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Trudinger’s inequalities for Riesz potentials
in Morrey spaces of double phase
functionals on half spaces
Yoshihiro Mizuta and Tetsu Shimomura

Abstract. Our aim in this paper is to establish Trudinger’s exponential integrability for Riesz poten-
tials in weighted Morrey spaces on the half space. As an application, we obtain Trudinger’s inequality
for Riesz potentials in the framework of double phase functionals.

1 Introduction

Let Rn be the n-dimensional Euclidean space, and B(x , r) denote the open ball in R
n

centered at x of radius r > 0. We consider the Riesz potential of order α on the half
space H = {x = (x′ , xn) ∈ Rn−1 ×R1 ∶ xn > 0} defined by

IH,α f (x) = ∫
B(x ,xn)

∣x − y∣α−n f (y)d y

for 0 < α < n and f ∈ L1
loc(H). For f ∈ Lp

loc(H) with 1 < p < ∞, Trudinger type
inequalities for Riesz potentials of order α have been studied in the limiting case
αp = n (see e.g., [8–11, 17, 18, 28]).

Our first aim in this paper is to establish Trudinger’s exponential integrability for
IH,α f of functions f satisfying the weighted Lp condition

∫
H

∣ f (y)yβ
n ∣pd y ≤ 1,(1.1)

when αp = n and β < (n + 1)/(2p′), where 1/p + 1/p′ = 1 (see Theorem 3.1). Note
that ω(y) = ∣yn ∣β p is not always Muckenhoupt Ap weight; more precisely, ω is
not Muckenhoupt Ap weight when β ∉ (−1/p, 1/p′) (see Remarks 2.2 and 3.3). For
this purpose, we apply the technique by Hedberg in [1] using the central Hardy–
Littlewood maximal function MH f defined by

MH f (x) = sup
{r>0∶B(x ,r)⊂H}

1
∣B(x , r)∣ ∫B(x ,r)

∣ f (y)∣ d y,
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Trudinger’s inequalities for Riesz potentials 925

where ∣B(x , r)∣ denotes the Lebesgue measure of B(x , r). We show the boundedness
of the maximal operator MH (Theorem 2.5), as an improvement of [23, Theorem 2.1].
We also give a Sobolev type inequality for IH,α f of functions f satisfying (1.1)
when αp < n and β < (n + 1)/(2p′) (Theorem 3.2). Compare Theorem 3.2 with [23,
Theorem 2.2] which is a Sobolev type inequality for the fractional maximal function.

In the previous paper [24, Theorem 3.4], we proved a Sobolev type inequality for
IH, ,α f of functions f satisfying the weighted Morrey condition

sup
r>0,x∈H

rσ

∣B(x , r)∣ ∫H∩B(x ,r)
(∣ f (y)∣yβ

n)
p

d y ≤ 1,(1.2)

when αp < σ < (n + 1)/2 and β < (n + 1)/(2p′). We refer to [25] and [26] for Morrey
spaces, which were introduced to estimate solutions of partial differential equations.
See also [5, 12]. Applying our discussions in Theorem 3.1, we study Trudinger’s
exponential integrability for IH,α f of functions f satisfying (1.2) when αp = σ ≤ n and
β < (n + 1)/(2p′) (see Theorem 4.1), as an improvement of [24, Theorem 3.4].

Further, as an application, we establish Trudinger’s inequality for IH,α f in the
framework of double phase functionals

Φ(x , t) = t p + (b(x)t)q ,(1.3)

where 1 < p < q and b(⋅) is non-negative, bounded and Hölder continuous of order
θ ∈ (0, 1] (see Theorems 5.1 and 5.2). Double phase functionals are studied by Baroni,
Colombo, and Mingione [2, 3, 6, 7] regarding the regularity theory of differential
equations. See [24, Theorem 4.1] for Sobolev’s inequality of IH,α f in the framework
of (1.3). We refer to [16, 20, 21] for related results. Other double phase problems were
studied e.g., in [4, 13–15, 19, 22, 27].

Throughout this paper, let C denote various constants independent of the variables
in question. The symbol g ∼ h means that C−1h ≤ g ≤ Ch for some constant C > 0.

2 Boundedness of the maximal operator in the half space

For later use, it is convenient to see the following result.

Lemma 2.1 [23, Lemma 2.3] For ε > (n − 1)/2 and x ∈ H, set

I(x) = ∫
B(x ,xn)

yε−n
n d y.

Then there exists a constant C > 0 such that

I(x) ≤ Cx ε
n .

Remark 2.2 Let β > (n + 1)/(2p′). If f (y) = ∣yn ∣−a , then:

(1) ∫
B(x ,xn)

∣ f (y)yβ
n ∣pd y < ∞ for x ∈ H when (β − a)p + n > (n − 1)/2 and

(2) ∫
B(x ,xn)

f (y)d y = ∞ for x ∈ H when −a + n ≤ (n − 1)/2.

If (n + 1)/2 ≤ a < β + (n + 1)/(2p), then both (1) and (2) hold.
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For f ∈ L1
loc(H), the central Hardy–Littlewood maximal function MH f is

defined by

MH f (x) = sup
{r>0∶B(x ,r)⊂H}

1
∣B(x , r)∣ ∫B(x ,r)

∣ f (y)∣ d y.

The mapping f ↦ MH f is called the fractional central maximal operator.
The usual fractional maximal function M f is defined by

M f (x) = sup
r>0

1
∣B(x , r)∣ ∫H∩B(x ,r)

∣ f (y)∣ d y.

It is known that the maximal operator f → M f is bounded in Morrey spaces as
follows:

Lemma 2.3 [12, Lemma 4] Let 0 < σ ≤ n and p > 1. Then there exists a constant C > 0
such that

sup
z∈Rn ,r>0

rσ

∣B(z, r)∣ ∫B(z ,r)
{M f (x)}pdx ≤ C sup

z∈Rn ,r>0

rσ

∣B(z, r)∣ ∫B(z ,r)
∣ f (y)∣pd y

for all measurable functions f on R
n .

Throughout this paper, let 1 < p < ∞ and 1/p + 1/p′ = 1. We extend Lemma 2.3
to MH. For this purpose, we prepare the following result.

Lemma 2.4 Let β < (n + 1)/(2p′). Then there exists a constant C > 0 such that

MH f (x) ≤ Cx−β
n (Mg(x))1/p

for all x ∈ H and measurable functions f on H, where g(y) = (∣ f (y)∣∣yn ∣β)p χH(y).

Proof Let f be a non-negative measurable function on H. For 0 < r < xn/2,

∫
B(x ,r)

y−β p′
n d y ≤ Cx−β p′

n rn

and for xn/2 < r < xn and −βp′ + n > (n − 1)/2

∫
B(x ,r)

y−β p′
n d y ≤ Cx−β p′+n

n ≤ Cx−β p′
n rn

by Lemma 2.1. Hence, we have by Hölder’s inequality

∫
B(x ,r)

f (y)d y ≤ (∫
B(x ,r)

y−β p′
n d y)

1/p′

(∫
B(x ,r)

( f (y)yβ
n)pd y)

1/p

≤ Cx−β
n rn/p′ (∫

B(x ,r)
( f (y)yβ

n)pd y)
1/p

,

so that

MH f (x) ≤ Cx−β
n sup

0<r<xn

( 1
∣B(x , r)∣ ∫B(x ,r)

( f (y)yβ
n)pd y)

1/p

,

as required. ∎
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By Lemmas 2.3 and 2.4, we obtain the following result, which is an improvement
of [23, Theorem 2.1].

Theorem 2.5 Let β < (n + 1)/(2p′) and 0 < σ ≤ n. Then there exists a constant C > 0
such that

sup
r>0,z∈H

rσ

∣B(z, r)∣ ∫H∩B(z ,r)
∣xβ

n MH f (x)∣pdx

≤ C sup
r>0,z∈H

rσ

∣B(z, r)∣ ∫H∩B(z ,r)
∣ f (y)yβ

n ∣pd y

for all measurable functions f on H.

Proof Let f be a measurable function on H, and take q such that 1 < q < p and
β < (n + 1)/(2q′). Lemma 2.4 with p replaced by q and Lemma 2.3 give

sup
r>0,z∈H

rσ

∣B(z, r)∣ ∫H∩B(z ,r)
∣xβ

n MH f (x)∣pdx

≤ C sup
r>0,z∈H

rσ

∣B(z, r)∣ ∫H∩B(z ,r)
∣Mg(x)∣p/qdx

≤ C sup
r>0,z∈H

rσ

∣B(z, r)∣ ∫H∩B(z ,r)
∣g(y)∣p/qd y

= C sup
r>0,z∈H

rσ

∣B(z, r)∣ ∫H∩B(z ,r)
∣ f (y)yβ

n ∣pd y,

where g(y) = (∣ f (y)∣∣yn ∣β)q χH(y). ∎

3 Trudinger’s inequality for Riesz potentials in Lp

For 0 < α < n and f ∈ L1
loc(H), let us consider the Riesz potential of order α on H

defined by

IH,α f (x) = ∫
B(x ,xn)

∣x − y∣α−n f (y)d y.

We are now ready to show Trudinger’s exponential integrability for Riesz potentials
on H.

Theorem 3.1 Let αp = n and β < (n + 1)/(2p′). Then there exist constants c1 > 0,
c2 > 0 such that

1
∣B(0, R)∣ ∫H∩B(0,R)

exp(∣xβ
n IH,α f (x)/c1∣ p′) dx ≤ c2

for all R > 0 and measurable functions f satisfying (1.1).
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Proof Let αp = n and f be a non-negative measurable function on H satisfying
(1.1). Write

IH,α f (x) = ∫
B(x ,r)

∣x − y∣α−n f (y)d y + ∫
B(x ,xn)∖B(x ,r)

∣x − y∣α−n f (y)d y

= T1(x) + T2(x).

First note that

T1(x) ≤ Crα MH f (x).

Next, we have by Hölder’s inequality for 0 < r < xn/2

T21(x) = ∫
B(x ,xn/2)∖B(x ,r)

∣x − y∣α−n f (y)d y

≤ Cx−β
n ∫

B(x ,xn/2)∖B(x ,r)
∣x − y∣α−n f (y)yβ

n d y

≤ Cx−β
n (∫

B(x ,xn/2)∖B(x ,r)
∣x − y∣(α−n)p′d y)

1/p′

× (∫
B(x ,xn/2)∖B(x ,r)

{ f (y)yβ
n}pd y)

1/p

≤ Cx−β
n (log(xn/r))1/p′ ,

since αp = n. Moreover, we have by Hölder’s inequality and Lemma 2.1 for
xn/2 ≤ r < xn

T22(x) = ∫
B(x ,xn)∖B(x ,r)

∣x − y∣α−n f (y)d y

≤ Cxα−n
n ∫

B(x ,xn)∖B(x ,r)
f (y)d y

≤ Cxα−n
n (∫

B(x ,xn)∖B(x ,r)
y−β p′

n d y)
1/p′

(∫
B(x ,xn)∖B(x ,r)

{ f (y)yβ
n}pd y)

1/p

≤ Cxα−n
n (x−β p′+n

n )
1/p′
(∫

B(x ,xn)∖B(x ,r)
{ f (y)yβ

n}pd y)
1/p

≤ Cx−β
n ,

since −βp′ + n > (n − 1)/2 and αp = n. Therefore,

T2(x) ≤ Cx−β
n {log(e + (xn/r))}1/p′ ,

so that

IH,α f (x) ≤ Crα MH f (x) + Cx−β
n {log(e + (xn/r))}1/p′
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for every r > 0. Letting r = {xβ
n MH f (x)}−1/α , we obtain

xβ
n IH,α f (x) ≤ C + C (log(e + xn{xβ

n MH f (x)}1/α))
1/p′

.

Hence, there exists a constant c1 > 0 such that

xβ
n IH,α f (x) ≤ c1 (log(e + xα p

n {xβ
n MH f (x)}p))

1/p′
,

so that

exp [{xβ
n IH,α f (x)/c1}

p′
] ≤ e + xn

n{x
β
n MH f (x)}p ,

since αp = n. Now it follows from Theorem 2.5 that

1
∣B(0, R)∣ ∫H∩B(0,R)

exp [{xβ
n IH,α f (x)/c1}

p′
] dx

≤ e + 1
∣B(0, R)∣ ∫H∩B(0,R)

xn
n{x

β
n MH f (x)}pdx

≤ e + C ∫
H∩B(0,R)

{xβ
n MH f (x)}pdx

≤ c2

for R > 0. ∎

In the same manner as the previous proof, we obtain Sobolev’s inequality in
weighted Lp spaces.

Theorem 3.2 (cf. [23, Theorem 2.2]) Let 1/p∗ = 1/p − α/n > 0 and β < (n + 1)/
(2p′). Then there exists a constant C > 0 such that

∫
H

∣xβ
n IH,α f (x)∣ p∗dx ≤ C

for all measurable functions f satisfying (1.1).

In fact, as in the proof of Theorem 3.1, we have by Hölder’s inequality

T21(x) ≤ Cx−β
n rα−n/p

for 0 < r < xn/2, and

T22(x) ≤ Cx−β
n xα−n/p

n

for xn/2 ≤ r < xn . Hence,

IH,α f (x) ≤ Crα MH f (x) + Cx−β
n rα−n/p

for every r > 0. Letting r = {xβ
n MH f (x)}−p/n , we obtain

xβ
n IH,α f (x) ≤ C{xβ

n MH f (x)}1−α p/n

= C{xβ
n MH f (x)}p/p∗ .
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Now it follows from Theorem 2.5 that

∫
H

{xβ
n IH,α f (x)}

p∗
dx ≤ C ∫

H

{xβ
n MH f (x)}pdx

≤ C ∫
H

∣yβ
n f (y)∣pd y.

Remark 3.3 Let β + α − b + n/q ≤ a < β − b + n/p and (n − 1)/q < (n − 1)/p < b. If
f (y) = ∣yn ∣−a ∣y∣−b χB(0,1)(y), where χE denotes the characteristic function of E, then:

(1) ∫
H∩B(0,1)

∣ f (y)yβ
n ∣pd y < ∞ when −bp + (n − 1) < 0 and (−a + β)p +

(−bp + n − 1) + 1 > 0;
(2) Iα f (x) = ∫

H

∣x − y∣α−n f (y)d y = ∞ for all x ∈ H when a ≥ 1;

(3) IH,α f (x) ≥ Cxα−a
n ∣x∣−b for all x ∈ H ∩ B(0, 1);

(4) ∫
H∩B(0,1)

{xβ
n IH,α f (x)}qdx = ∞ when −bq + (n − 1) < 0 and

(β − a + α)q + (−bq + n − 1) + 1 ≤ 0.
In particular, it happens that

∫
H∩B(0,1)

{xβ
n IH,α f (x)}qdx = ∞,

when q > p∗.
For (3), it suffices to see that

IH,α f (x) ≥ ∫
B(x ,xn/2)

∣x − y∣α−n f (y)d y

≥ Cx−a
n ∣x∣−b ∫

B(x ,xn/2)∩B(0,1)
∣x − y∣α−nd y

≥ Cx−a+α
n ∣x∣−b .

4 Trudinger’s inequality for Riesz potentials in Morrey spaces

In this section, we are concerned with Trudinger’s exponential integrability in
weighted Morrey spaces.

Theorem 4.1 Let αp = σ ≤ n and β < (n + 1)/(2p′). Then there exist constants
c1 > 0, c2 > 0 such that

1
∣B(0, R)∣ ∫H∩B(0,R)

exp (∣xβ
n IH,α f (x)/c1∣) dx ≤ c2

for all R > 0 and measurable functions f on H satisfying (1.2).

Proof Let f be a non-negative measurable function on H satisfying (1.2). Write

IH,α f (x) = ∫
B(x ,r)

∣x − y∣α−n f (y)d y + ∫
B(x ,xn)∖B(x ,r)

∣x − y∣α−n f (y)d y

= T1(x) + T2(x).
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By (1.2), we have for 0 < r < xn/2

T21(x) = ∫
B(x ,xn/2)∖B(x ,r)

∣x − y∣α−n f (y)d y

≤ Cx−β
n ∫

B(x ,xn/2)∖B(x ,r)
∣x − y∣α−n f (y)yβ

n d y

≤ Cx−β
n ∫

xn/2

r
tα−1 ( 1

∣B(x , t)∣ ∫B(x ,t)
f (y)yβ

n d y) dt

≤ Cx−β
n ∫

xn/2

r
tα−1 ( 1

∣B(x , t)∣ ∫B(x ,t)
{ f (y)yβ

n}pd y)
1/p

dt

≤ Cx−β
n ∫

xn/2

r
t−1dt

≤ Cx−β
n log(xn/r),

since αp = σ . Moreover, as in the proof of Theorem 3.1, by Hölder’s inequality and
Lemma 2.1, we have for xn/2 ≤ r < xn

T22(x) = ∫
B(x ,xn)∖B(x ,r)

∣x − y∣α−n f (y)d y

≤ Cxα−n
n ∫

B(x ,xn)∖B(x ,r)
f (y)d y

≤ Cxα−n
n (x−β p′+n

n )
1/p′
(∫

B(x ,xn)∖B(x ,r)
{ f (y)yβ

n}pd y)
1/p

≤ Cxα−n
n (x−β p′+n

n )
1/p′
(xn−σ

n )1/p

= Cx−β
n ,

since −βp′ + n > (n − 1)/2 and αp = σ . Therefore,

T2(x) ≤ Cx−β
n log(xn/r),

so that

IH,α f (x) ≤ Crα MH f (x) + Cx−β
n log(e + (xn/r))

for every r > 0. Letting r = {xβ
n MH f (x)}−1/α , we obtain

xβ
n IH,α f (x) ≤ C + C log(e + xn{xβ

n MH f (x)}1/α).

Hence, there exists a constant c1 > 0 such that

xβ
n IH,α f (x) ≤ c1 log(e + xα p

n {xβ
n MH f (x)}p),

so that

exp (xβ
n IH,α f (x)/c1) ≤ e + xα p

n {xβ
n MH f (x)}p .
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Hence, in view of Theorem 2.5, we obtain
1

∣B(0, R)∣ ∫H∩B(0,R)
exp (xβ

n IH,α f (x)/c1) dx

≤ e + C 1
∣B(0, R)∣ ∫H∩B(0,R)

xσ
n{x

β
n MH f (x)}pdx

≤ e + C Rσ

∣B(0, R)∣ ∫H∩B(0,R)
{xβ

n MH f (x)}pdx

≤ c2

for R > 0. ∎

In the same manner as the previous proof, we obtain Sobolev’s inequality in
weighted Morrey spaces, which is an improvement of [24, Theorem 3.4].

Theorem 4.2 Let 1/pσ = 1/p − α/σ > 0, 0 < σ ≤ n and β < (n + 1)/(2p′). Then there
exists a constant C > 0 such that

rσ

∣B(z, r)∣ ∫H∩B(z ,r)
∣xβ

n IH,α f (x)∣ pσ dx ≤ C

for all z ∈ H, r > 0 and measurable functions f on H satisfying (1.2).

In fact, as in the proof of Theorem 4.1, we have by Hölder’s inequality

T21(x) ≤ Cx−β
n rα−σ/p

for 0 < r < xn/2, and

T22(x) ≤ Cx−β
n xα−σ/p

n

for xn/2 ≤ r < xn . Hence,

IH,α f (x) ≤ Crα MH f (x) + Cx−β
n rα−σ/p

for every r > 0. Letting r = {xβ
n MH f (x)}−p/σ , we obtain

xβ
n IH,α f (x) ≤ C{xβ

n MH f (x)}1−α p/σ

= C{xβ
n MH f (x)}p/pσ .

Now it follows from Theorem 2.5 that
rσ

∣B(z, r)∣ ∫H∩B(z ,r)
{xβ

n IH,α f (x)}
pσ

dx ≤ C rσ

∣B(z, r)∣ ∫H∩B(z ,r)
{xβ

n MH f (x)}pdx

≤ C rσ

∣B(z, r)∣ ∫H∩B(z ,r)
∣yβ

n f (y)∣pd y

for all z ∈ H and r > 0.

https://doi.org/10.4153/S0008439521001041 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439521001041


Trudinger’s inequalities for Riesz potentials 933

5 Double phase functionals

In this section, we consider the double phase functional

Φ(x , t) = t p + (b(x)t)q ,

where 1 < p < q and b(⋅) is non-negative, bounded and Hölder continuous of order
θ ∈ (0, 1] [16].

We obtain Trudinger’s inequality for IH,α f in weighted Morrey spaces of the double
phase functional Φ(x , t) using Theorem 4.1.

Theorem 5.1 Let 0 < σ ≤ n, 1/q = 1/p − θ/σ, 1/pσ = 1/p − α/σ > 0 and 1/qσ = 1/q −
α/σ = 0. Suppose β < (n + 1)/(2p′). Then there exist constants c1 > 0, c2 > 0 such that

Rσ

∣B(0, R)∣ ∫H∩B(0,R)
∣xβ

n IH,α f (x)∣ pσ dx

+ 1
∣B(0, R)∣ ∫H∩B(0,R)

exp (∣xβ
n b(x)IH,α f (x)/c1∣) dx ≤ c2

for all R > 0 and measurable functions f on H satisfying

sup
x∈H,r>0

rσ

∣B(x , r)∣ ∫H∩B(x ,r)
Φ (y, ∣ f (y)∣yβ

n) d y ≤ 1.(5.1)

Proof Let f be a non-negative measurable function on H satisfying (5.1). First, we
see from Theorem 4.2 that

sup
r>0∶x∈H

rσ

∣B(x , r)∣ ∫H∩B(x ,r)
(zβ

n IH,α f (z))pσ dz ≤ C ,

since αp < σ .
Note that

b(x)IH,α f (x)

= ∫
B(x ,xn)

{b(x) − b(y)}∣x − y∣α−n f (y)d y + ∫
B(x ,xn)

b(y)∣x − y∣α−n f (y)d y

≤ C ∫
B(x ,xn)

∣x − y∣α+θ−n f (y)d y + ∫
B(x ,xn)

∣x − y∣α−nb(y) f (y)d y

= CIH,α+θ f (x) + IH,α[b f ](x),
when x ∈ H. We find by Theorem 4.1

1
∣B(0, R)∣ ∫H∩B(0,R)

exp (∣xβ
n IH,α+θ f (x)/c1∣) dx ≤ c2

and
1

∣B(0, R)∣ ∫H∩B(0,R)
exp (∣xβ

n IH,α[b f ](x)/c1∣) dx ≤ c2

for all R > 0 since 1/qσ = 1/q − α/σ = 1/p − (α + θ)/σ = 0. Thus, we complete the
proof. ∎
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We obtain the following theorem using Theorem 3.1.

Theorem 5.2 Let 1/q = 1/p − θ/n, αp < n = αq and β < (n + 1)/(2p′). Then there
exist constants c1 > 0, c2 > 0 such that

∫
H

∣xβ
n IH,α f (x)∣ p∗dx

+ 1
∣B(0, R)∣ ∫H∩B(0,R)

exp (∣xβ
n b(x)IH,α f (x)/c1∣ q

′

) dx ≤ c2

for all R > 0 and measurable functions f satisfying

∫
H

Φ (y, ∣ f (y)∣yβ
n) d y ≤ 1.(5.2)

Proof Let f be a non-negative measurable function on H satisfying (5.2). Then
Theorem 3.2 gives

∫
H

∣xβ
n IH,α f (x)∣ p∗dx ≤ C ,

since αp < n. Further, Theorem 3.1 gives
1

∣B(0, R)∣ ∫H∩B(0,R)
exp (∣xβ

n IH,α+θ f (x)/c1∣ p′) dx ≤ c2

and
1

∣B(0, R)∣ ∫H∩B(0,R)
exp (∣xβ

n IH,α[b f ](x)/c1∣ q
′

) dx ≤ c2

for all R > 0 since (α + θ)p = n = αq and 1/p′ < 1/q′. Thus, we obtain the result. ∎
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