1 Introduction
Let n be an arbitrary positive integer and let R be a commutative ring. For every
$n\times n$
matrix
$M=[a_{ij}]_{1\le i,j\le n}$
with
$a_{ij}\in R$
, we use the symbol
$\det M$
or
$|M|$
to denote the determinant of M. Given any elements
$b_0,b_1,\ldots ,b_{n-1}\in R$
, the circulant matrix of the n-tuple
$(b_0,\ldots ,b_{n-1})$
is the
$n\times n$
matrix over R whose
$(i,j)$
-entry is
$b_{i-j}$
, where the indices are cyclic modulo n. We also denote this matrix by
$C(b_0,b_1,\ldots ,b_{n-1})$
. Circulant matrices have many applications in both number theory and combinatorics. We refer to the survey paper [Reference Kra and Simanca5] for results on circulant matrices.
1.1 Circulant matrices involving Legendre symbols
Let p be an odd prime and let
$\, \chi (\cdot )$
be a multiplicative character modulo p. Carlitz [Reference Carlitz2] investigated the circulant matrix
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu1.png?pub-status=live)
where
$c_i=\mu +\, \chi (i)$
for
$0\le i\le p-1$
. Carlitz [Reference Carlitz2, Theorem 4] determined the characteristic polynomial of this circulant matrix. In particular, when
$\, \chi (\cdot )=\big(\frac{\cdot}{p}\big)$
is the Legendre symbol, the characteristic polynomial of the matrix
$[\mu +({(i-j)}/{p})]_{1\le i,j\le p-1}$
is
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu2.png?pub-status=live)
Later, Chapman [Reference Chapman3, Reference Chapman4] and Vsemirnov [Reference Vsemirnov10, Reference Vsemirnov11] studied variants of Carlitz’s results.
Let
$p=2n+1$
be an odd prime. Recently, Sun [Reference Sun9] studied the determinant
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu3.png?pub-status=live)
where
$\big(\frac{\cdot}{p}\big)$
is the Legendre symbol and
$d\in \mathbb {Z}$
with
$p\nmid d$
. Sun [Reference Sun9, Theorems 1.2(iii) and 1.3(i)] proved that
$-S(d,p)$
is a quadratic residue modulo p whenever
$\big(\frac{d}{p}\big)=1$
. (See [Reference Krachun, Petrov, Sun and Vsemirnov6, Reference Wu13] for recent progress on this topic.) Sun also investigated some global properties of this determinant and conjectured that
$-S(1,p)$
is an integral square if
$p\equiv 3\ ({\textrm {mod}}\ 4)$
. Later, by using a sophisticated matrix decomposition, Alekseyev and Krachun proved this conjecture. In the case
$p\equiv 1\ ({\textrm {mod}}\ 4)$
, writing
$p=a^2+4b^2$
with
$a,b\in \Bbb Z$
and
$a\equiv 1\ ({\textrm {mod}}\ 4)$
, Cohen, Sun and Vsemirnov conjectured that
$S(1,p)/a$
is an integral square (see [Reference Sun9, Remark 4.2]). This conjecture was later proved by the first author [Reference Wu12, Theorem 3].
Note that
$S(d,p)$
is indeed a determinant of a certain circulant matrix. In fact, fix a primitive root g modulo p. Then it is clear that
$S(d,p)$
is equal to
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu4.png?pub-status=live)
where
$s_i=({(g^{2i}+d)}/{p})$
for
$0\le i\le n-1$
.
Motivated by Sun’s determinant
$S(d,p)$
, we study some determinants containing kth power residues. Let p be an odd prime and let
$k\ge 2$
be an integer dividing
$p-1$
. Write
$p=km+1$
and let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu5.png?pub-status=live)
be all the kth power residues modulo p in the interval
$(0,p)$
. We consider the matrix
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu6.png?pub-status=live)
To state our results, we first introduce some notation. Let
$\mathbb {F}_p$
denote the finite field of p elements. Let
$\mathcal {C}_{p,k,\psi }$
and
$\mathcal {C}_{p,k,\phi }$
be the curves over
$\mathbb {F}_p$
defined by the equations
$y^2=x^k+1$
and
$y^2=x(x^k+1)$
, respectively. Define
$a_p(k)$
and
$b_p(k)$
by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqn1.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqn2.png?pub-status=live)
where
$\infty $
denotes the point at infinity and
$\#S$
denotes the cardinality of a set S.
When k is even, the following result generalises Sun’s determinant
$S(1,p)$
.
Theorem 1.1. Let p be an odd prime and let
$k\ge 2$
be an even integer dividing
$p-1$
. Let
$m=(p-1)/k$
.
-
(i) If m is odd, then
$\det W_p(k)=-(a_p(k)+1)u_p(k)^2/k$ for some
$u_p(k)\in \mathbb {Z}$ .
-
(ii) If m is even, then
$ \det W_p(k)=(a_p(k)+1)b_p(k)v_p(k)^2/k^2 $ for some
$v_p(k)\in \mathbb {Z}$ .
Remark 1.2. (1) When
$k=2$
and
$p\equiv 3\ ({\textrm {mod}}\ 4)$
, it is easy to see that
$a_p(2)=1$
. This implies that
$-\det W_p(2)=-S(1,p)$
is an integral square, which also confirms the conjecture of Sun.
(2) When
$k=2$
and
$p\equiv 1\ ({\textrm {mod}}\ 4)$
with
$p=a^2+4b^2$
, where
$a\equiv 1\ ({\textrm {mod}}\ 4)$
, it is known that
$a_p(2)=1$
and
$b_p(2)=2a$
[Reference Berndt, Evans and Williams1, Theorem 6.2.9]. Thus,
$\det W_p(2)/a=S(1,p)/a$
is an integral square, which coincides with the result in [Reference Wu12, Theorem 3].
Now we consider the case when k is odd. Fix a primitive root g modulo p. Let
$E_{p,k,1}$
and
$E_{p,k,g}$
be the hyperelliptic curves over
$\mathbb {F}_p$
defined by the equations
$y^2=x(x^{2k}+1)$
and
$y^2=x(x^{2k}+g^k)$
, respectively. Define
$c_p(k)$
and
$d_p(k)$
by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqn3.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqn4.png?pub-status=live)
Theorem 1.3.
-
(i) Let
$p\equiv 1\ ({\mathrm {mod}}\ 4)$ be a prime and let
$k\ge 3$ be an odd integer dividing
$p-1$ . Then,
$$ \begin{align*}\det W_p(k)=\frac{z_p(k)^2}{4k^2}(c_p(k)^2+d_p(k)^2) \end{align*} $$
$z_p(k)\in \mathbb {Z}$ .
-
(ii) Let
$p\equiv 3\ ({\mathrm {mod}}\ 4)$ be a prime and let
$k\ge 2$ be an odd integer dividing
$p-1$ . Then,
$-\det W_p(k)$ is an integral square.
When
$k=3$
, we deduce the following consequence.
Corollary 1.4. Suppose that
$p\equiv 1\ ({\mathrm {mod}}\ 12)$
is a prime and write
$p=c^2+9d^2$
with
$c,d\in \mathbb {Z}$
. Then
-
(i)
$\det W_p(3)/(c^2+d^2)$ is an integral square.
-
(ii) Moreover, if
$p\nmid \det W_p(3)$ , then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu8.png?pub-status=live)
Remark 1.5. There are primes
$p\equiv 1\ ({\textrm {mod}}\ 12)$
such that
$p\mid \det W_p(3)$
. In fact,
$1117,1129,1381,1597,1861,2557,2749$
are all the primes
$p\equiv 1\ ({\textrm {mod}}\ 12)$
less than
$3000$
such that
$p\mid W_p(3)$
.
Corollary 1.6.
-
(i) Let
$p\equiv 1\ ({\mathrm {mod}}\ 4)$ be a prime and let
$k\ge 2$ be an odd integer dividing
$p-1$ . Then,
$\det W_p(k)\ge 0$ .
-
(ii) Let
$p\equiv 3\ ({\mathrm {mod}}\ 4)$ be a prime and let
$k\ge 2$ be an odd integer dividing
$p-1$ . Then,
$\det W_p(k)\le 0$ .
1.2 Determinants of the form
$\textbf {det}[{1}/{(\alpha _i+\alpha _j)}]_{1\le i,j\le m}$
Let p be an odd prime. For any integer t with
$p\nmid t$
, the element
$1/t$
mod p denotes the multiplicative inverse of t mod p. In 2019, Sun [Reference Sun9] also studied the determinant
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu9.png?pub-status=live)
When
$p\equiv 3\ ({\textrm {mod}}\ 4)$
, Sun [Reference Sun9, Theorem 1.4(ii)] showed that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu10.png?pub-status=live)
In [Reference Sun9, Remark 1.3], Sun also conjectured that if
$p\equiv 2\ ({\textrm {mod}}\ 3)$
is odd, then
$2B_p$
is a quadratic residue modulo p, where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu11.png?pub-status=live)
This conjecture was later confirmed in [Reference Wu, She and Ni14]. With the notation established in the previous subsection, we consider the matrix
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu12.png?pub-status=live)
As a generalisation of Sun’s determinant
$\det A_p$
, we obtain the following result.
Theorem 1.7. Let p be an odd prime and let
$k\ge 2$
be an even integer dividing
$p-1$
. Write
$p=km+1$
. Suppose that
$-1$
is not a kth power residue modulo p. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu13.png?pub-status=live)
Remark 1.8. When
$p\equiv 3\ ({\textrm {mod}}\ 4)$
and
$k=2$
, the theorem gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu14.png?pub-status=live)
This coincides with Sun’s result [Reference Sun9, Theorem 1.4(ii)].
The outline of the paper is as follows. We will prove Theorems 1.1–1.3 and their corollaries in Section 2. The proof of Theorem 1.7 will be given in Section 3.
2 Proofs of Theorems 1.1–1.3
Recall that
$C(a_0,\ldots ,a_{n-1})$
denotes the circulant matrix of the n-tuple
$(a_0,\ldots ,a_{n-1})$
. The following lemma is Lemma 3.4 of [Reference Wu13] and is the key element of our proofs.
Lemma 2.1. Let R be a commutative ring, n a positive integer and
$a_0,a_1,\ldots ,a_{n-1}\in R$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqn5.png?pub-status=live)
If n is even, then there exists an element
$u\in R$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu15.png?pub-status=live)
If n is odd, then there exists an element
$v\in R$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu16.png?pub-status=live)
Proof of Theorem 1.1.
Fix a primitive root g modulo p. As k is even,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu17.png?pub-status=live)
Clearly
$e_0,\ldots ,e_{m-1}$
satisfy the condition (2.1). Moreover,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqn6.png?pub-status=live)
where
$a_p(k)$
is defined by (1.1). Also,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqn7.png?pub-status=live)
where
$b_p(k)$
is defined by (1.2). Combining Lemma 2.1 with (2.2) and (2.3) yields the desired result.
Now we turn to the proof of Theorem 1.3. We first need the following well-known result in linear algebra.
Lemma 2.2. Let M be an
$n\times n$
complex matrix. Let
$\lambda _1,\ldots ,\lambda _n$
be complex numbers and let
$\mathbf {u}_1,\ldots , \mathbf {u}_n$
be m-dimensional column vectors. Suppose that
$M\mathbf {u}_i=\lambda _i\mathbf {u}_i$
for
$1\le i\le n$
and that
$\mathbf {u}_1,\ldots , \mathbf {u}_n$
are linearly independent. Then
$\lambda _1,\ldots ,\lambda _n$
are exactly all the eigenvalues of M (counting multiplicities).
Let
$\widehat {\mathbb {F}_p^{\times }}$
denote the cyclic group of all multiplicative characters of
$\mathbb {F}_p$
and let
$\, \chi _p(\cdot )$
be a generator of
$\widehat {\mathbb {F}_p^{\times }}$
. For any matrix M, we use the symbol
$M^T$
to denote the transpose of M.
Proof of Theorem 1.3.
Recall that
$k\ge 2$
is an odd integer dividing
$p-1$
and
$p=km+1$
.
(i) We first consider the case
$p\equiv 1\ ({\textrm {mod}}\ 4)$
. Clearly, the elements
$\alpha _1\ \textrm {mod}\ p ,\ldots , \alpha _m \textrm { mod}\ p$
are exactly m distinct roots of the polynomial
$X^m-1$
over
$\mathbb {F}_p=\mathbb {Z}/p\mathbb {Z}$
. Therefore,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqn8.png?pub-status=live)
By (2.4),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqn9.png?pub-status=live)
By (2.5), it is easy to see that
$\det W_p(k)$
is equal to
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu18.png?pub-status=live)
Next, we determine all the eigenvalues of the matrix
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu19.png?pub-status=live)
For each r with
$1\le r\le m$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu20.png?pub-status=live)
This implies that for
$1\le r\le m$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu21.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu22.png?pub-status=live)
Note that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu23.png?pub-status=live)
Hence, the vectors
$\mathbf {v}_1,\ldots , \mathbf {v}_m$
are linearly independent. Now by Lemma 2.2, the numbers
$\lambda _1,\ldots ,\lambda _m$
are exactly all the eigenvalues of
$W^*_p(k)$
(counting multiplicities).
When
$r=m$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu24.png?pub-status=live)
When
$r=m/2$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu25.png?pub-status=live)
By [Reference Berndt, Evans and Williams1, Proposition 6.1.7],
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqn10.png?pub-status=live)
In addition, when
$1\le r\le m/2-1$
, it is clear that
$\overline {\lambda _r}=\lambda _{m-r}$
, where
$\bar {z}$
denotes the complex conjugate of a complex number z. Combining this with (2.6),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqn11.png?pub-status=live)
Let
$\mathbf {i}\in \mathbb {C}$
be a primitive fourth root of unity. Fix a primitive root g modulo p. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu26.png?pub-status=live)
One can verify that
$\omega _0,\ldots ,\omega _{m-1}$
satisfy the condition (2.1). Fix a multiplicative character
$\psi \in \widehat {\mathbb {F}_p^{\times }}$
of order
$4$
with
$\psi (g)=\mathbf {i}$
. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu27.png?pub-status=live)
One can also verify the following equalities:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu28.png?pub-status=live)
where
$c_p(k)$
and
$d_p(k)$
are defined by (1.3) and (1.4), respectively. Hence,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqn12.png?pub-status=live)
With essentially the same method, one can also verify that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqn13.png?pub-status=live)
If
$\det W_p(k)=0$
, then one can get the desired result directly. Suppose now that
$\det W_p(k)\ne 0$
. By (2.7), we have
$\det W_p(k)>0$
under this assumption. Combining Lemma 2.1 with (2.8) and (2.9), there exists an element
$z_p(k)\in \mathbb {Z}[\mathbf {i}]$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu29.png?pub-status=live)
As
$\det W_p(k)\in \mathbb {Z}$
and
$\det W_p(k)>0$
, the number
$z_p(k)$
must be an integer. This completes the proof of (i).
(ii) We now consider the case
$p\equiv 3\ ({\textrm {mod}}\ 4)$
. As k is odd, it is clear that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu30.png?pub-status=live)
is a permutation
$\pi $
of the sequence
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu31.png?pub-status=live)
and clearly
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu32.png?pub-status=live)
where
$\textrm {sgn}(\pi )$
is the sign of
$\pi $
. When
$p\equiv 3\ ({\textrm {mod}}\ 4)$
and k is odd, since
$m\equiv 2\ ({\textrm {mod}}\ 4)$
, the number
$\det W_p(k)$
is equal to
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu33.png?pub-status=live)
Clearly, the matrix
$M_p:=[({(\alpha _i-\alpha _j)}/{p})]_{1\le i,j\le m}$
is skew-symmetric, that is,
$M_p^{T}=-M_p$
. The determinant of a skew-symmetric matrix of even order with integer entries is always an integral square (see [Reference Stembridge8, Proposition 2.2]). This implies that
$-\det W_p(k)$
is an integral square.
This completes the proof.
Proof of Corollary 1.4.
(i) Let
$k=3$
and
$p\equiv 1\ ({\textrm {mod}}\ 12)$
. Write
$p=\alpha ^2+\beta ^2$
with
$\alpha ,\beta \in \mathbb {Z}$
and
$\alpha \equiv -({2}/{p})\ ({\textrm {mod}}\ 4)$
. From [Reference Berndt, Evans and Williams1, Theorem 6.2.5],
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu34.png?pub-status=live)
Hence, if we write
$p=c^2+9d^2$
with
$c,d\in \Bbb Z$
, then one can easily verify that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu35.png?pub-status=live)
By Theorem 1.3,
$\det W_p(3)/(c^2+d^2)$
is an integral square if
$p\equiv 1\ ({\textrm {mod}}\ 12)$
.
(ii) If
$p\nmid \det W_p(3)$
, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu36.png?pub-status=live)
This completes the proof.
3 Proof of Theorem 1.7
Recall that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu37.png?pub-status=live)
As
$-1$
is not a kth power residue modulo p, clearly we have
$2\nmid m$
.
Proof of Theorem 1.7.
By [Reference Krattenthaler7, Theorem 12(5.5)],
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu38.png?pub-status=live)
We first consider the numerator. One can verify the equalities
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu39.png?pub-status=live)
where
$G'(X)$
is the derivative of
$G(X)=\prod _{1\le i\le m}(X-\alpha _i)$
. Observe that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqn14.png?pub-status=live)
Hence,
$G'(X)\equiv mX^{m-1}\ ({\textrm {mod}}\ p)$
and
$\prod _{1\le i\le m}\alpha _i\equiv (-1)^{m+1}=1\ ({\textrm {mod}}\ p)$
. This gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqn15.png?pub-status=live)
Now we turn to the denominator. One can verify the equalities
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu40.png?pub-status=live)
Hence, by (3.1),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqn16.png?pub-status=live)
Combining (3.2) with (3.3), we finally obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S0004972722000053:S0004972722000053_eqnu41.png?pub-status=live)
This completes the proof.
Acknowledgement
We would like to thank the referee for helpful comments.