Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-02-11T14:11:12.150Z Has data issue: false hasContentIssue false

Exponential mixing property for Hénon–Sibony maps of $\mathbb {C}^k$

Published online by Cambridge University Press:  17 September 2021

HAO WU*
Affiliation:
Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore119076
*
Rights & Permissions [Opens in a new window]

Abstract

Let f be a Hénon–Sibony map, also known as a regular polynomial automorphism of $\mathbb {C}^k$ , and let $\mu $ be the equilibrium measure of f. In this paper we prove that $\mu $ is exponentially mixing for plurisubharmonic observables.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

1 Introduction and main results

Let f be a polynomial automorphism of $\mathbb {C}^k$ . It can be extended to a birational map of $\mathbb {P}^k$ . The set $I_+$ (respectively $I_-$ ) where f (respectively $f^{-1}$ ) is not defined is called the indeterminacy set of f (respectively $f^{-1}$ ). We say that f is a Hénon–Sibony map or a regular polynomial automorphism in the sense of Sibony if $I_{+}$ and $I_-$ are non-empty and they satisfy $I_{+}\cap I_{-}=\varnothing $ . There is a very large class of polynomial automorphisms of $\mathbb {C}^k$ satisfying these properties (see [Reference Friedland and Milnor13, Reference Sibony14]). For example, every polynomial automorphism of $\mathbb {C}^2$ is conjugated either to a Hénon–Sibony map, or an elementary polynomial automorphism, which has the form $g(z_1,z_2):=(az_1+p(z_2),bz_2+c)$ , where $a,b,c$ are constants in $\mathbb {C}$ with $a,b\neq 0$ and p a polynomial. The latter map preserves the family of lines where $z_2$ is constant.

We first recall some basic properties of f. The indeterminacy sets $I_{\pm }$ are contained in the hyperplane at infinity $L_{\infty }:=\mathbb {P}^k\backslash \mathbb {C}^k$ . There exists an integer s such that $\dim I_+=k-1-s$ and $\dim I_-=s-1$ . The set $I_-$ is attractive for f and $I_+$ is attractive for $f^{-1}$ . Moreover, $f(L_\infty \backslash I_+)=I_-$ and $f^{-1}(L_\infty \backslash I_-)=I_+$ . Denote by $d_+$ and $d_-$ the algebraic degrees of f and $f^{-1}$ , respectively; we have $d_+^s=d_-^{k-s}$ . When $k=2s$ , we have $d_+=d_-$ . In the case $k=2$ , f is called a generalized Hénon map of $\mathbb {C}^2$ (see [Reference Friedland and Milnor13]).

We define the Green functions by

$$ \begin{align*}G^+(z):=\lim_{n\to\infty} d_+^{-n}\log^+\|f^n(z)\|\quad\text{and}\quad G^-(z):=\lim_{n\to\infty} d_-^{-n}\log^+\|f^{-n}(z)\|,\end{align*} $$

where $\log ^+:=\max \{\log ,0\}$ . They are Hölder continuous and plurisubharmonic (p.s.h. for short) on $\mathbb {C}^k$ and they satisfy $G^+\circ f=d_+G^+$ and $G^-\circ f^{-1}=d_-G^-$ . Define the Green currents of bidegree $(1,1)$ by $T_+:=dd^c G^+$ and $T_-:=dd^c G^-$ . Sibony showed that f admits an invariant probability measure $\mu $ , called the equilibrium measure, and it satisfies $\mu =T_+^s\wedge T_-^{k-s}$ , which turns out to be a measure of maximal entropy (unique when $k\,{=}\,2$ ). Hence, $\mu $ plays a very important role in the study of complex dynamics. For more dynamical properties of Hénon–Sibony maps, the reader may refer to [Reference Bedford, Lyubich and Smillie1, Reference Bedford and Smillie2, Reference Dinh and Sibony10Reference Fornæss and Sibony12, Reference Sibony14].

The current $T^s_+$ (respectively $T^{k-s}_-$ ) is supported in the boundary of the filled Julia set $K_+$ (respectively $K_-$ ). Recall that $K_+$ (respectively $K_-$ ) is the set of points $z\in \mathbb {C}^k$ such that the orbit $(f^n(z))_{n\in \mathbb {N}}$ (respectively $(f^{-n}(z))_{n\in \mathbb {N}}$ ) is bounded in $\mathbb {C}^k$ . We have

$$ \begin{align*}K_+=\{G^+=0\},\quad K_-=\{G^-=0\} \quad\text{and} \quad\overline K_\pm \cap L_\infty=I_\pm\end{align*} $$

in $\mathbb {P}^k$ . The open set $\mathbb {P}^k\backslash \overline K_+$ (respectively $\mathbb {P}^k \backslash \overline K_-$ ) is the immediate basin of $I_-$ for f (respectively $I_+$ for $f^{-1}$ ). Define $K:=K_+\cap K_-$ . It is a compact subset of $\mathbb {C}^k$ and we have ${\textrm {supp}}(\mu )\subseteq K$ .

It was proved in [Reference Dinh and Sibony7] that $\mu $ is mixing. For $0<\alpha \leq 2$ , Dinh [Reference Dinh4] showed that the speed of mixing is exponential when $k=2s$ for real-valued $\mathscr {C{\kern1.5pt}}^\alpha $ functions. In [Reference Vigny15], exponential mixing is also achieved for generic birational maps of $\mathbb {P}^k$ for $\mathscr {C{\kern1.5pt}}^\alpha $ observables with $0<\alpha \leq 2$ . However, $\mathscr {C{\kern1.5pt}}^\alpha $ functions do not have good invariance properties. For example, the pull-back of a $\mathscr {C{\kern1.5pt}}^\alpha $ function by a birational map may not even be continuous any more. So, in this case, it is natural to ask whether the exponential mixing property holds for other spaces of test functions. In this paper, we will extend the result of [Reference Dinh4] to a class of plurisubharmonic test functions. It is known that the space spanned by those functions is an important space of test functions in complex dynamics, as it is invariant under the action of holomorphic or meromorphic maps. Moreover, p.s.h. functions may have singularities along analytic sets and this allows one to study the action of the dynamical system on analytic sets using p.s.h. functions (see e.g. [Reference Dinh and Sibony9]).

When f is an endomorphism of $\mathbb {P}^k$ with algebraic degree $d\geq 2$ , one can also construct the Green current T and the equilibrium measure $\mu :=T^k$ by using a similar way as above. Moreover, $\mu $ is mixing for all d.s.h. (see the definition below) observables and the speed is exponential (see [Reference Dinh, Nguyên and Sibony5, Reference Dinh and Sibony9]). The advantage here is that f has no singularities on $\mathbb {P}^k$ , that is, it is holomorphic everywhere. Therefore, some invariant properties and good estimates of d.s.h. functions can be obtained under the action of f.

In the rest of this paper, we fix a Hénon–Sibony map f of $\mathbb {C}^k$ . For simplicity, we assume that $k=2s$ (see also Remark 3.3 and [Reference Vigny15]). Denote $d:=d_+=d_-$ . The case $k=2$ and $s=1$ is already interesting (see [Reference Dinh and Sibony10]). Here is the first main result of this paper.

Theorem 1.1. Let f be a Hénon–Sibony map of $\mathbb {C}^k$ as above and assume that $k=2s$ . Let d be the algebraic degree and let $\mu $ be the equilibrium measure of f. Then, for any open neighborhood D of K, there exists a constant $c>0$ depending on D such that

$$ \begin{align*}\bigg|\int(\varphi\circ f^n)\psi\, d\mu -\bigg(\int\varphi\, d\mu\bigg)\bigg(\int \psi \,d\mu\bigg)\bigg|\leq cd^{-n/2}\|\varphi\|_{L^\infty(D)}\|\psi\|_{L^\infty(D)}\end{align*} $$

for all $n\geq 0$ and all functions $\varphi $ and $\psi $ on $\mathbb {C}^k$ which are bounded and p.s.h. on D.

Remark 1.2. For the inequality above, note that the values of the integrals on the left-hand side do not depend on the values of $\varphi $ and $\psi $ outside K since ${\textrm {supp}}(\mu )\subseteq K$ . A main novelty here is that observables are not even globally defined and that requires a good extension lemma (see Lemma 2.5 below). It is easy to see that this result still holds when $\varphi $ and $\psi $ are differences of bounded p.s.h. functions on D, e.g. when $\varphi $ and $\psi $ are of class $\mathscr {C{\kern1.5pt}}^2$ on $\mathbb {C}^k$ .

Another version of Theorem 1.1 has been proved in [Reference Dinh4] for $\varphi ,\psi \in \mathscr {C{\kern1.5pt}}^2$ and it can be extended to the $\mathscr {C{\kern1.5pt}}^\alpha $ case, $0<\alpha \leq 2$ , using interpolation theory between Banach spaces. In this case, one can assume that $\varphi $ and $\psi $ are of class $\mathscr {C{\kern1.5pt}}^2$ and p.s.h. because we can write $\mathscr {C{\kern1.5pt}}^2$ functions as differences of $\mathscr {C{\kern1.5pt}}^2$ functions which are p.s.h. near K. A key step in the proof of [Reference Dinh4] is to consider the functions

$$ \begin{align*}(\varphi(z)+A)(\psi(w)+A)\quad \text{and}\quad (-\varphi(z)+A)(\psi(w)-A)\end{align*} $$

as test functions on $\mathbb {C}^k\times \mathbb {C}^k$ for the system $(z,w)\mapsto (f(z),f^{-1}(w))$ . These two functions are p.s.h. when A is large enough and they play a ‘linear’ role in the setting of the system $(z,w)\mapsto (f(z),f^{-1}(w))$ . Some general estimates for the latter system imply the desired result.

We will use the method of [Reference Dinh4]. However, the same idea as above cannot be directly applied because the two test functions above may not be p.s.h. when $\varphi $ and $\psi $ are not of class $\mathscr {C{\kern1.5pt}}^2$ . We need to introduce several new test functions in $\mathbb {C}^k\times \mathbb {C}^k$ and prove that they satisfy good properties required in this approach (see Lemma 3.1 below).

Recall that a function is quasi-plurisubharmonic (quasi-p.s.h. for short) if locally it is the difference of a p.s.h. function and a smooth one. A function u on $\mathbb {P}^k$ with values in $\mathbb {R}\cup \{\pm \infty \}$ is said to be d.s.h. if outside a pluripolar set it is equal to a difference of two quasi-p.s.h. functions. Two d.s.h. functions are identified when they are equal out of a pluripolar set. Denote the set of d.s.h. functions by $\mathrm {DSH}(\mathbb {P}^k)$ . Clearly it is a vector space and it is equipped with a norm

$$ \begin{align*}\|u\|_{\mathrm{DSH}}:=\bigg|\int_{\mathbb{P}^k} u\,\omega_{\text{FS}}^k\bigg|+\min\|T^{\pm}\|,\end{align*} $$

where $\omega _{\text {FS}}$ is the standard Fubini–Study form on $\mathbb {P}^k$ and the minimum is taken on all positive closed $(1,1)$ -currents $T^{\pm }$ such that $dd^c u=T^+-T^-$ .

A positive measure $\nu $ on $\mathbb {P}^k$ is said to be moderate if for any bounded family $\mathscr {F}$ of d.s.h. functions on $\mathbb {P}^k$ , there are constants $\alpha>0$ and $c>0$ such that

(1.1) $$ \begin{align} \nu\{z\in \mathbb{P}^k:|\psi(z)|>M\}\leq ce^{-\alpha M}\end{align} $$

for $M\geq 0$ and $\psi \in \mathscr {F}$ (see [Reference Dinh, Nguyên and Sibony5, Reference Dinh and Sibony6, Reference Dinh and Sibony9]). The papers [Reference Dinh, Nguyên and Sibony5, Reference Dinh and Sibony7] show that if f is a Hénon–Sibony map of $\mathbb {C}^k$ or, more generally, a regular birational map of $\mathbb {P}^k$ , then the equilibrium measure $\mu $ of f is moderate. Using the moderate property of $\mu $ , we can remove the boundedness conditions of $\varphi $ and $\psi $ , but the estimate on the mixing will be a little bit weaker.

Theorem 1.3. Let f be a Hénon–Sibony map of $\mathbb {C}^k$ and assume that $k=2s$ . Let d be the algebraic degree and let $\mu $ be the equilibrium measure of f. Then for any two d.s.h. functions $\varphi $ and $\psi $ on $\mathbb {P}^k$ , there exists a constant $c>0$ depending on $\varphi ,\psi $ such that

$$ \begin{align*}\bigg|\int(\varphi\circ f^n)\psi\, d\mu -\bigg(\int\varphi\, d\mu\bigg)\bigg(\int \psi\, d\mu\bigg)\bigg|\leq cn^2d^{-n/2}\end{align*} $$

for all $n\geq 0$ .

It is not hard to see that one can choose a common constant c for every compact family of d.s.h. observables. However, we do not know if the factor $n^2$ is removable but its presence seems to be natural as it somehow represents the role of the singularities of $\varphi $ and $\psi $ . More precisely, those functions satisfy exponential estimates (see e.g. [Reference Dinh and Sibony9]), which suggests that their singularities may contribute to some factors exponentially less important than the main factor $d^{-n/2}$ in our estimate.

2 Estimates on iterations of positive closed currents

In this section, we recall some known results and get a slightly more general version (see Proposition 2.4 below), which will be used for proving our main theorems.

Recall that $K=\{G^+=G^-=0\}$ and D is an open neighborhood of K. Define $G:=\max \{G^+,G^-\}$ , which is continuous and p.s.h. on $\mathbb {C}^k$ since it is equal to the maximum of two p.s.h. functions. Observe that $K=\{G=0\}$ . Fix a small positive constant $\delta $ such that $\delta <\min _{\partial D}G$ . Since $\mathbb {P}^k\backslash \overline K_+$ (respectively $\mathbb {P}^k \backslash \overline K_-$ ) is the immediate basin of $I_-$ for f (respectively $I_+$ for $f^{-1}$ ), we can find $U_i,V_i,i=1,2$ , which are open subsets of $\mathbb {P}^k$ , such that

$$ \begin{align*}\overline K_+\Subset U_i, \overline K_-\Subset V_i, U_1\Subset U_2, V_1\Subset V_2,f^{-1}(U_i)\Subset U_i,f(V_i)\Subset V_i\end{align*} $$

and $U_2\cap V_2\Subset \{G<\delta \}$ . Then observe that $K\Subset U_1\cap V_1\Subset U_2\cap V_2\Subset \{G<\delta \}\Subset D$ .

We define a norm on the space of real currents with support in $\overline V_1$ . Let $\omega _{\text {FS}}$ be the standard Fubini–Study form on $\mathbb {P}^k$ . Let $\Omega $ be a real $(s+1,s+1)$ -current supported in $\overline V_1$ and assume that there exists a positive closed $(s+1,s+1)$ -current $\Omega '$ supported in $\overline V_1$ such that $-\Omega '\leq \Omega \leq \Omega '$ . Define the norm $\|\Omega \|_*$ as

$$ \begin{align*}\|\Omega\|_*:=\min\{\|\Omega'\|,\Omega' \text{ as above} \},\end{align*} $$

where $\|\Omega '\|=\langle \Omega ',\omega _{\text {FS}}^{s-1}\rangle $ is the mass of $\Omega '$ . We have the following lemma.

Lemma 2.1. Let $\Omega $ be a real $dd^c$ -exact $(s+1,s+1)$ -current supported in $\overline V_1$ and assume that $\Omega \geq -S$ for some positive closed current S supported in $\overline V_1$ . Then $\|\Omega \|_*\leq 2\|S\|$ .

Proof Note that $\Omega +2S$ is a positive closed current supported in $\overline V_1$ and $\Omega $ satisfies

$$ \begin{align*}-(\Omega+2S)\leq \Omega\leq \Omega+2S.\end{align*} $$

The mass of $\Omega +2S$ is $2\|S\|$ because $\Omega $ is $dd^c$ -exact.

We need the following estimate [Reference Dinh4, Proposition 2.1].

Proposition 2.2. Let f be a Hénon–Sibony map with $k=2s$ . Let R be a positive closed $(s,s)$ -current of mass $1$ supported in $U_1$ and smooth on $\mathbb {C}^k$ . Let $\Phi $ be a real smooth $(s,s)$ -form with compact support in $V_1\cap \mathbb {C}^k$ . Assume that $dd^c\Phi \geq 0$ on $U_2$ and $\|dd^c \Phi \|_*< \infty $ . Then there exists a constant $c>0$ independent of R and $\Phi $ such that

$$ \begin{align*}\langle d^{-sn}(f^n)^*R-T_+^s,\Phi\rangle\leq cd^{-n}\|dd^c \Phi\|_*\end{align*} $$

for every $n\geq 0$ .

Remark 2.3. Note that the support of $d^{-sn}(f^n)^*R-T_+^s$ is in $U_1$ and the support of $\Phi $ is in $V_1$ . Therefore, the value of $\langle d^{-sn}(f^n)^*R-T_+^s,\Phi \rangle $ does not depend on the value of $\Phi $ outside $U_1\cap V_1$ . Thus, for the above proposition, the condition that $\Phi $ is smooth can be replaced by $\Phi $ being smooth on $U_1\cap V_1$ .

We will use Proposition 2.2 to prove the following estimate, which will be crucial in the proof of exponential mixing for plurisubharmonic observables. The case for $\varphi \in \mathscr {C{\kern1.5pt}}^2$ was shown in [Reference Dinh4].

Proposition 2.4. Let f be a Hénon–Sibony map with $k=2s$ . Let $\varphi $ be a bounded real-valued function on $\mathbb {P}^k$ that is p.s.h. on D. Let R (respectively S) be a positive closed $(s,s)$ -current of mass $1$ with support in $U_1$ (respectively $V_1$ ) and smooth on $\mathbb {C}^k$ . Then there exists a constant $c>0$ independent of $\varphi ,R$ and S such that

$$ \begin{align*}\langle d^{-2sn}(f^n)^*R\wedge(f^n)_*S-\mu,\varphi\rangle\leq cd^{-n}\|\varphi\|_{L^\infty} \end{align*} $$

for every $n\geq 0$ .

Before proving Proposition 2.4, we prove a ‘regularization’ lemma for $\varphi $ first. Fix an open set $D_1$ such that $\{G<\delta \}\Subset D_1\Subset D$ .

Lemma 2.5. Let $\varphi $ be a bounded real-valued function on $\mathbb {P}^k$ that is p.s.h. on $D_1$ . There exist a function $\phi $ with compact support in $\mathbb {C}^k$ and an open set $D'$ satisfying $U_2\cap V_2\Subset D'\Subset D_1$ such that $\phi $ is p.s.h. on $D_1$ and smooth outside $D'$ satisfying $\phi =\varphi $ on $U_2\cap V_2$ and

$$ \begin{align*}\|\phi\|_{L^\infty}\leq c\|\varphi\|_{L^\infty}\quad\text{and}\quad \|\phi\|_{\mathscr{C{\kern1.5pt}}^2(\mathbb{P}^k\backslash D')}\leq c\|\varphi\|_{L^\infty}\end{align*} $$

for some constant $c>0$ independent of $\varphi $ .

Proof Using regularizations by convolution, one can find a family of smooth p.s.h. functions $G_\epsilon $ which decreases to G when $\epsilon $ decreases to $0$ . Since G is continuous, this convergence is locally uniform. Hence, there exist positive constants $\kappa _1<\kappa _2$ and $\lambda $ such that

$$ \begin{align*}\{G<\delta\}\Subset \{G_\lambda<\kappa_1\}\Subset\{G_\lambda<\kappa_2\}\Subset D_1.\end{align*} $$

Since $\varphi $ is bounded, after adding some constant we can assume that $\varphi \geq 0$ . Define

$$ \begin{align*}\tau:=\|\varphi\|_{L^\infty}\cdot(G_\lambda-\kappa_1)/(\kappa_2-\kappa_1).\end{align*} $$

Consider the function

$$ \begin{align*}\phi:=\chi\cdot\max \{\varphi,\tau\},\end{align*} $$

where $\chi $ is a real cut-off function satisfying $\chi (z)=0$ for $z\notin D$ , $\chi (z)=1$ for $z\in D_1$ and $|\chi '|,|\chi ''| $ being bounded by some constant.

For $z\in D_1$ , we have $\phi =\max \{\varphi ,\tau \}$ . Hence, $\phi $ is p.s.h. on $D_1$ because it is equal to the maximum of two p.s.h. functions on $D_1$ . Now we let $D':= \{G_\lambda <\kappa _2\}$ . When $z\in \mathbb {P}^k\backslash D'$ , we have $(G_\lambda -\kappa _1)/(\kappa _2-\kappa _1)\geq 1$ . In this case, $\phi =\chi \tau $ , so $\phi $ is smooth outside $D'$ . When $z\in \{G_\lambda <\kappa _1\}$ , we have $\tau (z)\leq 0\leq \varphi (z)$ , so $\phi =\varphi $ inside $\{G_\lambda <\kappa _1\}$ . Since $U_2\cap V_2\Subset \{G_\lambda <\kappa _1\}$ , we get $\phi =\varphi $ on $U_2\cap V_2$ .

Now we prove the two estimates. For the first inequality,

$$ \begin{align*}\|\phi\|_{L^\infty}=\mathop{\mathrm{sup}}\limits_{z\in \mathbb{P}^k\backslash D'}\chi(z)\tau(z)= \mathop{\mathrm{sup}}\limits_{z\in D\backslash D'} \tau(z)\leq c_1\|\varphi\|_{L^\infty}\end{align*} $$

for some constant $c_1>0$ independent of $\varphi $ . For the second one,

$$ \begin{align*}\|\phi\|_{\mathscr{C{\kern1.5pt}}^2(\mathbb{P}^k\backslash D')}=\|\chi\tau\|_{\mathscr{C{\kern1.5pt}}^2(\mathbb{P}^k\backslash D')} \leq c_2 \|\varphi\|_{L^\infty}\end{align*} $$

for some constant $c_2>0$ independent of $\varphi $ . We take $c=\max \{c_1,c_2\}$ and finish the proof of this lemma.

Now consider the canonical inclusions of $\mathbb {C}^k$ and $\mathbb {C}^k\times \mathbb {C}^k$ in $\mathbb {P}^k$ and $\mathbb {P}^{2k}$ . We will use $z,w$ and $(z,w)$ for the canonical coordinates of $\mathbb {C}^k$ and $\mathbb {C}^k\times \mathbb {C}^k$ . Write $[z:t],[w:t]$ and $[z:w:t]$ for the homogeneous coordinates. Denote by $L_\infty '$ the hyperplane at infinity of  $\mathbb {P}^{2k}$ .

Define an automorphism of $\mathbb {C}^k\times \mathbb {C}^k$ by $F(z,w):=(f(z),f^{-1}(w))$ . Then F is also a Hénon–Sibony map (see [Reference Dinh4, Lemma 3.2]). The algebraic degrees of F and $F^{-1}$ are both equal to d. The Green current of bidegree $(2s,2s)$ of F is $T_+^s\otimes T_-^s$ satisfying $F^*(T_+^s\otimes T_-^s)=d^{2s}T_+^s\otimes T_-^s$ .

Denote by $I_\pm ^F$ the indeterminacy sets of F. Let $\Delta $ be the diagonal of $\mathbb {C}^k\times \mathbb {C}^k$ and let $\overline \Delta $ be its closure in $\mathbb {P}^{2k}$ . From [Reference Dinh4, Lemma 3.2], we know that

$$ \begin{align*}I_+^F=\{[z:w:0]:\,[z:0]\in I_+\text{ and } [w:0]\in I_-\},\end{align*} $$
$$ \begin{align*}I_-^F=\{[z:w:0]:\,[z:0]\in I_-\text{ and }[w:0]\in I_+\}\end{align*} $$

and

$$ \begin{align*}I_\pm^F\cap \overline\Delta=\varnothing,\quad F(\overline\Delta)\cap L_\infty'\subset I_-^F.\end{align*} $$

We will use F to prove Proposition 2.4 by following the same strategy as Proposition 3.1 in [Reference Dinh4]. We also need that every positive current on $\mathbb {P}^k$ can be regularized on every neighborhood of its support since $\mathbb {P}^k$ is homogeneous (see e.g. [Reference Dinh and Sibony8]). For the convenience of the reader, we present full details here although some parts of the proof have appeared in [Reference Dinh4] already.

Proof of Proposition 2.4

Since the support of the measure $d^{-2sn}(f^n)^*R\wedge (f^n)_*S-\mu $ is in $U_1\cap V_1$ and the constant c in Proposition 2.4 is independent of $\varphi ,R$ and S, we can assume that $\varphi $ is smooth on $U_2\cap V_2$ and p.s.h. on $D_1$ in order to apply Proposition 2.2. Then we obtain the general case by approximating $\varphi $ by a decreasing sequence of smooth functions which are p.s.h. on $D_1$ .

On the other hand, using Lemma 2.5, we can assume that $\varphi $ is smooth on $(\mathbb {P}^k\backslash D')\cup (U_2\cap V_2)$ , with compact support in $\mathbb {C}^k$ and $\|\varphi \|_{\mathscr {C{\kern1.5pt}}^2(\mathbb {P}^k\backslash D')}\leq c'\|\varphi \|_{L^\infty }$ for some constant $c'>0$ . After multiplying $\varphi $ by some constant, we can assume that $|\varphi |\leq 1$ .

Replacing R and S by $d^{-s}f^*(R)$ and $d^{-s}f_*(S)$ , we can also assume that

$$ \begin{align*}{\textrm{supp}}(R)\cap L_\infty\subset I_+ \quad\text{and}\quad {\textrm{supp}}(S)\cap L_\infty\subset I_-.\end{align*} $$

Consider the current $R\otimes S$ in $\mathbb {C}^k\times \mathbb {C}^k$ . By the above assumptions on R and S, we have

$$ \begin{align*}\overline{{\textrm{supp}}(R\otimes S)}\cap L_\infty'\subset I_+^F.\end{align*} $$

Since $\dim I_+^F=2s-1$ , by Skoda’s extension theorem [Reference Demailly3, Theorem III.2.3], the trivial extension of $R\otimes S$ (which we still denote by $R\otimes S$ ) to $\mathbb {P}^{2k}$ is a positive closed $(2s,2s)$ -current of mass $1$ and satisfies

$$ \begin{align*}{\textrm{supp}}(R\otimes S)\cap L_\infty'\subset I_+^F.\end{align*} $$

Define $\widehat \varphi (z,w):=\varphi (z)$ on $\mathbb {C}^k\times \mathbb {C}^k$ . Since $T_\pm $ are invariant and have continuous potentials out of $I_\pm $ , we have

$$ \begin{align*}\langle d^{-2sn}(f^n)^*R\wedge (f^n)_*S-\mu,\varphi\rangle=\langle d^{-2sn}(f^n)^*R\otimes (f^n)_*S-T_+^s\otimes T_-^s, \widehat\varphi [\Delta]\rangle.\end{align*} $$

Since $\mathbb {P}^k$ is homogeneous, using a regularization of $[\Delta ]$ , one can find a smooth positive closed form $\Theta $ of mass $1$ with support in a small neighborhood W of $\overline \Delta $ such that

$$ \begin{align*}&|\langle d^{-2sn}(f^n)^*R\otimes (f^n)_*S-T_+^s\otimes T_-^s, \widehat\varphi[\Delta]\rangle \\ &\quad-\langle d^{-2sn}(f^n)^*R\otimes (f^n)_*S-T_+^s\otimes T_-^s, \widehat\varphi\Theta\rangle |\leq d^{-n}. \end{align*} $$

Note that $\Theta $ may depend on n. We can choose W such that $W\cap I_+^F=\varnothing $ .

In the following, we will estimate the term

$$ \begin{align*}\langle d^{-2sn}(f^n)^*R\otimes (f^n)_*S-T_+^s\otimes T_-^s, \widehat\varphi\Theta\rangle.\end{align*} $$

Fix an integer $m>0$ large enough. Since $\widehat \varphi \Theta $ has compact support in $\mathbb {C}^k\times \mathbb {C}^k$ and

$$ \begin{align*}(f^n)^*R\otimes (f^n)_*S=(F^n)^*(R\otimes S)\end{align*} $$

in $\mathbb {C}^k\times \mathbb {C}^k$ , we have for $n>m$ ,

$$ \begin{align*} &\langle d^{-2sn}(f^n)^*R\otimes (f^n)_*S-T_+^s\otimes T_-^s, \widehat\varphi\Theta\rangle \nonumber\\ &\quad=\langle d^{-2sn} (F^n)^*(R\otimes S) -d^{-2sm} (F^m)^*(T_+^s\otimes T_-^s), \widehat\varphi \Theta\rangle \nonumber\\ &\quad=\langle d^{-2s(n-m)}(F^{n-m})^*(R\otimes S)- T_+^s\otimes T_-^s, d^{-2sm}(F^m)_*(\widehat\varphi\Theta)\rangle\nonumber\\ &\quad=\langle d^{-2s(n-2m)} (F^{n-2m})^*T -T_+^s\otimes T_-^s, \Phi\rangle, \nonumber \end{align*} $$

where $T:=d^{-2sm}(F^m)^*(R\otimes S)$ and $\Phi :=d^{-2sm}(F^m)_*(\widehat \varphi \Theta )$ .

Note that for $m,n$ big enough, T has support in a small neighborhood U of $K_+^F:=K_+\times K_-$ and $\Phi $ has support in a small neighborhood V of $K_-^F:=K_-\times K_+$ . Since m is large and $\varphi $ is smooth p.s.h. on $U_2\cap V_2$ , there exists a neighborhood $U'\Supset U$ such that on $U'$ , $dd^c \Phi \geq 0$ and $\Phi $ is smooth.

Define $\widehat \omega (z,w):=\omega (z)$ . Since $\|\varphi \|_{\mathscr {C{\kern1.5pt}}^2(\mathbb {P}^k\backslash D')}\leq c'$ and $\varphi $ is p.s.h. on $D_1$ , we have $dd^c\varphi \geq -c'\omega $ . It follows that

(2.1) $$ \begin{align} dd^c\Phi\geq -d^{-2sm}(F^m)_*(c'\widehat\omega\wedge\Theta). \end{align} $$

Using Lemma 2.1, we obtain $\|dd^c\Phi \|_*\leq 2c'$ because the operator $d^{-2sm}(F^m)_*$ preserves the mass of positive closed $(k,k)$ -currents and $c'\widehat \omega \wedge \Theta $ has mass $c'$ .

Notice that the choices of $W,U,V,U'$ and m do not depend on $\varphi $ and n. Proposition 2.2 and Remark 2.3 applied to $F,T$ and $\Phi $ implies that there exists $c>0$ such that

$$ \begin{align*}\langle d^{-2s(n-2m)} (F^{n-2m})^*T -T_+^s\otimes T_-^s, \Phi\rangle \leq cd^{-n}\end{align*} $$

for all n. The proof of the proposition is complete.

Remark 2.6. The main difference between the proof of Proposition 2.4 and [Reference Dinh4, Proposition 3.1] is the term $dd^c \Phi $ in (2.1). Here we only obtain a lower bound for it, while, in [Reference Dinh4, Proposition 3.1], there is also an upper bound due to the assumption that $\varphi \in \mathscr {C{\kern1.5pt}}^2$ . So, there is an extra lower bound in the conclusion of [Reference Dinh4, Proposition 3.1].

3 Proofs of the main theorems

Proof of Theorem 1.1

By Remark 1.2, we can assume that $\varphi $ and $\psi $ are bounded on $\mathbb {C}^k$ and $\|\varphi \|_{L^\infty }=\|\varphi \|_{L^\infty (D)},\|\psi \|_{L^\infty }=\|\psi \|_{L^\infty (D)}$ . After multiplying them by some constant, one can assume that $\|\varphi \|_{L^\infty }\leq 1/2$ and $\|\psi \|_{L^\infty }\leq 1/2$ .

It is sufficient to prove Theorem 1.1 for n even because applying it to $\varphi $ and $\psi \circ f$ gives the case of odd n (we reduce the domain D if necessary). Using the invariance of $\mu $ , it is enough to show that

(3.1) $$ \begin{align} |\langle \mu,(\varphi\circ f^n)(\psi\circ f^{-n})\rangle-\langle\mu,\varphi\rangle\langle\mu,\psi\rangle|\leq cd^{-n} \end{align} $$

for some $c>0$ . It is equivalent to proving that

$$ \begin{align*}\langle \mu,(\varphi\circ f^n)(\psi\circ f^{-n})\rangle-\langle\mu,\varphi\rangle\langle\mu,\psi\rangle\leq cd^{-n} \end{align*} $$

and

$$ \begin{align*}\langle \mu,(\varphi\circ f^n)(-\psi\circ f^{-n})\rangle-\langle\mu,\varphi\rangle\langle\mu,-\psi\rangle\leq cd^{-n}.\end{align*} $$

For $j=1,2$ , we define

$$ \begin{align*}\varphi_j^+\kern1.2pt{:=}\kern1.2pt\varphi^2\kern1.2pt{+}\kern1.2ptj\varphi\kern1.2pt{+}\kern1.2pt6,\!\quad \varphi_j^-\kern1.2pt{:=}\kern1.2pt\varphi^2\kern1.2pt{+}\kern1.2ptj\varphi-6,\!\quad \psi_j^+\kern1.2pt{:=}\kern1.2pt\psi^2\kern1.2pt{+}\kern1.2ptj\psi\kern1.2pt{+}\kern1.2pt6,\!\quad \psi_j^-\kern1.2pt{:=}\kern1.2pt-\psi^2-j\psi\kern1.2pt{+}\kern1.2pt6.\end{align*} $$

Consider the following eight functions on $\mathbb {C}^k\times \mathbb {C}^k$ :

$$ \begin{align*}\Phi_{jl}^+(z,w):=\varphi_j^+(z)\psi_l^+(w),\quad \Phi_{jl}^-(z,w):=\varphi_j^-(z)\psi_l^-(w),\end{align*} $$

where $j,l=1,2$ . We prove two lemmas first.

Lemma 3.1. The functions $\Phi _{jl}^\pm $ are all p.s.h. on $D\times D$ .

Proof By a direct computation,

$$ \begin{align*} i\partial\overline{\partial} \Phi_{jl}^+&=i\partial\overline{\partial} (\varphi^2+j\varphi+6)(\psi^2+l\psi+6) \nonumber\\ &=(\psi^2+l\psi+6)i\partial\overline{\partial}(\varphi^2+j\varphi+6)+i\partial (\varphi^2+j\varphi+6)\wedge \overline{\partial}(\psi^2+l\psi+6) \nonumber\\ &\quad\,\, +i\partial (\psi^2+l\psi+6)\wedge\overline{\partial} (\varphi^2+j\varphi+6)+(\varphi^2+j\varphi+6)i\partial\overline{\partial}(\psi^2+l\psi+6)\nonumber\\ &=(\psi^2+l\psi+6)((2\varphi+j)i\partial\overline{\partial}\varphi+2i\partial\varphi\wedge\overline{\partial}\varphi)+ (2\varphi+j)(2\psi+l)i\partial\varphi\wedge\overline{\partial}\psi \nonumber\\ &\quad\,\, +(2\varphi+j)(2\psi+l)i\partial\psi\kern1.2pt{\wedge}\kern1.2pt\overline{\partial}\varphi\kern1.2pt{+}\kern1.2pt(\varphi^2\kern1.2pt{+}\kern1.2ptj\varphi\kern1.2pt{+}\kern1.2pt6)((2\psi\kern1.2pt{+}\kern1.2ptl)i\partial\overline{\partial}\psi\kern1.2pt{+}\kern1.2pt2i\partial\psi\kern1.2pt{\wedge}\kern1.2pt\overline{\partial}\psi).\nonumber \end{align*} $$

Recalling our assumption $\|\varphi \|_{L^\infty }\leq 1/2,\|\psi \|_{L^\infty }\leq 1/2$ , we have $2\varphi +j\geq 0, 2\psi +l\geq 0$ . Since $i\partial \overline {\partial }\varphi ,i\partial \varphi \wedge \overline {\partial }\varphi ,i\partial \overline {\partial }\psi ,i\partial \psi \wedge \overline {\partial }\psi $ are all positive, we get

$$ \begin{align*} i\partial\overline{\partial} \Phi_{jl}^+&\geq 10i\partial\varphi\wedge\overline{\partial}\varphi+10i\partial\psi\wedge\overline{\partial}\psi +(2\varphi+j)(2\psi+l)(i\partial\varphi\wedge\overline{\partial}\psi +i\partial\psi\wedge\overline{\partial}\varphi)\\ &\geq 10i\partial\varphi\wedge\overline{\partial}\varphi+10i\partial\psi\wedge\overline{\partial}\psi -9(i\partial\varphi\wedge\overline{\partial}\varphi+i\partial\psi\wedge\overline{\partial}\psi)\geq 0. \end{align*} $$

The second inequality holds because

$$ \begin{align*}i\partial\varphi\wedge\overline{\partial}\varphi+i\partial\varphi\wedge\overline{\partial}\psi+i\partial\psi\wedge\overline{\partial}\varphi+i\partial\psi\wedge\overline{\partial}\psi=i\partial(\varphi+\psi)\wedge\overline{\partial}(\varphi+\psi)\geq 0.\end{align*} $$

Similarly, by using

$$ \begin{align*}i\partial\varphi\wedge\overline{\partial}\varphi-i\partial\varphi\wedge\overline{\partial}\psi-i\partial\psi\wedge\overline{\partial}\varphi+i\partial\psi\wedge\overline{\partial}\psi=i\partial(\varphi-\psi)\wedge\overline{\partial}(\varphi-\psi)\geq 0,\end{align*} $$

we obtain

$$ \begin{align*}i\partial\overline{\partial} \Phi_{jl}^-\geq 9i\partial\varphi\wedge\overline{\partial}\varphi+9i\partial\psi\wedge\overline{\partial}\psi -9(i\partial\varphi\wedge\overline{\partial}\varphi+i\partial\psi\wedge\overline{\partial}\psi)\geq 0.\end{align*} $$

The proof of this lemma is finished.

Lemma 3.2. There exists a constant $c>0$ such that

$$ \begin{align*}\langle \mu,(\varphi_j^+\circ f^n)(\psi_l^+\circ f^{-n})\rangle-\langle\mu,\varphi_j^+\rangle\langle\mu,\psi_l^+\rangle\leq cd^{-n}\end{align*} $$

and

$$ \begin{align*}\langle \mu,(\varphi_j^-\circ f^n)(\psi_l^-\circ f^{-n})\rangle-\langle\mu,\varphi_j^-\rangle\langle\mu,\psi_l^-\rangle\leq cd^{-n}\end{align*} $$

for all $j,l$ and n.

Proof Without loss of generality, we only show the first inequality. Define $T_F:=T_+^s\otimes T_-^s$ . Using $F^*(T_F)=d^{2s}T_F$ and that $T_\pm $ have continuous potentials in $\mathbb {C}^k$ , we get

$$ \begin{align*} \langle \mu,(\varphi_j^+\circ f^n)(\psi_l^+\circ f^{-n})\rangle &=\langle T_+^s\wedge T_-^s,(\varphi_j^+\circ f^n)(\psi_l^+\circ f^{-n})\rangle \\ &=\langle T_F\wedge [\Delta],\Phi_{jl}^+\circ F^n\rangle \\ &=\langle d^{-4sn+2sm}(F^{2n-m})^*T_F\wedge[\Delta],\Phi_{jl}^+\circ F^n\rangle \\ &=\langle d^{-4sn+2sm}(F^{n-m})^*T_F\wedge(F^n)_*[\Delta],\Phi_{jl}^+\rangle \\ &=\langle d^{-4sn+4sm}(F^{n-m})^*T_F\wedge(F^{n-m})_*T_m,\Phi_{jl}^+\rangle, \end{align*} $$

where $T_m:=d^{-2sm}(F^m)_*[\Delta ]$ and m is a fixed and sufficiently large integer.

Since $\mathbb {P}^k$ is homogeneous, using regularizations again, one can find two smooth currents $T_F'$ and $T_m'$ of mass 1 with support in small neighborhoods U of $K_+^F=K_+\times K_-$ and V of $K_-^F=K_-\times K_+$ , respectively, such that

(3.2) $$ \begin{align} &\langle d^{-4sn+4sm}(F^{n-m})^*T_F\wedge(F^{n-m})_*T_m,\Phi_{jl}^+\rangle \nonumber\\ &\quad-\langle d^{-4sn+4sm}(F^{n-m})^*T_F'\wedge(F^{n-m})_*T_m',\Phi_{jl}^+\rangle \leq d^{-n}. \end{align} $$

The sets U and V satisfy $U\cap V\Subset D\times D$ and they depend only on f. The choice of m depends on f as well. The currents $T_F'$ and $T_m'$ may depend on n.

Thus, we can apply Proposition 2.4 to $F,\mu \otimes \mu $ and $\Phi _{jl}^+$ instead of $f,\mu $ and $\varphi $ to get that for some constant $c>0$ ,

(3.3) $$ \begin{align} \langle d^{-4sn+4sm}(F^{n-m})^*T_F'\wedge(F^{n-m})_*T_m'-\mu\otimes\mu,\Phi_{jl}^+\rangle\leq cd^{-n} \end{align} $$

for all n. We can choose c independent of $\varphi $ and $\psi $ because the $\|\Phi _{jl}^+\|_{L^\infty }$ are bounded by some constant independent of $\varphi $ and $\psi $ .

Since $\langle \mu \otimes \mu ,\Phi _{jl}^+\rangle =\langle \mu ,\varphi _j^+\rangle \langle \mu ,\psi _l^+\rangle $ , combining (3.2) and (3.3) gives

$$ \begin{align*}\langle \mu,(\varphi_j^+\circ f^n)(\psi_l^+\circ f^{-n})\rangle-\langle\mu,\varphi_j^+\rangle\langle\mu,\psi_l^+\rangle\leq (c+1)d^{-n}\end{align*} $$

for all n. This finishes the proof of this lemma.

Now we can finish the proof of Theorem 1.1.

Proof End of the proof of Theorem 1.1

Now consider $\alpha _{11}^+=2, \alpha _{22}^+=\alpha _{11}^-=\alpha _{21}^-=\alpha _{12}^-=1$ and $\alpha _{21}^+=\alpha _{12}^+=\alpha _{22}^-=0$ . A direct computation gives

$$ \begin{align*} \mathcal A:&= \sum_{j,l=1,2} (\alpha_{jl}^+(\varphi_j^+\circ f^n)(\psi_l^+\circ f^{-n})+\alpha_{jl}^-(\varphi_j^-\circ f^n)(\psi_l^-\circ f^{-n})) \\ &=(\varphi\circ f^n)(\psi\circ f^{-n})+36\,\varphi^2\circ f^n+36\,\psi^2\circ f^{-n}+48\,\varphi\circ f^n+48\,\psi\circ f^{-n} \end{align*} $$

and

$$ \begin{align*} \mathcal B:&=\sum_{j,l=1,2} (\alpha_{jl}^+\langle\mu,\varphi_j^+\rangle\langle\mu,\psi_l^+\rangle +\alpha_{jl}^- \langle\mu,\varphi_j^-\rangle\langle\mu,\psi_l^-\rangle )\\ &=\langle\mu,\varphi\rangle\langle\mu,\psi\rangle +36 \langle \mu,\varphi^2\rangle + 36\langle\mu,\psi^2\rangle +48 \langle \mu,\varphi\rangle +48 \langle \mu,\psi\rangle. \end{align*} $$

The invariance of $\mu $ implies that

$$ \begin{align*}\langle \mu,\varphi^m\circ f^{\pm n}\rangle=\langle\mu,\varphi^m\rangle\quad\text{and}\quad \langle \mu,\psi^m\circ f^{\pm n}\rangle=\langle\mu,\psi^m\rangle.\end{align*} $$

Therefore,

$$ \begin{align*}\langle \mu, \mathcal A\rangle -\mathcal B = \langle \mu,(\varphi\circ f^n)(\psi\circ f^{-n})\rangle-\langle\mu,\varphi\rangle\langle\mu,\psi\rangle.\end{align*} $$

Finally, by applying Lemma 3.2, since $\alpha _{jl}^\pm $ are all non-negative, we deduce that

$$ \begin{align*}\langle \mu, \mathcal A\rangle -\mathcal B\leq\bigg(\sum_{j,l=1,2}(\alpha_{jl}^++\alpha_{jl}^-)\bigg)cd^{-n}=6cd^{-n}\end{align*} $$

for the constant c in Lemma 3.2.

Similarly, taking $\beta _{11}^-=2, \beta _{11}^+=\beta _{21}^+=\beta _{12}^+=\beta _{22}^-=1$ and $\beta _{22}^+=\beta _{21}^-=\beta _{12}^-=0$ , and repeating the above computation, we can obtain

$$ \begin{align*}\langle \mu,(\varphi\circ f^n)(-\psi\circ f^{-n})\rangle-\langle\mu,\varphi\rangle\langle\mu,-\psi\rangle\leq \bigg(\sum_{j,l=1,2}(\beta_{jl}^++\beta_{jl}^-)\bigg)cd^{-n}=6cd^{-n}.\end{align*} $$

The above two inequalities prove inequality (3.1) and finish the proof of the main theorem.

Remark 3.3. For the case $k\neq 2s$ , one needs to work in the compactification $\mathbb {P}^k\times \mathbb {P}^k$ of $\mathbb {C}^{2k}$ (see also [Reference Vigny15]). Similar estimates can be obtained. However, this does not improve the paper very much, so we choose not to present it here.

By combining Theorem 1.1 and the moderate property of $\mu $ , we can prove the second main theorem of this paper.

Proof of Theorem 1.3

We can assume that $\varphi $ and $\psi $ are p.s.h. and negative on D because constant functions obviously satisfy Theorem 1.3. After multiplying them by some constant, we can also assume that $\big \langle \mu ,|\varphi |\big \rangle \leq 1$ and $\big \langle \mu ,|\psi |\big \rangle \leq 1$ . Let $M>0$ be a constant whose value will be specified later. Define

$$ \begin{align*}\varphi_1:=\max\{\varphi,-M\}, \quad \psi_1:=\max\{\psi,-M\},\end{align*} $$

and

$$ \begin{align*}\varphi_2:=\varphi-\varphi_1,\quad \psi_2:=\psi-\psi_1.\end{align*} $$

Then $\varphi _1$ and $\psi _1$ are bounded and p.s.h. on D. Since $\mu $ is moderate and clearly $\{\varphi ,\psi \}$ is a compact family of d.s.h. functions, by (1.1), there exist constants $c>0$ and $\alpha>0$ such that

$$ \begin{align*}\mu\{|\varphi|>M'\}\leq ce^{-\alpha M'} \quad\text{and}\quad \mu\{|\psi|>M'\}\leq ce^{-\alpha M'}.\end{align*} $$

For $t\in \mathbb {N}$ , we compute the integral

$$ \begin{align*}\int_{|\varphi|>t}|\varphi|\,d\mu\leq \sum_{k=t}^\infty (k+1)\mu\{|\varphi|>k\}\leq \sum_{k=t}^\infty c(k+1)e^{-\alpha k}.\end{align*} $$

Note that for $M'\geq 1$ , $([M']+1)e^{-\alpha [M']}\lesssim e^{-\alpha M'/2}$ , where the symbol $\lesssim $ stands for an inequality up to a multiplicative constant. Thus, we have

$$ \begin{align*}\int_{|\varphi|>M}|\varphi|\,d\mu\lesssim \sum_{k=[M]}^\infty e^{-\alpha k/2}\lesssim e^{-\alpha M/2}.\end{align*} $$

The same estimate holds for $\psi $ . By the definitions of $\varphi _2$ and $\psi _2$ , we obtain

$$ \begin{align*}\|\varphi_2\|_{L^1(\mu)}\lesssim e^{-\alpha M/2}\quad\text{and}\quad \|\psi_2\|_{L^1(\mu)}\lesssim e^{-\alpha M/2}.\end{align*} $$

Repeating the preceding arguments for $\varphi ^2$ and $\psi ^2$ gives

$$ \begin{align*}\|\varphi_2\|_{L^2(\mu)}\lesssim e^{-\alpha M/2}\quad\text{and}\quad \|\psi_2\|_{L^2(\mu)}\lesssim e^{-\alpha M/2}.\end{align*} $$

On the other hand, applying Theorem 1.1 to $\varphi _1$ and $\psi _1$ , we get

$$ \begin{align*}\bigg|\int(\varphi_1\circ f^n)\psi_1\, d\mu -\bigg(\int\varphi_1\, d\mu\bigg)\bigg(\int \psi_1 \,d\mu\bigg)\bigg|\lesssim d^{-n/2}M^2.\end{align*} $$

From the invariance of $\mu $ , we have that

$$ \begin{align*}\|\varphi_2\circ f^n\|_{L^p(\mu)}=\|\varphi_2\|_{L^p(\mu)}\quad\text{and}\quad\|\psi_2\circ f^n\|_{L^p(\mu)}=\|\psi_2\|_{L^p(\mu)}\end{align*} $$

for $1\leq p\leq \infty $ . We proceed as follows:

$$ \begin{align*} &|\langle\mu,(\varphi\circ f^n)\psi\rangle -\langle\mu,\varphi\rangle\langle\mu, \psi \rangle| \\ &\quad=|\langle\mu, (\varphi_1\circ f^n+\varphi_2\circ f^n) (\psi_1+\psi_2)\rangle -\langle\mu, \varphi_1+\varphi_2\rangle \langle\mu,\psi_1+\psi_2\rangle|\\ &\quad\leq |\langle\mu,(\varphi_1\circ f^n)\psi_1\rangle -\langle\mu,\varphi_1\rangle\langle\mu, \psi_1 \rangle| +|\langle \mu, (\varphi_1\circ f^n)\psi_2\rangle| +|\langle\mu, (\varphi_2\circ f^n)\psi_1\rangle|\\ &\qquad+|\langle\mu, (\varphi_2\circ f^n)\psi_2\rangle|+|\langle\mu,\varphi_2\rangle\langle\mu,\psi_1\rangle|+|\langle\mu,\varphi_1\rangle\langle\mu,\psi_2\rangle|+|\langle\mu,\varphi_2\rangle\langle\mu,\psi_2\rangle| \\ &\quad \leq|\langle\mu,(\varphi_1\circ f^n)\psi_1\rangle -\langle\mu,\varphi_1\rangle\langle\mu, \psi_1 \rangle|+M\|\varphi_2\|_{L^1(\mu)}+M\|\psi_2\|_{L^1(\mu)} \\ &\qquad+\|\varphi_2\|_{L^2(\mu)}\|\psi_2\|_{L^2(\mu)}+\|\varphi_2\|_{L^1(\mu)} +\|\psi_2\|_{L^1(\mu)}+\|\varphi_2\|_{L^1(\mu)}\|\psi_2\|_{L^1(\mu)} \\ &\quad\lesssim d^{-n/2}M^2+(2M+2 )e^{-\alpha M/2}+2e^{-\alpha M}. \end{align*} $$

Taking $M:=(n\log d)/\alpha $ , we obtain the estimate

$$ \begin{align*}d^{-n/2}M^2+(2M+2)e^{-\alpha M/2}+2e^{-\alpha M}\lesssim n^2d^{-n/2}.\end{align*} $$

Therefore,

$$ \begin{align*}\bigg|\int(\varphi\circ f^n)\psi\, d\mu -\bigg(\int\varphi \,d\mu\bigg)\bigg(\int \psi\, d\mu\bigg)\bigg|\lesssim n^2d^{-n/2}.\end{align*} $$

The proof is finished.

Remark 3.4. The constant c in Theorem 1.3 can be made more explicit, but this requires a long and complicated calculation as it corresponds to the two constants $c,\alpha $ in (1.1) and also the constant c in Theorem 1.1. For example, the last one depends on the geometry of the open sets $U_1$ and $V_1$ . Therefore, we choose not to work in this direction in the present paper.

Acknowledgements

This work was supported by the NUS and MOE grants AcRF Tier 1 R-146-000-248-114 and MOE-T2EP20120-0010. We also thank the editor and referee for their useful comments which helped to improve the article.

References

Bedford, E., Lyubich, M. and Smillie, J.. Polynomial diffeomorphisms of ${\mathbb{C}}^2$ . IV. The measure of maximal entropy and laminar currents. Invent. Math. 112(1) (1993), 77125.CrossRefGoogle Scholar
Bedford, E. and Smillie, J.. Polynomial diffeomorphisms of ${\mathbb{C}}^2$ . III. Ergodicity, exponents and entropy of the equilibrium measure. Math. Ann. 294(3) (1992), 395420.CrossRefGoogle Scholar
Demailly, J.-P.. Complex Analytic and Differential Geometry. Available at http://www-fourier.ujf- grenoble.fr/~demailly/.Google Scholar
Dinh, T.-C.. Decay of correlations for Hénon maps. Acta Math. 195 (2005), 253264.CrossRefGoogle Scholar
Dinh, T.-C., Nguyên, V.-A. and Sibony, N.. Exponential estimates for plurisubharmonic functions and stochastic dynamics. J. Differential Geom. 84(3) (2010), 465488.CrossRefGoogle Scholar
Dinh, T.-C. and Sibony, N.. Dynamique des applications d’allure polynomiale. J. Math. Pures Appl. (9) 82(4) (2003), 367423.CrossRefGoogle Scholar
Dinh, T.-C. and Sibony, N.. Dynamics of regular birational maps in ${\mathbb{P}}^k$ . J. Funct. Anal. 222(1) (2005), 202216.CrossRefGoogle Scholar
Dinh, T.-C. and Sibony, N.. Super-potentials of positive closed currents, intersection theory and dynamics. Acta Math. 203(1) (2009), 182.CrossRefGoogle Scholar
Dinh, T.-C. and Sibony, N.. Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings. Holomorphic Dynamical Systems (Lecture Notes in Mathematics, 1998). Springer, Berlin, 2010, pp. 165294.CrossRefGoogle Scholar
Dinh, T.-C. and Sibony, N.. Rigidity of Julia sets for Hénon type maps. J. Mod. Dyn. 8(3–4) (2014), 499548.Google Scholar
Fornæss, J. E.. Dynamics in Several Complex Variables (CBMS Regional Conference Series in Mathematics, 87). American Mathematical Society, Providence, RI, 1996. Published for the Conference Board of the Mathematical Sciences, Washington, DC.Google Scholar
Fornæss, J. E. and Sibony, N.. Complex Hénon mappings in ${\mathbb{C}}^2$ and Fatou–Bieberbach domains. Duke Math. J. 65(2) (1992), 345380.CrossRefGoogle Scholar
Friedland, S. and Milnor, J.. Dynamical properties of plane polynomial automorphisms. Ergod. Th. & Dynam. Sys. 9(1) (1989), 6799.CrossRefGoogle Scholar
Sibony, N.. Dynamique des applications rationnelles de ${\mathbb{P}}^k$ . Dynamique et Géométrie Complexes (Lyon, 1997) (Panoramas et Synthèses, 8). Société Mathématique de France, Paris, 1999, pp. 97185.Google Scholar
Vigny, G.. Exponential decay of correlations for generic regular birational maps of ${\mathbb{P}}^k$ . Math. Ann. 362(3–4) (2015), 10331054.CrossRefGoogle Scholar