )$ , where
$$ \begin{align*}Q_{\gamma_1}(z_0, \varepsilon ) = \int_0^{z_0} \zeta^{-1} \bigg\{ P_k \bigg( \zeta \frac{\varepsilon \zeta + \gamma_1} {1+ \overline{\gamma_1} \varepsilon \zeta} \bigg) -1 \bigg\} \, d \zeta \end{align*} $$is a convex, univalent and analytic function of $\varepsilon \in \overline {\mathbb D}$ . Furthermore,$$ \begin{align*}\log f'(z_0) = Q_{\gamma_1}(z_0, \varepsilon ) \end{align*} $$for some $\varepsilon \in \partial {\mathbb D}$ and $f \in k\mbox {-}\mathcal {UCV}$ with $a_2(f) = \lambda $ if and only if$$ \begin{align*}f(z) = \int_0^z e^{Q_{\gamma_1}(\zeta , \varepsilon )} \, d \zeta , \quad z \in {\mathbb D}. \end{align*} $$
2.3 Janowski starlike and convex functions
For $A,B\in \mathbb {C}$ with $|B|\le 1$ and $A\ne B$ , let $P_{A,B}(z):=(1+Az)/(1+Bz)$ . Then $P_{A,B}$ is a conformal map of $\mathbb {D}$ onto a convex domain $\Omega _{A,B}$ . In this case, the classes $\mathcal {S}^* ( \Omega _{A,B} )$ and $\mathcal {CV} (\Omega _{A,B})$ reduce to
and
respectively. Since $P_{A,B}(\mathbb {D})=P_{-A,-B}(\mathbb {D})$ , without loss of generality we may assume that $A\in \mathbb {C}$ with $-1\le B\le 0$ and $A\ne B$ . It is important to note that functions in $\mathcal {S}^*(A,B)$ with $A\in \mathbb {C}$ , $-1\le B\le 0$ and $A\ne B$ are not in general univalent. For ${-1\le B<A\le 1}$ , it is easy to see that $\Omega _{A,B}\subset \mathbb {H}$ and so $\mathcal {S}^*(A,B)\subset \mathcal {S}^*$ . A similar result holds for $\mathcal {CV}(A,B)$ . For $-1\le B<A\le 1$ , the class $\mathcal {S}^*(A,B)$ was first introduced and investigated by Janowski [Reference Janowski9].
Note that $P_{A,B}(z):=(1+Az)/(1+Bz)=1+(A-B)z+\cdots $ . For $f\in \mathcal {CV}(A,B)$ , from (2.3) and (2.5) we immediately obtain $|a_2(f)|\le |A-B|/2$ . For $z_0 \in {\mathbb D} \backslash \{ 0 \}$ and $|\lambda |\le |A-B|/2$ , consider
The following corollary is a simple consequence of Theorems 2.2 and 2.3.
Corollary 2.7. Let $z_0 \in {\mathbb D} \backslash \{ 0 \}$ be fixed and $\lambda \in \mathbb {C}$ be such that $|\lambda |\le |A-B|/2$ . Also, let $\gamma _1 = 2 \lambda /(A-B)$ .
-
(i) The region of variability $V_{\mathcal {CV}(A,B)}(z_0)$ is a convex, closed Jordan domain and coincides with the set $K( \overline {\mathbb D}(0,|z_0|))$ , where
$$ \begin{align*}K(z) = \int_0^z \frac{A-B}{1+B\zeta} \, d \zeta \end{align*} $$is a convex univalent function in ${\mathbb D}$ . Furthermore, $\log f'(z_0) = K( \varepsilon z_0)$ for some $\varepsilon $ with $|\varepsilon | =1$ and $f \in \mathcal {CV}(A,B)$ if and only if $f(z) = \varepsilon ^{-1}F(\varepsilon z)$ , where $F(z)= \int _0^z e^{K(\zeta )} \, d \zeta $ . -
(ii) If $|\gamma _1 |= 1 $ , then $V_{\mathcal {CV}(A,B)}(z_0,\lambda )=\{w_0\}$ , where $w_0 = \int _0^{z_0} \zeta ^{-1} \{ P(\gamma _1 \zeta )- 1 \} \, d \zeta $ .
-
(iii) If $|\gamma _1 |< 1 $ , then $V_{\mathcal {CV}(A,B)}(z_0,\lambda ) = Q_{\gamma _1}(z_0, \overline {\mathbb D} )$ , where
$$ \begin{align*} Q_{\gamma_1}(z_0, \varepsilon ) = \int_0^{z_0} \frac{(A-B)\sigma_{\gamma_1}(\varepsilon \zeta)}{1+ B\zeta \sigma_{\gamma_1}(\varepsilon \zeta)} \, d \zeta \end{align*} $$is a convex, univalent and analytic function of $\varepsilon \in \overline {\mathbb D}$ . Furthermore,$$ \begin{align*} \log f'(z_0) = Q_{\gamma_1}(z_0, \varepsilon ) \end{align*} $$for some $\varepsilon $ with $\varepsilon \in \partial {\mathbb D}$ and $f \in \mathcal {CV}( \Omega )$ with $a_2(f) = \lambda $ if and only if$$ \begin{align*}f(z) = \int_0^z e^{Q_{\gamma_1}(\zeta , \varepsilon )} \, d \zeta , \quad z \in {\mathbb D}. \end{align*} $$
Remark 2.8. The region of variability $V_{\mathcal {CV}(A,B)}(z_0,\lambda )$ for the class $\mathcal {CV}(A,B)$ was first obtained by Ul-Haq [Reference Ul-Haq18] for $-1\le B<0$ and $A>B$ . Although Ul-Haq considered the problem for $A\in \mathbb {C}$ , $0<B\le 1$ and $A\ne B$ , the computation is valid only for $-1\le B<0$ and $A>B$ . We also note that the Herglotz representation [Reference Ul-Haq18, formula (2)] for functions in $\mathcal {CV}(A,B)$ is not valid when $-1< B<0$ .
In particular, for $A= e^{-2i\alpha }$ with $\alpha \in (-\pi /2,\pi /2)$ and $B= -1$ , the class $\mathcal {CV}(A,B)$ reduces to the class of functions that satisfy $\mathrm {Re}\, \{e^{i\alpha }(1+zf''(z)/f'(z))\}>0$ for $z\in \mathbb {D}$ . The functions in this class, denoted by $\mathcal {S}_{\alpha }$ , are known as Robertson functions. If we choose $A= e^{-2i\alpha }$ with $\alpha \in (-\pi /2,\pi /2)$ and ${B= -1}$ in Corollary 2.7, then we obtain the result obtained in [Reference Ponnusamy, Vasudevarao and Yanagihara13].
For $A= 1-2\alpha $ with $-1/2\le \alpha <1$ and $B= -1$ , the class $\mathcal {CV}(A,B)$ reduces to the class of functions f satisfying $\mathrm {Re}\, (1+zf''(z)/f'(z))>\alpha $ for $z\in \mathbb {D}$ . This is the class $\mathcal {CV}(\alpha )$ of convex functions of order $\alpha $ . For $0\le \alpha <1$ , $\mathcal {CV}(\alpha )\subset \mathcal {CV}$ . On the other hand, for $-1/2\le \alpha <0$ , functions in $\mathcal {CV}(\alpha )$ are convex functions in some direction (see [Reference Ali and Vasudevarao1 Reference Ali, Allu and Yanagihara2]). If we choose $A= 1-2\alpha $ with $-1/2\le \alpha <1$ and ${B= -1}$ in Corollary 2.7, then we obtain the precise region of variability $V_{\mathcal {CV}(\alpha )}(z_0):= \{ \log f'(z_0 ) : f \in \mathcal {CV}(\alpha ) \}$ and $V_{\mathcal {CV}(\alpha )}(z_0,\lambda ):=\{ \log f'(z_0) : f \in \mathcal {CV}(\alpha ) \mbox { and } a_2(f) = \lambda \}$ , which gives a generalisation of Theorem 1.1. In particular, if we choose $A= 2$ and $B= -1$ in Corollary 2.7, then we obtain the result obtained by Ponnusamy and Vasudevarao [Reference Ponnusamy and Vasudevarao11, Theorem 2.6]. Similarly, for $A= -2$ and $B= -1$ , the class $\mathcal {CV}(A,B)$ reduces to the class of functions f that satisfy $\mathrm {Re}\, (1+zf''(z)/f'(z))<3/2$ for $z\in \mathbb {D}$ . Functions in the class $\mathcal {CV}(-2,-1)$ are starlike, but not necessarily convex [Reference Ali and Vasudevarao1]. If we choose $A= -2$ and $B= -1$ in Corollary 2.7, then we obtain the result in [Reference Ponnusamy and Vasudevarao11, Theorem 2.8].
Since $f \in \mathcal {CV}(A,B)$ if and only if $zf'(z) \in \mathcal {S}^*(A,B)$ , we can easily translate the above results about variability regions of $\log \{ f(z_0)/z_0 \}$ when f ranges over $\mathcal {S}^*(A,B)$ with or without the condition $f''(0) = 2\lambda $ .
3 Concluding remark
Theorem 2.1 demonstrates that our results are closely related to the concept of subordination. Our assumption that $g \in {\mathcal F}_\Omega (c)$ in Theorem 1.3 can be rewritten as $g \prec P$ when $c_0=0$ . In this case, $P^{-1} (g (z)) = c_1z+\cdots +c_n z^n + \cdots $ . However, apart from a few exceptional cases, we cannot express our conclusions in terms of subordination relations. Let $c = (c_0, \ldots , c_{n-1}) = (0,\ldots , 0)\in {\mathbb C}^n$ . Then the Schur parameter for c is given by $\gamma = (\gamma _0, \ldots , \gamma _{n-1}) = (0, \ldots , 0)$ . For this particular choice of c, the function $Q_{\gamma , j}$ defined by (1.1) becomes
Let
Then
By Theorem 1.3, for each fixed $z \in {\mathbb D} \backslash \{ 0 \}$ , $Q_{\gamma , j}(z, \varepsilon )$ is a convex univalent function of $\varepsilon \in \overline {\mathbb D}$ and $H( \varepsilon z^n )$ is also a convex univalent function of $\varepsilon \in \overline {\mathbb D}$ . Letting $z \rightarrow 1$ in ${\mathbb D}$ shows that $H (\varepsilon )$ is also convex univalent in ${\mathbb D}$ . Let $g \in {\mathcal F}_\Omega $ with $g'(0)= \cdots = g^{(n-1)}(0) = 0$ . It follows from Theorem 1.3 that for any $z \in {\mathbb D} \backslash \{ 0 \}$ , there exists $\varepsilon \in \overline {\mathbb D}$ satisfying
Thus, for all $z \in {\mathbb D}$ ,
Consequently, in view of the univalence of H, we obtain the subordination relation
This was previously proved by Hallenbeck and Ruscheweyh [Reference Hallenbeck and Ruscheweyh8] when $\text {Re} \, j \geq -1$ with $j \not = -1$ .