1 Introduction
We are interested in the exponential sum
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqnu1.png?pub-status=live)
where
$x\geq 2$
and
$k\in \mathbb {Z}^{+}$
are the main parameters,
$\alpha \neq 0$
and
$0<\theta <1$
are fixed,
$\Lambda (n)$
is the von Mangoldt function and
$e(z) = e^{2\pi iz}.$
In [Reference Iwaniec, Luo and Sarnak4], Iwaniec et al. showed that such exponential sums are connected to the quasi-Riemann hypothesis (or the existence of a zero-free region) for
$L(s,f)$
, where f is any holomorphic cusp form of integral weight for
$\mbox {SL}(2,\mathbb {Z})$
.
We refer to
$S(k, x,\theta )$
as Vinogradov’s exponential sum, since it was first considered by Vinogradov [Reference Vinogradov8] in the special case
$\theta = 1/2$
. He proved in [Reference Vinogradov8] that, for
$k \leq x^{1/10},$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqnu2.png?pub-status=live)
where
$\varepsilon>0$
, and the implied constant may depend on
$\alpha $
and
$\varepsilon $
. Iwaniec and Kowalski (see [Reference Iwaniec and Kowalski3, formula (13.55)]) remarked that the stronger inequality
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqnu3.png?pub-status=live)
follows from an application of Vaughan’s identity. For general
$\theta $
and k, Murty and Srinivas [Reference Murty and Srinivas5] proved that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqnu4.png?pub-status=live)
where the implied constant may depend on
$\alpha $
and
$\theta $
. In 2006, Ren [Reference Ren6] proved that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqnu5.png?pub-status=live)
for arbitrary
$A>0$
, and that for
$\theta \leq 1/2$
and
$k<x^{1/2-\theta },$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqn1.png?pub-status=live)
We prove the following result, which is new for
$\theta \in (0,5/12).$
Theorem 1.1. For
$0<\theta <5/12$
,
$\varepsilon>0$
and
$1\leq k<x^{5/12-\theta -\varepsilon },$
there exists an absolute constant
$c_{0}>0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqnu6.png?pub-status=live)
where the implied constant may depend on
$\alpha , \theta $
and
$\varepsilon $
.
Obviously, when
$\theta <5/12$
and
$k<x^{5/12-\theta -\varepsilon },$
Theorem 1.1 improves (1.1). Some much sharper estimates can be obtained if one assumes the zero-density hypothesis,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqn2.png?pub-status=live)
where
$N(\sigma , T)$
is the number of zeros of
$\zeta (s)$
in the region
$\{\sigma \leq \Re s\leq 1, |t|\leq T\}$
and B is some positive constant. Under (1.2), it is proved in [Reference Ren6] that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqn3.png?pub-status=live)
where the implied constant may depend on
$\alpha $
,
$\theta $
and B. Our idea can also be used to improve (1.3).
Theorem 1.2. Under (1.2), for
$0<\theta <1/2$
,
$\varepsilon>0$
and
$1\leq k<x^{1/2-\theta -\varepsilon },$
there exists an absolute constant
$c_{0}$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqnu7.png?pub-status=live)
where the implied constant may depend on
$\alpha , \varepsilon $
and
$\theta $
.
It is worth pointing out that, compared with Theorem 1.1, the ranges of
$\theta $
and k have been extended in Theorem 1.2.
2 Proof of Theorem 1.1
To prove Theorem 1.1, we will borrow the idea in [Reference Ren6] and use results related to zeros of the Riemann zeta function. The following lemma will be used in the proofs of Theorems 1.1 and 1.2.
Lemma 2.1 [Reference Titchmarsh7, page 71].
Let
$F(u)$
and
$G(u)$
be real functions on
$[a,b],$
such that
$G(u)$
and
$1/F^{\prime }(u)$
are monotone and
$|G(u)|\leq M$
.
-
(1) If
$F^{\prime }(u)\geq m>0$ or
$F^{\prime }(u)\leq -m<0,$ then
$$ \begin{align*} \int_{a}^{b}G(u)e(F(u))\,du\ll \frac{M}{m}. \end{align*} $$
-
(2) If
$F^{\prime \prime }(u)\geq r>0$ or
$F^{\prime \prime }(u)\leq -r<0,$ then
$$ \begin{align*} \int_{a}^{b}G(u)e(F(u))\,du\ll \frac{M}{\sqrt{r}}. \end{align*} $$
Proof of Theorem 1.1.
Denote the zeros of
$\zeta (s)$
in the critical strip by
$\rho =\beta +i\gamma $
, where
$0<\beta <1$
,
$|\gamma |\leq T$
. Using partial summation and the explicit formula in [Reference Iwaniec and Kowalski3, formula (5.53)],
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqnu10.png?pub-status=live)
From this formula,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqn4.png?pub-status=live)
Setting
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqnu11.png?pub-status=live)
the error-term is
$O((1+k|\alpha |x^{\theta })\log^{2}x) =O_{\alpha }(kx^{\theta }\log^{2}x)$
. Moreover,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqn5.png?pub-status=live)
Making the change of variable
$u^{\theta }=v,$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqnu12.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqnu13.png?pub-status=live)
Trivially,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqn6.png?pub-status=live)
However,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqnu14.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqnu15.png?pub-status=live)
Therefore,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqnu16.png?pub-status=live)
Assume that, for some positive constant C,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqnu17.png?pub-status=live)
Then by the Riemann–von Mangoldt formula, for
$2\leq U\leq T_{0}$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqnu18.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqnu19.png?pub-status=live)
with
$c_{0}$
an absolute positive constant. Here we have used the well-known zero-free region results (for example, see [Reference Iwaniec and Kowalski3, Reference Titchmarsh7]) which state that
$\zeta (s)\not =0$
for
$ \sigma>\sigma _{0}. $
Let x be sufficiently large such that
$\theta \pi k|\alpha | (2x)^{\theta }\gg 1$
. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqnu20.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqnu21.png?pub-status=live)
Writing
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqnu22.png?pub-status=live)
and collecting the above estimates,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqnu23.png?pub-status=live)
By the well-known result of Ingham [Reference Ingham2] and Huxley [Reference Huxley1], we can choose
$A(\sigma )=12/5.$
Thus we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqnu24.png?pub-status=live)
Thus for
$\theta <5/12$
and
$k<x^{5/12-\theta -\varepsilon },$
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqnu25.png?pub-status=live)
This together with (2.1) and (2.2) shows that, for
$\theta \in (0,5/12)$
and
$1\leq k<x^{5/12-\theta -\varepsilon }$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230128160005443-0196:S0004972722000430:S0004972722000430_eqnu26.png?pub-status=live)
This finishes the proof of Theorem 1.1.