Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-02-11T19:12:13.425Z Has data issue: false hasContentIssue false

AVERAGES OF EXPONENTIAL TWISTS OF THE VON MANGOLDT FUNCTION

Published online by Cambridge University Press:  25 April 2022

XIUMIN REN
Affiliation:
School of Mathematics, Shandong University, Jinan, Shandong 250100, PR China e-mail: xmren@sdu.edu.cn
WEI ZHANG*
Affiliation:
School of Mathematics and Statistics, Henan University, Kaifeng, Henan 475004, PR China
Rights & Permissions [Opens in a new window]

Abstract

We obtain some improved results for the exponential sum $\sum _{x<n\leq 2x}\Lambda (n)e(\alpha k n^{\theta })$ with $\theta \in (0,5/12),$ where $\Lambda (n)$ is the von Mangoldt function. Such exponential sums have relations with the so-called quasi-Riemann hypothesis and were considered by Murty and Srinivas [‘On the uniform distribution of certain sequences’, Ramanujan J. 7 (2003), 185–192].

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

We are interested in the exponential sum

$$ \begin{align*} S(k,x,\theta):=\sum_{x<n\leq 2x}\Lambda(n)e(k\alpha n^{\theta}), \end{align*} $$

where $x\geq 2$ and $k\in \mathbb {Z}^{+}$ are the main parameters, $\alpha \neq 0$ and $0<\theta <1$ are fixed, $\Lambda (n)$ is the von Mangoldt function and $e(z) = e^{2\pi iz}.$ In [Reference Iwaniec, Luo and Sarnak4], Iwaniec et al. showed that such exponential sums are connected to the quasi-Riemann hypothesis (or the existence of a zero-free region) for $L(s,f)$ , where f is any holomorphic cusp form of integral weight for $\mbox {SL}(2,\mathbb {Z})$ .

We refer to $S(k, x,\theta )$ as Vinogradov’s exponential sum, since it was first considered by Vinogradov [Reference Vinogradov8] in the special case $\theta = 1/2$ . He proved in [Reference Vinogradov8] that, for $k \leq x^{1/10},$

$$ \begin{align*} S(k, x, 1/2) \ll k^{1/4}x^{7/8+\varepsilon}, \end{align*} $$

where $\varepsilon>0$ , and the implied constant may depend on $\alpha $ and $\varepsilon $ . Iwaniec and Kowalski (see [Reference Iwaniec and Kowalski3, formula (13.55)]) remarked that the stronger inequality

$$ \begin{align*}S(1,x,1/2) \ll x^{5/6}\log^{4} x \end{align*} $$

follows from an application of Vaughan’s identity. For general $\theta $ and k, Murty and Srinivas [Reference Murty and Srinivas5] proved that

$$ \begin{align*}S(k, x,\theta) \ll k^{1/8}x {}^{(7+\theta)/8}\log (xk^{3}),\end{align*} $$

where the implied constant may depend on $\alpha $ and $\theta $ . In 2006, Ren [Reference Ren6] proved that

$$ \begin{align*} S(k, x,\theta)\ll (k^{1/2}x^{(1+\theta)/2}+ x^{4/5}+k^{-1/2}x^{1-\theta/2}){\log}^{\kern1ptA}x, \end{align*} $$

for arbitrary $A>0$ , and that for $\theta \leq 1/2$ and $k<x^{1/2-\theta },$

(1.1) $$ \begin{align} S(k, x,\theta)\ll( k^{1/10}x^{3/4+\theta/10} +k^{-1/2}x^{1-\theta/2})\log^{\kern1pt11}x. \end{align} $$

We prove the following result, which is new for $\theta \in (0,5/12).$

Theorem 1.1. For $0<\theta <5/12$ , $\varepsilon>0$ and $1\leq k<x^{5/12-\theta -\varepsilon },$ there exists an absolute constant $c_{0}>0$ such that

$$ \begin{align*} S(k, x,\theta)\ll k^{-1/2}x^{1-\theta/2}\exp(-c_{0}(\log x)^{1/3-\varepsilon}), \end{align*} $$

where the implied constant may depend on $\alpha , \theta $ and $\varepsilon $ .

Obviously, when $\theta <5/12$ and $k<x^{5/12-\theta -\varepsilon },$ Theorem 1.1 improves (1.1). Some much sharper estimates can be obtained if one assumes the zero-density hypothesis,

(1.2) $$ \begin{align} N(\sigma,T)\ll T^{2(1-\sigma)}\log^{\kern1ptB} T, \quad\mbox{for all } \sigma\geq1/2, \end{align} $$

where $N(\sigma , T)$ is the number of zeros of $\zeta (s)$ in the region $\{\sigma \leq \Re s\leq 1, |t|\leq T\}$ and B is some positive constant. Under (1.2), it is proved in [Reference Ren6] that

(1.3) $$ \begin{align} S(k, x,\theta)\ll (k^{1/2}x^{(1+\theta)/2}+ k^{-1/2}x^{1-\theta/2})\log^{\kern1ptB+2}x, \end{align} $$

where the implied constant may depend on $\alpha $ , $\theta $ and B. Our idea can also be used to improve (1.3).

Theorem 1.2. Under (1.2), for $0<\theta <1/2$ , $\varepsilon>0$ and $1\leq k<x^{1/2-\theta -\varepsilon },$ there exists an absolute constant $c_{0}$ such that

$$ \begin{align*} S(k, x,\theta)\ll k^{-1/2}x^{1-\theta/2}\exp(-c_{0}(\log x)^{1/3-\varepsilon}), \end{align*} $$

where the implied constant may depend on $\alpha , \varepsilon $ and $\theta $ .

It is worth pointing out that, compared with Theorem 1.1, the ranges of $\theta $ and k have been extended in Theorem 1.2.

2 Proof of Theorem 1.1

To prove Theorem 1.1, we will borrow the idea in [Reference Ren6] and use results related to zeros of the Riemann zeta function. The following lemma will be used in the proofs of Theorems 1.1 and 1.2.

Lemma 2.1 [Reference Titchmarsh7, page 71].

Let $F(u)$ and $G(u)$ be real functions on $[a,b],$ such that $G(u)$ and $1/F^{\prime }(u)$ are monotone and $|G(u)|\leq M$ .

  1. (1) If $F^{\prime }(u)\geq m>0$ or $F^{\prime }(u)\leq -m<0,$ then

    $$ \begin{align*} \int_{a}^{b}G(u)e(F(u))\,du\ll \frac{M}{m}. \end{align*} $$
  2. (2) If $F^{\prime \prime }(u)\geq r>0$ or $F^{\prime \prime }(u)\leq -r<0,$ then

    $$ \begin{align*} \int_{a}^{b}G(u)e(F(u))\,du\ll \frac{M}{\sqrt{r}}. \end{align*} $$

Proof of Theorem 1.1.

Denote the zeros of $\zeta (s)$ in the critical strip by $\rho =\beta +i\gamma $ , where $0<\beta <1$ , $|\gamma |\leq T$ . Using partial summation and the explicit formula in [Reference Iwaniec and Kowalski3, formula (5.53)],

$$ \begin{align*} \sum_{n\leq x}\Lambda(n)=x-\sum_{|\gamma|\leq T}\frac{x^{\rho}}{\rho}+O\bigg(\frac{x}{T}(\log xT)^{2} \bigg), \quad\mbox{for } 1\leq T\leq x. \end{align*} $$

From this formula,

(2.1) $$ \begin{align} \sum_{x<n\leq2x}\Lambda(n)e( k\alpha n^{\theta}) &=\int_{x}^{2x}e(k\alpha u^{\theta})\,d\sum_{n\leq u}\Lambda(n)\nonumber\\ &=\int_{x}^{2x}e(k\alpha u^{\theta})\,du-\sum_{|\gamma|\leq T}\int_{x}^{2x}u^{\rho-1}e(k\alpha u^{\theta})\,du \nonumber\\ & \kern-7pt\qquad\qquad\qquad\qquad +O\bigg((1+ k|\alpha| x^{\theta})\frac{x \log^{2}x}{T} \bigg). \end{align} $$

Setting

$$ \begin{align*} T=T_{0}=x, \end{align*} $$

the error-term is $O((1+k|\alpha |x^{\theta })\log^{2}x) =O_{\alpha }(kx^{\theta }\log^{2}x)$ . Moreover,

(2.2) $$ \begin{align} \int_{x}^{2x}e(k\alpha u^{\theta})\,du= \frac1\theta \int_{x^{\theta}}^{(2x)^{\theta}}u^{1/\theta-1}e(k\alpha u)\,du \ll_{\alpha,\theta} k^{-1}x^{1-\theta}. \end{align} $$

Making the change of variable $u^{\theta }=v,$

$$ \begin{align*} \int_{x}^{2x}u^{\rho-1}e(k\alpha u^{\theta})\,du=\frac1{\theta}\int_{x^{\theta}}^{(2x)^{\theta}}v^{\,\beta/\theta-1}e(f(v))\,dv, \end{align*} $$

where

$$ \begin{align*} f(v)= k\alpha v +\frac{\gamma}{2\pi\theta}\log v. \end{align*} $$

Trivially,

(2.3) $$ \begin{align} \int_{x}^{2x}u^{\rho-1}e(k\alpha u^{\theta})\,du \ll x^{\beta}. \end{align} $$

However,

$$ \begin{align*} &|f^{\prime}(v)|=\bigg|k\alpha+\frac{\gamma}{2\pi\theta v}\bigg|\geq \frac{\min_{v\in[x^{\theta},(2x)^{\theta}]}|\gamma +2\theta\pi k\alpha v|}{2\pi\theta |v|},\\ &|f^{\prime\prime}(v)|=\frac{|\gamma|}{2\pi\theta v^{2}}. \end{align*} $$

By Lemma 2.1 and (2.3),

$$ \begin{align*} \int_{x^{\theta}}^{(2x)^{\theta}}v^{\,\beta/\theta-1}e(f(v))\,dv\ll\begin{cases} \dfrac{x^{\,\beta}}{\sqrt{1+\theta k|\alpha| x^{\theta}}} &\textrm{for } |\gamma| \leq 4(1+\theta\pi k|\alpha|(2x)^{\theta}), \\ \dfrac{x^{\,\beta}}{ 1+|\gamma|} &\textrm{for } 4(1+\theta\pi k|\alpha|(2x)^{\theta}) <|\gamma| \leq T_{0}. \end{cases} \end{align*} $$

Therefore,

$$ \begin{align*} &\sum_{|\gamma|\leq T} \int_{x}^{2x}u^{\rho-1}e(k\alpha u^{\theta})\,du\\ &\quad\ll\frac{1}{\sqrt{1+\theta k|\alpha|x^{\theta}}}\sum_{|\gamma| \leq 4(1+\theta\pi k|\alpha|(2x)^{\theta})}x^{\,\beta}+ \sum_{4(1+\theta\pi k|\alpha|(2x)^{\theta}) < |\gamma| \leq T_{0}}\frac{x^{\,\beta}}{1+|\gamma|}. \end{align*} $$

Assume that, for some positive constant C,

$$ \begin{align*} N(\sigma,T)\ll T^{A(\sigma)(1-\sigma)}\log^{\kern1ptC} T. \end{align*} $$

Then by the Riemann–von Mangoldt formula, for $2\leq U\leq T_{0}$ ,

$$ \begin{align*} \sum_{|\gamma|\leq U}x^{\,\beta}&=-\int^{1}_{0}x^{\sigma}\,dN(\sigma,U)\nonumber\\ &\ll x^{1/2}U\log U+(\log U)^{C}\log x\max_{1/2\leq\sigma\leq\sigma_{0}}U^{A(\sigma)(1-\sigma)}x^{\sigma}, \end{align*} $$

where

$$ \begin{align*} \sigma_{0}=1-c_{0}(\log T )^{-2/3}(\log \log T )^{-1/3} \end{align*} $$

with $c_{0}$ an absolute positive constant. Here we have used the well-known zero-free region results (for example, see [Reference Iwaniec and Kowalski3, Reference Titchmarsh7]) which state that $\zeta (s)\not =0$ for $ \sigma>\sigma _{0}. $

Let x be sufficiently large such that $\theta \pi k|\alpha | (2x)^{\theta }\gg 1$ . Then

$$ \begin{align*} &\frac{1}{\sqrt{1+\theta k|\alpha| x^{\theta}}} \sum_{|\gamma| \leq 4(1+\theta\pi k|\alpha|(2x)^{\theta})}x^{\,\beta}\nonumber\\ &\quad\ll (\log x)^{C+1}(k^{1/2}x^{(1+\theta)/2} +\max_{1/2\leq\sigma\leq\sigma_{0}}k^{A(\sigma)(1-\sigma) -1/2}x^{\sigma+\theta A(\sigma)(1-\sigma)-\theta/2}), \end{align*} $$

and

$$ \begin{align*} \sum_{4(1+\theta\pi k|\alpha|(2x)^{\theta})\leq|\gamma| \leq T_{0}} \frac{x^{\,\beta}}{1+|\gamma|} & \ll (\log x)\max_{4(1+\theta\pi k|\alpha|(2x)^{\theta})<T_{1}\leq T}T_{1}^{-1} \sum_{T_{1}\leq|\gamma|\leq2T_{1}}x^{\,\beta}\\ &\ll (\log x)^{C+2}(x^{1/2}+\max_{1/2\leq\sigma\leq\sigma_{0}} k^{A(\sigma)(1-\sigma)-1}x^{\sigma+\theta A(\sigma)(1-\sigma)-\theta}). \end{align*} $$

Writing

$$ \begin{align*} g(\sigma)=\sigma+\theta A(\sigma)(1-\sigma)-\frac{\theta}{2} \end{align*} $$

and collecting the above estimates,

$$ \begin{align*} \sum_{|\gamma|\leq T}\int_{x}^{2x}u^{\rho-1}e(k\alpha u^{\theta})\,du \ll (\log x)^{C+2}( k^{1/2}x^{(1+\theta)/2} +\max_{1/2\leq\sigma\leq\sigma_{0}}k^{A(\sigma)(1-\sigma) -1/2} x^{g(\sigma)}). \end{align*} $$

By the well-known result of Ingham [Reference Ingham2] and Huxley [Reference Huxley1], we can choose $A(\sigma )=12/5.$ Thus we have

$$ \begin{align*} \max\limits_{1/2\leq\sigma\leq \sigma_{0}} k^{A(\sigma)(1-\sigma)-1/2}x^{g(\sigma)} &\ll (\log x)^{C_{1}} \sup_{1/2\leq \sigma\leq\sigma_{0}}k^{A(\sigma)(1-\sigma)-1/2} x^{\sigma+12\theta (1-\sigma)/5-\theta/2}\\ &\ll k^{-1/2}x^{1-\theta/2}(\log x)^{C_{1}}\sup\limits_{1/2\leq \sigma\leq\sigma_{0}}(k^{12/5}x^{12\theta/5-1})^{1-\sigma}. \end{align*} $$

Thus for $\theta <5/12$ and $k<x^{5/12-\theta -\varepsilon },$

$$ \begin{align*} \max\limits_{1/2\leq\sigma\leq \sigma_{0}} k^{A(\sigma)(1-\sigma)-1/2}x^{g(\sigma)} &\ll k^{-1/2}x^{1-\theta/2}(\log x)^{C_{1}}\sup_{1/2\leq \sigma\leq\sigma_{0}}x^{-c_{0}(\log x)^{-2/3}(\log \log x)^{-1/3}} \\ &\ll k^{-1/2}x^{1-\theta/2}\exp(-c_{0}(\log x)^{1/3} (\log x\log x)^{-1/3})\\ &\ll k^{-1/2}x^{1-\theta/2}\exp(-c_{0}(\log x)^{1/3-\varepsilon}). \end{align*} $$

This together with (2.1) and (2.2) shows that, for $\theta \in (0,5/12)$ and $1\leq k<x^{5/12-\theta -\varepsilon }$ ,

$$ \begin{align*} \sum_{x<n\leq2x} & \Lambda(n)e( \alpha n^{\theta})\\ &\ll k^{1/2}x^{(1+\theta)/2}(\log x)^{C} +k^{-1/2}x^{1-\theta/2}\exp(-c_{0}(\log x)^{1/3-\varepsilon})+k^{-1}x^{1-\theta}+kx^{\theta}\\ &\ll k^{-1/2}x^{1-\theta/2}\exp(-c_{0}(\log x)^{1/3-\varepsilon}). \end{align*} $$

This finishes the proof of Theorem 1.1.

Footnotes

This work was supported by National Natural Science Foundation of China (Grant No. 11871307).

References

Huxley, M. N., ‘On the difference between consecutive primes’, Invent. Math. 15 (1972), 164170.CrossRefGoogle Scholar
Ingham, A. E., ‘On the estimation of $N\left(\sigma, T\right)$ ’, Q. J. Math. 15 (1940), 291292.Google Scholar
Iwaniec, H. and Kowalski, E., Analytic Number Theory, American Mathematical Society Colloquium Publications, 53 (American Mathematical Society, Providence, RI, 2004).Google Scholar
Iwaniec, H., Luo, W. Z. and Sarnak, P., ‘Low lying zeros of families of $L$ -functions’, Publ. Math. Inst. Hautes Études Sci. 91 (2000), 55131.CrossRefGoogle Scholar
Murty, M. R. and Srinivas, K., ‘On the uniform distribution of certain sequences’, Ramanujan J. 7 (2003), 185192.CrossRefGoogle Scholar
Ren, X. M., ‘Vinogradov’s exponential sum over primes’, Acta Arith. 124 (2006), 269285.CrossRefGoogle Scholar
Titchmarsh, E. C., The Theory of the Riemann Zeta-Function, 2nd edn (Oxford University Press, Oxford, 1986).Google Scholar
Vinogradov, I. M., Special Variants of the Method of Trigonometric Sums (Nauka, Moscow, 1976) (in Russian); English translation I. M. Vinogradov, Selected Works (Springer, Berlin, 1985).Google Scholar