1 Introduction
Let
${\mathbb R}^n$
be the n-dimensional Euclidean space, and
$B(x,r)$
denote the open ball in
${\mathbb R}^n$
centered at x of radius
$r>0$
. We consider the Riesz potential of order
$\alpha $
on the half space
${\mathbb H} = \{ x=(x',x_n) \in {\mathbb R}^{n-1} \times {\mathbb R}^1: x_n> 0\}$
defined by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu1.png?pub-status=live)
for
$0<\alpha <n$
and
$f\in L^1_{\textrm {loc}}({\mathbb H})$
. For
$f\in L^p_{\textrm {loc}}({\mathbb H})$
with
$1<p<\infty $
, Trudinger type inequalities for Riesz potentials of order
$\alpha $
have been studied in the limiting case
$\alpha p = n$
(see e.g., [Reference Edmunds, Gurka and Opic8–Reference Edmunds and Krbec11, Reference Mizuta, Nakai, Ohno and Shimomura17, Reference Mizuta, Nakai, Ohno and Shimomura18, Reference Serrin28]).
Our first aim in this paper is to establish Trudinger’s exponential integrability for
$I_{{\mathbb H},\alpha } f$
of functions f satisfying the weighted
$L^p$
condition
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqn1.png?pub-status=live)
when
$\alpha p=n$
and
$\beta < (n+1)/(2p')$
, where
$1/p+1/p'=1$
(see Theorem 3.1). Note that
$\omega (y) = |y_n|^{\beta p}$
is not always Muckenhoupt
$A_p$
weight; more precisely,
$\omega $
is not Muckenhoupt
$A_p$
weight when
$\beta \notin (-1/p, 1/p')$
(see Remarks 2.2 and 3.3). For this purpose, we apply the technique by Hedberg in [Reference Adams and Hedberg1] using the central Hardy–Littlewood maximal function
$M_{{\mathbb H}} f$
defined by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu2.png?pub-status=live)
where
$|B(x,r)|$
denotes the Lebesgue measure of
$B(x,r)$
. We show the boundedness of the maximal operator
$M_{{\mathbb H}}$
(Theorem 2.5), as an improvement of [Reference Mizuta and Shimomura23, Theorem 2.1]. We also give a Sobolev type inequality for
$I_{{\mathbb H},\alpha } f$
of functions f satisfying (1.1) when
$\alpha p<n$
and
$\beta < (n+1)/(2p')$
(Theorem 3.2). Compare Theorem 3.2 with [Reference Mizuta and Shimomura23, Theorem 2.2] which is a Sobolev type inequality for the fractional maximal function.
In the previous paper [Reference Mizuta and Shimomura24, Theorem 3.4], we proved a Sobolev type inequality for
$I_{{\mathbb H},,\alpha } f$
of functions f satisfying the weighted Morrey condition
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqn2.png?pub-status=live)
when
$\alpha p<\sigma < (n+1)/2$
and
$\beta < (n+1)/(2p')$
. We refer to [Reference Morrey25] and [Reference Peetre26] for Morrey spaces, which were introduced to estimate solutions of partial differential equations. See also [Reference Chiarenza and Frasca5, Reference Di Fazio and Ragusa12]. Applying our discussions in Theorem 3.1, we study Trudinger’s exponential integrability for
$I_{{\mathbb H},\alpha } f$
of functions f satisfying (1.2) when
$\alpha p=\sigma \le n$
and
$\beta < (n+1)/(2p')$
(see Theorem 4.1), as an improvement of [Reference Mizuta and Shimomura24, Theorem 3.4].
Further, as an application, we establish Trudinger’s inequality for
$I_{{\mathbb H},\alpha } f$
in the framework of double phase functionals
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqn3.png?pub-status=live)
where
$1 < p<q$
and
$b(\cdot )$
is non-negative, bounded and Hölder continuous of order
$\theta \in (0,1]$
(see Theorems 5.1 and 5.2). Double phase functionals are studied by Baroni, Colombo, and Mingione [Reference Baroni, Colombo and Mingione2, Reference Baroni, Colombo and Mingione3, Reference Colombo and Mingione6, Reference Colombo and Mingione7] regarding the regularity theory of differential equations. See [Reference Mizuta and Shimomura24, Theorem 4.1] for Sobolev’s inequality of
$I_{{\mathbb H},\alpha } f$
in the framework of (1.3). We refer to [Reference Maeda, Mizuta, Ohno and Shimomura16, Reference Mizuta, Ohno and Shimomura20, Reference Mizuta, Ohno and Shimomura21] for related results. Other double phase problems were studied e.g., in [Reference Byun and Lee4, Reference De Filippis and Mingione13–Reference Hästö and Ok15, Reference Mizuta, Nakai, Ohno and Shimomura19, Reference Mizuta and Shimomura22, Reference Ragusa and Tachikawa27].
Throughout this paper, let C denote various constants independent of the variables in question. The symbol
$g \sim h$
means that
$C^{-1}h\le g\le Ch$
for some constant
$C>0$
.
2 Boundedness of the maximal operator in the half space
For later use, it is convenient to see the following result.
Lemma 2.1 [Reference Mizuta and Shimomura23, Lemma 2.3]
For
$\varepsilon> (n-1)/2$
and
$x\in {\mathbb H}$
, set
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu3.png?pub-status=live)
Then there exists a constant
$C>0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu4.png?pub-status=live)
Remark 2.2 Let
$\beta> (n+1)/(2p')$
. If
$f(y) = |y_n|^{-a} $
, then:
-
(1)
$\displaystyle \int _{B(x,x_n)} |f(y) y_n^\beta |^p dy < \infty $ for
$x\in {\mathbb H}$ when
$(\beta - a)p + n> (n-1)/2$ and
-
(2)
$\displaystyle \int _{B(x,x_n)} f(y) dy = \infty $ for
$x\in {\mathbb H}$ when
$- a + n \le (n-1)/2$ .
If
$ (n+1)/2 \le a < \beta + (n+1)/(2p)$
, then both (1) and (2) hold.
For
$f\in L^1_{\textrm {loc}}({\mathbb H})$
, the central Hardy–Littlewood maximal function
$M_{{\mathbb H}}f$
is defined by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu5.png?pub-status=live)
The mapping
$f \mapsto M_{{\mathbb H}} f$
is called the fractional central maximal operator.
The usual fractional maximal function
$Mf$
is defined by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu6.png?pub-status=live)
It is known that the maximal operator
$f \to Mf$
is bounded in Morrey spaces as follows:
Lemma 2.3 [Reference Di Fazio and Ragusa12, Lemma 4]
Let
$0 < \sigma \le n$
and
$p> 1$
. Then there exists a constant
$C> 0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu7.png?pub-status=live)
for all measurable functions f on
${\mathbb R}^n$
.
Throughout this paper, let
$1 < p < \infty $
and
$1/p + 1/p' = 1$
. We extend Lemma 2.3 to
$M_{{\mathbb H}}$
. For this purpose, we prepare the following result.
Lemma 2.4 Let
$ \beta < (n+1)/(2p')$
. Then there exists a constant
$C> 0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu8.png?pub-status=live)
for all
$x\in {\mathbb H}$
and measurable functions f on
${\mathbb H}$
, where
$g (y) = (|f(y)| |y_n|^{\beta })^{p} \chi _{{\mathbb H}}(y)$
.
Proof Let f be a non-negative measurable function on
${\mathbb H}$
. For
$0 < r < x_n/2$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu9.png?pub-status=live)
and for
$x_n/2 < r < x_n$
and
$-\beta p' + n> (n-1)/2$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu10.png?pub-status=live)
by Lemma 2.1. Hence, we have by Hölder’s inequality
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu11.png?pub-status=live)
so that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu12.png?pub-status=live)
as required.▪
By Lemmas 2.3 and 2.4, we obtain the following result, which is an improvement of [Reference Mizuta and Shimomura23, Theorem 2.1].
Theorem 2.5 Let
$ \beta < (n+1)/(2p')$
and
$0 < \sigma \le n$
. Then there exists a constant
$C> 0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu13.png?pub-status=live)
for all measurable functions f on
${\mathbb H}$
.
Proof Let f be a measurable function on
${\mathbb H}$
, and take q such that
$1 < q < p$
and
$\beta < (n+1)/(2q')$
. Lemma 2.4 with p replaced by q and Lemma 2.3 give
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu14.png?pub-status=live)
where
$g (y) = ( |f(y)| |y_n|^{\beta })^{q} \chi _{{\mathbb H}}(y)$
.▪
3 Trudinger’s inequality for Riesz potentials in
$L^p$
For
$0<\alpha <n$
and
$f\in L^1_{\textrm {loc}}({\mathbb H})$
, let us consider the Riesz potential of order
$\alpha $
on
${\mathbb H}$
defined by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu15.png?pub-status=live)
We are now ready to show Trudinger’s exponential integrability for Riesz potentials on
${\mathbb H}$
.
Theorem 3.1 Let
$ \alpha p =n$
and
$ \beta < (n+1)/(2p')$
. Then there exist constants
$c_1>0, c_2>0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu16.png?pub-status=live)
for all
$R> 0$
and measurable functions f satisfying (1.1).
Proof Let
$\alpha p = n$
and f be a non-negative measurable function on
${\mathbb H}$
satisfying (1.1). Write
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu17.png?pub-status=live)
First note that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu18.png?pub-status=live)
Next, we have by Hölder’s inequality for
$0 < r < x_n/2$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu19.png?pub-status=live)
since
$\alpha p = n$
. Moreover, we have by Hölder’s inequality and Lemma 2.1 for
$x_n/2 \le r < x_n$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu20.png?pub-status=live)
since
$-\beta p' + n> (n-1)/2$
and
$\alpha p = n$
. Therefore,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu21.png?pub-status=live)
so that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu22.png?pub-status=live)
for every
$r> 0$
. Letting
$r = \{x_n^{\beta } M_{\mathbb H} f(x)\}^{-1/\alpha }$
, we obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu23.png?pub-status=live)
Hence, there exists a constant
$c_1>0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu24.png?pub-status=live)
so that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu25.png?pub-status=live)
since
$\alpha p = n$
. Now it follows from Theorem 2.5 that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu26.png?pub-status=live)
for
$R> 0$
.▪
In the same manner as the previous proof, we obtain Sobolev’s inequality in weighted
$L^p$
spaces.
Theorem 3.2 (cf. [Reference Mizuta and Shimomura23, Theorem 2.2])
Let
$1/p^* = 1/p - \alpha /n> 0$
and
$ \beta < (n+1)/ (2p')$
. Then there exists a constant
$C>0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu27.png?pub-status=live)
for all measurable functions f satisfying (1.1).
In fact, as in the proof of Theorem 3.1, we have by Hölder’s inequality
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu28.png?pub-status=live)
for
$0 < r < x_n/2$
, and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu29.png?pub-status=live)
for
$x_n/2 \le r < x_n$
. Hence,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu30.png?pub-status=live)
for every
$r> 0$
. Letting
$r = \{x_n^{\beta } M_{\mathbb H} f(x)\}^{-p/n}$
, we obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu31.png?pub-status=live)
Now it follows from Theorem 2.5 that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu32.png?pub-status=live)
Remark 3.3 Let
$\beta + \alpha - b + n/q \le a < \beta -b+ n/p$
and
$(n-1)/q < (n-1)/p < b$
. If
$f(y) = |y_n|^{-a} |y|^{-b} \chi _{B(0,1)}(y)$
, where
$\chi _E$
denotes the characteristic function of E, then:
-
(1)
$\displaystyle \int _{{\mathbb H}\cap B(0,1)} |f(y) y_n^\beta |^p dy < \infty $ when
$-bp + (n-1) < 0$ and
$(-a+\beta )p + (-b p + n-1) + 1> 0$ ;
-
(2)
$\displaystyle I_\alpha f(x) = \int _{\mathbb H} |x-y|^{\alpha -n} f(y) dy = \infty $ for all
$x\in {\mathbb H}$ when
$a \ge 1$ ;
-
(3)
$\displaystyle I_{{\mathbb H},\alpha } f(x) \ge C x_n^{\alpha -a} |x|^{-b} $ for all
$x\in {\mathbb H}\cap B(0,1)$ ;
-
(4)
$\displaystyle \int _{{\mathbb H}\cap B(0,1)} \{x_n^\beta I_{{\mathbb H},\alpha } f(x) \}^q dx = \infty $ when
$-bq + (n-1) < 0$ and
$(\beta -a + \alpha ) q + (-b q+ n-1) + 1 \le 0$ .In particular, it happens that
$$ \begin{align*} \int_{{\mathbb H}\cap B(0,1)} \{x_n^\beta I_{{\mathbb H},\alpha} f(x) \}^q dx = \infty, \end{align*} $$
$q> p^*$ .
For (3), it suffices to see that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu34.png?pub-status=live)
4 Trudinger’s inequality for Riesz potentials in Morrey spaces
In this section, we are concerned with Trudinger’s exponential integrability in weighted Morrey spaces.
Theorem 4.1 Let
$\alpha p = \sigma \le n$
and
$ \beta < (n+1)/(2p')$
. Then there exist constants
$c_1>0, c_2>0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu35.png?pub-status=live)
for all
$R> 0$
and measurable functions f on
${\mathbb H}$
satisfying (1.2).
Proof Let f be a non-negative measurable function on
${\mathbb H}$
satisfying (1.2). Write
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu36.png?pub-status=live)
By (1.2), we have for
$0 < r < x_n/2$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu37.png?pub-status=live)
since
$\alpha p = \sigma $
. Moreover, as in the proof of Theorem 3.1, by Hölder’s inequality and Lemma 2.1, we have for
$x_n/2 \le r < x_n$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu38.png?pub-status=live)
since
$-\beta p' + n> (n-1)/2$
and
$\alpha p = \sigma $
. Therefore,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu39.png?pub-status=live)
so that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu40.png?pub-status=live)
for every
$r> 0$
. Letting
$r = \{x_n^{\beta } M_{\mathbb H} f(x)\}^{-1/\alpha }$
, we obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu41.png?pub-status=live)
Hence, there exists a constant
$c_1>0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu42.png?pub-status=live)
so that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu43.png?pub-status=live)
Hence, in view of Theorem 2.5, we obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu44.png?pub-status=live)
for
$R> 0$
.▪
In the same manner as the previous proof, we obtain Sobolev’s inequality in weighted Morrey spaces, which is an improvement of [Reference Mizuta and Shimomura24, Theorem 3.4].
Theorem 4.2 Let
$1/p_{\sigma } = 1/p - \alpha /\sigma> 0$
,
$0 < \sigma \le n$
and
$ \beta < (n+1)/(2p')$
. Then there exists a constant
$C>0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu45.png?pub-status=live)
for all
$z\in {\mathbb H}$
,
$r> 0$
and measurable functions f on
${\mathbb H}$
satisfying (1.2).
In fact, as in the proof of Theorem 4.1, we have by Hölder’s inequality
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu46.png?pub-status=live)
for
$0 < r < x_n/2$
, and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu47.png?pub-status=live)
for
$x_n/2 \le r < x_n$
. Hence,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu48.png?pub-status=live)
for every
$r> 0$
. Letting
$r = \{x_n^{\beta } M_{\mathbb H} f(x)\}^{-p/\sigma }$
, we obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu49.png?pub-status=live)
Now it follows from Theorem 2.5 that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu50.png?pub-status=live)
for all
$z\in {\mathbb H}$
and
$r> 0$
.
5 Double phase functionals
In this section, we consider the double phase functional
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu51.png?pub-status=live)
where
$1 < p<q$
and
$b(\cdot )$
is non-negative, bounded and Hölder continuous of order
$\theta \in (0,1]$
[Reference Maeda, Mizuta, Ohno and Shimomura16].
We obtain Trudinger’s inequality for
$I_{{\mathbb H},\alpha } f$
in weighted Morrey spaces of the double phase functional
$\Phi (x,t)$
using Theorem 4.1.
Theorem 5.1 Let
$0 < \sigma \le n$
,
$1/q = 1/p - \theta /\sigma $
,
$1/p_\sigma = 1/p - \alpha /\sigma> 0$
and
$1/q_\sigma = 1/q - \alpha /\sigma = 0$
. Suppose
$ \beta < (n+1)/(2p')$
. Then there exist constants
$c_1>0, c_2>0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu52.png?pub-status=live)
for all
$R>0$
and measurable functions f on
${\mathbb H}$
satisfying
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqn4.png?pub-status=live)
Proof Let f be a non-negative measurable function on
${\mathbb H}$
satisfying (5.1). First, we see from Theorem 4.2 that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu53.png?pub-status=live)
since
$\alpha p<\sigma $
.
Note that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu54.png?pub-status=live)
when
$x\in {\mathbb H}$
. We find by Theorem 4.1
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu55.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu56.png?pub-status=live)
for all
$R>0$
since
$1/q_\sigma = 1/q - \alpha /\sigma = 1/p - (\alpha +\theta )/\sigma = 0$
. Thus, we complete the proof.▪
We obtain the following theorem using Theorem 3.1.
Theorem 5.2 Let
$1/q = 1/p - \theta /n$
,
$ \alpha p <n=\alpha q$
and
$ \beta < (n+1)/(2p')$
. Then there exist constants
$c_1>0, c_2>0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu57.png?pub-status=live)
for all
$R>0$
and measurable functions f satisfying
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqn5.png?pub-status=live)
Proof Let f be a non-negative measurable function on
${\mathbb H}$
satisfying (5.2). Then Theorem 3.2 gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu58.png?pub-status=live)
since
$\alpha p<n$
. Further, Theorem 3.1 gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu59.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230407174004548-0174:S0008439521001041:S0008439521001041_eqnu60.png?pub-status=live)
for all
$R>0$
since
$ (\alpha +\theta ) p=n=\alpha q$
and
$1/p' < 1/q'$
. Thus, we obtain the result.▪