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Abstract

We use circulant matrices and hyperelliptic curves over finite fields to study some arithmetic properties of
certain determinants involving Legendre symbols and kth power residues.
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1. Introduction

Let n be an arbitrary positive integer and let R be a commutative ring. For every
n × n matrix M = [aij]1≤i,j≤n with aij ∈ R, we use the symbol det M or |M| to denote
the determinant of M. Given any elements b0, b1, . . . , bn−1 ∈ R, the circulant matrix of
the n-tuple (b0, . . . , bn−1) is the n × n matrix over R whose (i, j)-entry is bi−j, where
the indices are cyclic modulo n. We also denote this matrix by C(b0, b1, . . . , bn−1).
Circulant matrices have many applications in both number theory and combinatorics.
We refer to the survey paper [5] for results on circulant matrices.

1.1. Circulant matrices involving Legendre symbols. Let p be an odd prime and
let χ(·) be a multiplicative character modulo p. Carlitz [2] investigated the circulant
matrix

C(c0, c1, . . . , cp−1) := [μ + χ(i − j)]1≤i,j≤p−1 (μ ∈ C),

where ci = μ + χ(i) for 0 ≤ i ≤ p − 1. Carlitz [2, Theorem 4] determined the character-
istic polynomial of this circulant matrix. In particular, when χ(·) = ( ·p ) is the Legendre
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symbol, the characteristic polynomial of the matrix [μ + ((i − j)/p)]1≤i,j≤p−1 is

Fμ(t) = (t2 − (−1)(p−1)/2 p)(p−3)/2(t2 − (p − 1)μ − (−1)(p−1)/2).

Later, Chapman [3, 4] and Vsemirnov [10, 11] studied variants of Carlitz’s results.
Let p = 2n + 1 be an odd prime. Recently, Sun [9] studied the determinant

S(d, p) := det
[( i2 + dj2

p

)]
1≤i,j≤n

,

where
( ·

p

)
is the Legendre symbol and d ∈ Z with p � d. Sun [9, Theorems 1.2(iii)

and 1.3(i)] proved that −S(d, p) is a quadratic residue modulo p whenever
( d

p

)
= 1.

(See [6, 13] for recent progress on this topic.) Sun also investigated some global
properties of this determinant and conjectured that −S(1, p) is an integral square if
p ≡ 3 (mod 4). Later, by using a sophisticated matrix decomposition, Alekseyev and
Krachun proved this conjecture. In the case p ≡ 1 (mod 4), writing p = a2 + 4b2 with
a, b ∈ Z and a ≡ 1 (mod 4), Cohen, Sun and Vsemirnov conjectured that S(1, p)/a is
an integral square (see [9, Remark 4.2]). This conjecture was later proved by the first
author [12, Theorem 3].

Note that S(d, p) is indeed a determinant of a certain circulant matrix. In fact, fix a
primitive root g modulo p. Then it is clear that S(d, p) is equal to

det
[(g2i + dg2j

p

)]
0≤i,j≤n−1

= det
[(g2(i−j) + d

p

)]
0≤i,j≤n−1

= det C(s0, s1, . . . , sn−1),

where si = ((g2i + d)/p) for 0 ≤ i ≤ n − 1.
Motivated by Sun’s determinant S(d, p), we study some determinants containing kth

power residues. Let p be an odd prime and let k ≥ 2 be an integer dividing p − 1. Write
p = km + 1 and let

0 < α1 < α2 < · · · < αm < p

be all the kth power residues modulo p in the interval (0, p). We consider the matrix

Wp(k) :=
[(αi + αj

p

)]
1≤i,j≤m

.

To state our results, we first introduce some notation. Let Fp denote the finite field
of p elements. Let Cp,k,ψ and Cp,k,φ be the curves over Fp defined by the equations
y2 = xk + 1 and y2 = x(xk + 1), respectively. Define ap(k) and bp(k) by

p + 1 − ap(k) = #{(x, y) ∈ Fp × Fp : y2 = xk + 1} ∪ {∞}, (1.1)

and

p + 1 − bp(k) = #{(x, y) ∈ Fp × Fp : y2 = x(xk + 1)} ∪ {∞}, (1.2)

where∞ denotes the point at infinity and #S denotes the cardinality of a set S.
When k is even, the following result generalises Sun’s determinant S(1, p).
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THEOREM 1.1. Let p be an odd prime and let k ≥ 2 be an even integer dividing p − 1.
Let m = (p − 1)/k.

(i) If m is odd, then det Wp(k) = −(ap(k) + 1)up(k)2/k for some up(k) ∈ Z.
(ii) If m is even, then det Wp(k) = (ap(k) + 1)bp(k)vp(k)2/k2 for some vp(k) ∈ Z.

REMARK 1.2. (1) When k = 2 and p ≡ 3 (mod 4), it is easy to see that ap(2) = 1.
This implies that − det Wp(2) = −S(1, p) is an integral square, which also confirms the
conjecture of Sun.

(2) When k = 2 and p ≡ 1 (mod 4) with p = a2 + 4b2, where a ≡ 1 (mod 4), it
is known that ap(2) = 1 and bp(2) = 2a [1, Theorem 6.2.9]. Thus, det Wp(2)/a =
S(1, p)/a is an integral square, which coincides with the result in [12, Theorem 3].

Now we consider the case when k is odd. Fix a primitive root g modulo p. Let Ep,k,1
and Ep,k,g be the hyperelliptic curves over Fp defined by the equations y2 = x(x2k + 1)
and y2 = x(x2k + gk), respectively. Define cp(k) and dp(k) by

p + 1 − cp(k) := #{(x, y) ∈ Fp × Fp : y2 = x(x2k + 1)} ∪ {∞}, (1.3)

and

p + 1 − dp(k) := #{(x, y) ∈ Fp × Fp : y2 = x(x2k + gk)} ∪ {∞}. (1.4)

THEOREM 1.3.

(i) Let p ≡ 1 (mod 4) be a prime and let k ≥ 3 be an odd integer dividing p − 1.
Then,

det Wp(k) =
zp(k)2

4k2 (cp(k)2 + dp(k)2)

for some zp(k) ∈ Z.
(ii) Let p ≡ 3 (mod 4) be a prime and let k ≥ 2 be an odd integer dividing p − 1.

Then, − det Wp(k) is an integral square.

When k = 3, we deduce the following consequence.

COROLLARY 1.4. Suppose that p ≡ 1 (mod 12) is a prime and write p = c2 + 9d2 with
c, d ∈ Z. Then

(i) det Wp(3)/(c2 + d2) is an integral square.
(ii) Moreover, if p � det Wp(3), then

(det Wp(3)
p

)
=

( 2
p

)
.

REMARK 1.5. There are primes p ≡ 1 (mod 12) such that p | det Wp(3). In fact,
1117, 1129, 1381, 1597, 1861, 2557, 2749 are all the primes p ≡ 1 (mod 12) less than
3000 such that p | Wp(3).
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COROLLARY 1.6.

(i) Let p ≡ 1 (mod 4) be a prime and let k ≥ 2 be an odd integer dividing p − 1.
Then, det Wp(k) ≥ 0.

(ii) Let p ≡ 3 (mod 4) be a prime and let k ≥ 2 be an odd integer dividing p − 1.
Then, det Wp(k) ≤ 0.

1.2. Determinants of the form det[1/(αi + αj)]1≤i,j≤m. Let p be an odd prime. For
any integer t with p � t, the element 1/t mod p denotes the multiplicative inverse of t
mod p. In 2019, Sun [9] also studied the determinant

Ap := det
[ 1
i2 + j2

]
1≤i,j≤(p−1)/2

.

When p ≡ 3 (mod 4), Sun [9, Theorem 1.4(ii)] showed that

Ap ≡
( 2

p

)
(mod p).

In [9, Remark 1.3], Sun also conjectured that if p ≡ 2 (mod 3) is odd, then 2Bp is a
quadratic residue modulo p, where

Bp := det
[ 1
i2 − ij + j2

]
1≤i,j≤p−1

.

This conjecture was later confirmed in [14]. With the notation established in the
previous subsection, we consider the matrix

Ip(k) :=
[ 1
αi + αj

]
1≤i,j≤m

.

As a generalisation of Sun’s determinant det Ap, we obtain the following result.

THEOREM 1.7. Let p be an odd prime and let k ≥ 2 be an even integer dividing p − 1.
Write p = km + 1. Suppose that −1 is not a kth power residue modulo p. Then

det Ip(k) ≡ (−1)m+1/2

(2k)m (mod p).

REMARK 1.8. When p ≡ 3 (mod 4) and k = 2, the theorem gives

det Ip(2) ≡ (−1)p+1/4 =

( 2
p

)
(mod p).

This coincides with Sun’s result [9, Theorem 1.4(ii)].

The outline of the paper is as follows. We will prove Theorems 1.1–1.3 and their
corollaries in Section 2. The proof of Theorem 1.7 will be given in Section 3.

2. Proofs of Theorems 1.1–1.3

Recall that C(a0, . . . , an−1) denotes the circulant matrix of the n-tuple (a0, . . . , an−1).
The following lemma is Lemma 3.4 of [13] and is the key element of our proofs.
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LEMMA 2.1. Let R be a commutative ring, n a positive integer and a0, a1, . . . , an−1 ∈ R
such that

ai = an−i for 1 ≤ i ≤ n − 1. (2.1)

If n is even, then there exists an element u ∈ R such that

det C(a0, a1, . . . , an−1) =
( n−1∑

i=0

ai

)( n−1∑
i=0

(−1)iai

)
u2.

If n is odd, then there exists an element v ∈ R such that

det C(a0, a1, . . . , an−1) =
( n−1∑

i=0

ai

)
v2.

PROOF OF THEOREM 1.1. Fix a primitive root g modulo p. As k is even,

det Wp(k) = det
[(1 + αi/αj

p

)]
1≤i,j≤m

= det
[(1 + gk(i−j)

p

)]
0≤i,j≤m−1

= det C(e0, e1, . . . , em−1), where ei =

(1 + gki

p

)
for 0 ≤ i ≤ m − 1.

Clearly e0, . . . , em−1 satisfy the condition (2.1). Moreover,
m−1∑
i=0

ei =
1
k

p−1∑
x=1

(1 + xk

p

)
=

1
k

(
− 1 +

p−1∑
x=0

(1 + xk

p

))
= −

1 + ap(k)
k

, (2.2)

where ap(k) is defined by (1.1). Also,

m−2∑
i=0

(−1)iei =
1
k

p−1∑
x=1

(xk + 1
p

)( x
p

)
= −

bp(k)
k

, (2.3)

where bp(k) is defined by (1.2). Combining Lemma 2.1 with (2.2) and (2.3) yields the
desired result. �

Now we turn to the proof of Theorem 1.3. We first need the following well-known
result in linear algebra.

LEMMA 2.2. Let M be an n × n complex matrix. Let λ1, . . . , λn be complex numbers
and let u1, . . . , un be m-dimensional column vectors. Suppose that Mui = λiui for
1 ≤ i ≤ n and that u1, . . . , un are linearly independent. Then λ1, . . . , λn are exactly all
the eigenvalues of M (counting multiplicities).

Let F̂×p denote the cyclic group of all multiplicative characters of Fp and let χp(·)
be a generator of F̂×p . For any matrix M, we use the symbol MT to denote the transpose
of M.

PROOF OF THEOREM 1.3. Recall that k ≥ 2 is an odd integer dividing p − 1 and
p = km + 1.
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(i) We first consider the case p ≡ 1 (mod 4). Clearly, the elements α1 mod p, . . . ,αm
mod p are exactly m distinct roots of the polynomial Xm − 1 over Fp = Z/pZ.

Therefore,

Xm − 1 ≡
m∏

i=1

(X − αi) (mod p). (2.4)

By (2.4),
m∏

j=1

αj ≡ −1m+1 = −1 (mod p). (2.5)

By (2.5), it is easy to see that det Wp(k) is equal to(−1
p

)
det
[(αi + αj

p

)]
1≤i,j≤m

= det
[(αi + αj

p

)(αj

p

)]
1≤i,j≤m

.

Next, we determine all the eigenvalues of the matrix

W∗p(k) :=
[(αi + αj

p

)(αj

p

)]
1≤i,j≤m

.

For each r with 1 ≤ r ≤ m,
m∑

j=1

(αi + αj

p

)(αj

p

)
χr

p(αj) =
m∑

j=1

(1 + αj/αi

p

)(αj/αi

p

)
χp(αj/αi) χr

p(αi)

=

m∑
j=1

(1 + αj

p

)(αj

p

)
χr

p(αj) χr
p(αi).

This implies that for 1 ≤ r ≤ m,

W∗p(k)vr = λrvr,

where

λr =

m∑
j=1

(1 + αj

p

)(αj

p

)
χr

p(αj) and vr = ( χr
p(α1), . . . , χr

p(αm))T .

Note that∣∣∣∣∣∣∣∣∣∣∣∣

χ1
p(α1) χ2

p(α1) . . . χm
p (α1)

χ1
p(α2) χ2

p(α2) . . . χn
p(α2)

...
...

. . .
...

χ1
p(αn) χ2

p(αn) . . . χm
p (αm)

∣∣∣∣∣∣∣∣∣∣∣∣
= ±

∏
1≤i<j≤m

( χp(αj) − χp(αi)) � 0.

Hence, the vectors v1, . . . , vm are linearly independent. Now by Lemma 2.2, the
numbers λ1, . . . , λm are exactly all the eigenvalues of W∗p(k) (counting multiplicities).
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When r = m,

λm =

m∑
j=1

(1 + αj

p

)(αj

p

)
=

1
k

p−1∑
x=1

(1 + xk

p

)( x
p

)
.

When r = m/2,

λm/2 =

m∑
j=1

(1 + αj

p

)
=

1
k

p−1∑
x=1

(1 + xk

p

)
.

By [1, Proposition 6.1.7],

λm = λm/2. (2.6)

In addition, when 1 ≤ r ≤ m/2 − 1, it is clear that λr = λm−r, where z̄ denotes the
complex conjugate of a complex number z. Combining this with (2.6),

det Wp(k) = det W∗p(k) =
m∏

r=1

λr = λ
2
m

∏
1≤r≤m/2−1

λrλr ≥ 0. (2.7)

Let i ∈ C be a primitive fourth root of unity. Fix a primitive root g modulo p. Then

det W∗p(k) = det
[(αi + αj

p

)(αj

p

)
ii−j
]

1≤i,j≤m

= det
[(1 + gk(i−j)

p

)
ii−j
]

0≤i,j≤m−1

= det C(ω0, . . . ,ωm−1) where ωr =

(1 + gkr

p

)
ir for 0 ≤ r ≤ m − 1.

One can verify that ω0, . . . ,ωm−1 satisfy the condition (2.1). Fix a multiplicative
character ψ ∈ F̂×p of order 4 with ψ(g) = i. Then

m−1∑
r=0

ωr =

m−1∑
r=0

(1 + gkr

p

)
ψ(gr) =

1
k

p−2∑
r=0

(1 + gkr

p

)
ψ(gr).

One can also verify the following equalities:
p−2∑
r=0

(1 + gkr

p

)
ψ(gr) =

(p−3)/2∑
r=0

(1 + g2kr

p

)(gr

p

)
+ i

(p−3)/2∑
r=0

(1 + g2krgk

p

)(gr

p

)

=
1
2

p−1∑
x=1

(1 + x2k

p

)( x
p

)
+

1
2

i
p−1∑
x=1

(1 + x2kgk

p

)( x
p

)

=
1
2

p−1∑
x=1

(1 + x2k

p

)( x
p

)
+

1
2

i
p−1∑
x=1

(gk + x2k

p

)( x
p

)

= −
cp(k) + idp(k)

2
,
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where cp(k) and dp(k) are defined by (1.3) and (1.4), respectively. Hence,

m−1∑
r=0

ωr = −
cp(k) + idp(k)

2k
. (2.8)

With essentially the same method, one can also verify that
m−1∑
r=0

(−1)rωr = −
cp(k) − idp(k)

2k
. (2.9)

If det Wp(k) = 0, then one can get the desired result directly. Suppose now that
det Wp(k) � 0. By (2.7), we have det Wp(k) > 0 under this assumption. Combining
Lemma 2.1 with (2.8) and (2.9), there exists an element zp(k) ∈ Z[i] such that

det Wp(k) = det W∗p(k) =
zp(k)2

4k2 (cp(k)2 + dp(k)2).

As det Wp(k) ∈ Z and det Wp(k) > 0, the number zp(k) must be an integer. This
completes the proof of (i).

(ii) We now consider the case p ≡ 3 (mod 4). As k is odd, it is clear that

−α1 mod p, . . . ,−αm mod p

is a permutation π of the sequence

α1 mod p, . . . ,αm mod p,

and clearly

sgn(π) ≡
∏

1≤i<j≤m

−αj − (−αi)
αj − αi

= (−1)m(m−1)/2 (mod p),

where sgn(π) is the sign of π. When p ≡ 3 (mod 4) and k is odd, since m ≡ 2 (mod 4),
the number det Wp(k) is equal to

sgn(π) det
[(αi − αj

p

)]
1≤i,j≤m

= − det
[(αi − αj

p

)]
1≤i,j≤m

.

Clearly, the matrix Mp := [((αi − αj)/p)]1≤i,j≤m is skew-symmetric, that is, MT
p = −Mp.

The determinant of a skew-symmetric matrix of even order with integer entries is
always an integral square (see [8, Proposition 2.2]). This implies that − det Wp(k) is an
integral square.

This completes the proof. �

PROOF OF COROLLARY 1.4. (i) Let k = 3 and p ≡ 1 (mod 12). Write p = α2 + β2 with
α, β ∈ Z and α ≡ −(2/p) (mod 4). From [1, Theorem 6.2.5],

cp(3)2 =

⎧⎪⎪⎨⎪⎪⎩36α2 if 3 � α,
4α2 if 3 | α,

, dp(3)2 =

⎧⎪⎪⎨⎪⎪⎩4β
2 if 3 � α,

36β2 if 3 | α.
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Hence, if we write p = c2 + 9d2 with c, d ∈ Z, then one can easily verify that

cp(3)2 + dp(3)2

36
= c2 + d2.

By Theorem 1.3, det Wp(3)/(c2 + d2) is an integral square if p ≡ 1 (mod 12).
(ii) If p � det Wp(3), then

(det Wp(3)
p

)
=

(c2 + d2

p

)
=

(8c2 + p
p

)
=

( 2
p

)
.

This completes the proof. �

3. Proof of Theorem 1.7

Recall that

Ip(k) =
[ 1
αi + αj

]
1≤i,j≤m

.

As −1 is not a kth power residue modulo p, clearly we have 2 � m.

PROOF OF THEOREM 1.7. By [7, Theorem 12(5.5)],

det Ip(k) =
∏

1≤i<j≤m(αi − αj)2∏
1≤i≤m

∏
1≤j≤m(αi + αj)

.

We first consider the numerator. One can verify the equalities

Np :=
∏

1≤i<j≤m

(αi − αj)2 = (−1)m(m−1)/2
∏

1≤i�j≤m

(αi − αj)

= (−1)(m−1)/2
∏

1≤j≤m

∏
i�j

(αj − αi)

= (−1)(m−1)/2
∏

1≤j≤m

G′(αj),

where G′(X) is the derivative of G(X) =
∏

1≤i≤m(X − αi). Observe that

G(X) ≡ Xm − 1 (mod p). (3.1)

Hence, G′(X) ≡ mXm−1 (mod p) and
∏

1≤i≤m αi ≡ (−1)m+1 = 1 (mod p). This gives

Np =
∏

1≤i<j≤m

(αi − αj)2 = (−1)(m−1)/2
∏

1≤j≤m

G′(αj)

≡ (−1)(m−1)/2mm
∏

1≤j≤m

αm−1
j ≡ (−1)(m−1)/2mm (mod p). (3.2)
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Now we turn to the denominator. One can verify the equalities

Dp :=
m∏

i=1

m∏
j=1

(αi + αj) =
m∏

i=1

αm
i

m∏
j=1

(1 + αj/αi)

≡
m∏

i=1

m∏
j=1

(1 + αj) =
m∏

j=1

(1 + αj)m (mod p).

Hence, by (3.1),

Dp ≡ (−1)mG(−1)m ≡ 2m (mod p). (3.3)

Combining (3.2) with (3.3), we finally obtain

det Ip(k) ≡ (−1)(m−1)/2mm

2m ≡ (−1)(m+1)/2

(2k)m (mod p).

This completes the proof. �
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