
Bull. Aust. Math. Soc. 106 (2022), 425–430
doi:10.1017/S0004972722000430

AVERAGES OF EXPONENTIAL TWISTS OF THE VON
MANGOLDT FUNCTION

XIUMIN REN and WEI ZHANG �

(Received 19 February 2022; accepted 23 March 2022; first published online 25 April 2022)

Abstract

We obtain some improved results for the exponential sum
∑

x<n≤2x Λ(n)e(αknθ) with θ ∈ (0, 5/12), where
Λ(n) is the von Mangoldt function. Such exponential sums have relations with the so-called quasi-Riemann
hypothesis and were considered by Murty and Srinivas [‘On the uniform distribution of certain sequences’,
Ramanujan J. 7 (2003), 185–192].
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1. Introduction

We are interested in the exponential sum

S(k, x, θ) :=
∑

x<n≤2x

Λ(n)e(kαnθ),

where x ≥ 2 and k ∈ Z+ are the main parameters, α � 0 and 0 < θ < 1 are fixed, Λ(n)
is the von Mangoldt function and e(z) = e2πiz. In [4], Iwaniec et al. showed that such
exponential sums are connected to the quasi-Riemann hypothesis (or the existence of a
zero-free region) for L(s, f ), where f is any holomorphic cusp form of integral weight
for SL(2,Z).

We refer to S(k, x, θ) as Vinogradov’s exponential sum, since it was first considered
by Vinogradov [8] in the special case θ = 1/2. He proved in [8] that, for k ≤ x1/10,

S(k, x, 1/2) � k1/4x7/8+ε,

where ε > 0, and the implied constant may depend on α and ε. Iwaniec and Kowalski
(see [3, formula (13.55)]) remarked that the stronger inequality

S(1, x, 1/2) � x5/6 log4 x
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follows from an application of Vaughan’s identity. For general θ and k, Murty and
Srinivas [5] proved that

S(k, x, θ) � k1/8x(7+θ)/8 log(xk3),

where the implied constant may depend on α and θ. In 2006, Ren [6] proved that

S(k, x, θ) � (k1/2x(1+θ)/2 + x4/5 + k−1/2x1−θ/2)logAx,

for arbitrary A > 0, and that for θ ≤ 1/2 and k < x1/2−θ,

S(k, x, θ) � (k1/10x3/4+θ/10 + k−1/2x1−θ/2) log11 x. (1.1)

We prove the following result, which is new for θ ∈ (0, 5/12).

THEOREM 1.1. For 0 < θ < 5/12, ε > 0 and 1 ≤ k < x5/12−θ−ε, there exists an absolute
constant c0 > 0 such that

S(k, x, θ) � k−1/2x1−θ/2 exp(−c0(log x)1/3−ε),

where the implied constant may depend on α, θ and ε.

Obviously, when θ < 5/12 and k < x5/12−θ−ε, Theorem 1.1 improves (1.1). Some
much sharper estimates can be obtained if one assumes the zero-density hypothesis,

N(σ, T) � T2(1−σ) logB T , for all σ ≥ 1/2, (1.2)

where N(σ, T) is the number of zeros of ζ(s) in the region {σ ≤ �s ≤ 1, |t| ≤ T} and B
is some positive constant. Under (1.2), it is proved in [6] that

S(k, x, θ) � (k1/2x(1+θ)/2 + k−1/2x1−θ/2) logB+2 x, (1.3)

where the implied constant may depend on α, θ and B. Our idea can also be used to
improve (1.3).

THEOREM 1.2. Under (1.2), for 0 < θ < 1/2, ε > 0 and 1 ≤ k < x1/2−θ−ε, there exists
an absolute constant c0 such that

S(k, x, θ) � k−1/2x1−θ/2 exp(−c0(log x)1/3−ε),

where the implied constant may depend on α, ε and θ.

It is worth pointing out that, compared with Theorem 1.1, the ranges of θ and k have
been extended in Theorem 1.2.

2. Proof of Theorem 1.1

To prove Theorem 1.1, we will borrow the idea in [6] and use results related to
zeros of the Riemann zeta function. The following lemma will be used in the proofs of
Theorems 1.1 and 1.2.

LEMMA 2.1 [7, page 71]. Let F(u) and G(u) be real functions on [a, b], such that G(u)
and 1/F′(u) are monotone and |G(u)| ≤ M.
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(1) If F′(u) ≥ m > 0 or F′(u) ≤ −m < 0, then
∫ b

a
G(u)e(F(u)) du � M

m
.

(2) If F′′(u) ≥ r > 0 or F′′(u) ≤ −r < 0, then
∫ b

a
G(u)e(F(u)) du � M

√
r

.

PROOF OF THEOREM 1.1. Denote the zeros of ζ(s) in the critical strip by ρ = β + iγ,
where 0 < β < 1, |γ| ≤ T . Using partial summation and the explicit formula in [3,
formula (5.53)],

∑
n≤x

Λ(n) = x −
∑
|γ|≤T

xρ

ρ
+ O
( x
T

(log xT)2
)
, for 1 ≤ T ≤ x.

From this formula,
∑

x<n≤2x

Λ(n)e(kαnθ) =
∫ 2x

x
e(kαuθ) d

∑
n≤u

Λ(n)

=

∫ 2x

x
e(kαuθ) du −

∑
|γ|≤T

∫ 2x

x
uρ−1e(kαuθ) du

+ O
(
(1 + k|α|xθ)x log2 x

T

)
. (2.1)

Setting

T = T0 = x,

the error-term is O((1 + k|α|xθ) log2 x) = Oα(kxθ log2 x). Moreover,
∫ 2x

x
e(kαuθ) du =

1
θ

∫ (2x)θ

xθ
u1/θ−1e(kαu) du �α,θ k−1x1−θ. (2.2)

Making the change of variable uθ = v,
∫ 2x

x
uρ−1e(kαuθ) du =

1
θ

∫ (2x)θ

xθ
v β/θ−1e( f (v)) dv,

where

f (v) = kαv +
γ

2πθ
log v.

Trivially,
∫ 2x

x
uρ−1e(kαuθ) du � xβ. (2.3)

https://doi.org/10.1017/S0004972722000430 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972722000430


428 X. M. Ren and W. Zhang [4]

However,

| f ′(v)| =
∣∣∣∣∣kα + γ

2πθv

∣∣∣∣∣ ≥ minv∈[xθ ,(2x)θ] |γ + 2θπkαv|
2πθ|v| ,

| f ′′(v)| = |γ|
2πθv2 .

By Lemma 2.1 and (2.3),

∫ (2x)θ

xθ
v β/θ−1e( f (v)) dv �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x β√
1 + θk|α|xθ

for |γ| ≤ 4(1 + θπk|α|(2x)θ),

x β

1 + |γ| for 4(1 + θπk|α|(2x)θ) < |γ| ≤ T0.

Therefore,

∑
|γ|≤T

∫ 2x

x
uρ−1e(kαuθ) du

� 1√
1 + θk|α|xθ

∑
|γ|≤4(1+θπk|α|(2x)θ)

x β +
∑

4(1+θπk|α|(2x)θ)<|γ|≤T0

x β

1 + |γ| .

Assume that, for some positive constant C,

N(σ, T) � TA(σ)(1−σ) logC T .

Then by the Riemann–von Mangoldt formula, for 2 ≤ U ≤ T0,

∑
|γ|≤U

x β = −
∫ 1

0
xσ dN(σ, U)

� x1/2U log U + (log U)C log x max
1/2≤σ≤σ0

UA(σ)(1−σ)xσ,

where

σ0 = 1 − c0(log T)−2/3(log log T)−1/3

with c0 an absolute positive constant. Here we have used the well-known zero-free
region results (for example, see [3, 7]) which state that ζ(s) � 0 for σ > σ0.

Let x be sufficiently large such that θπk|α|(2x)θ 	 1. Then

1√
1 + θk|α|xθ

∑
|γ|≤4(1+θπk|α|(2x)θ)

x β

� (log x)C+1(k1/2x(1+θ)/2 + max
1/2≤σ≤σ0

kA(σ)(1−σ)−1/2xσ+θA(σ)(1−σ)−θ/2),
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and ∑
4(1+θπk|α|(2x)θ)≤|γ|≤T0

x β

1 + |γ| � (log x) max
4(1+θπk|α|(2x)θ)<T1≤T

T−1
1

∑
T1≤|γ|≤2T1

x β

� (log x)C+2(x1/2 + max
1/2≤σ≤σ0

kA(σ)(1−σ)−1xσ+θA(σ)(1−σ)−θ).

Writing

g(σ) = σ + θA(σ)(1 − σ) − θ
2

and collecting the above estimates,
∑
|γ|≤T

∫ 2x

x
uρ−1e(kαuθ) du � (log x)C+2(k1/2x(1+θ)/2 + max

1/2≤σ≤σ0

kA(σ)(1−σ)−1/2xg(σ)).

By the well-known result of Ingham [2] and Huxley [1], we can choose A(σ) =
12/5. Thus we have

max
1/2≤σ≤σ0

kA(σ)(1−σ)−1/2xg(σ) � (log x)C1 sup
1/2≤σ≤σ0

kA(σ)(1−σ)−1/2xσ+12θ(1−σ)/5−θ/2

� k−1/2x1−θ/2(log x)C1 sup
1/2≤σ≤σ0

(k12/5x12θ/5−1)1−σ.

Thus for θ < 5/12 and k < x5/12−θ−ε,

max
1/2≤σ≤σ0

kA(σ)(1−σ)−1/2xg(σ) � k−1/2x1−θ/2(log x)C1 sup
1/2≤σ≤σ0

x−c0(log x)−2/3(log log x)−1/3

� k−1/2x1−θ/2 exp(−c0(log x)1/3(log x log x)−1/3)

� k−1/2x1−θ/2 exp(−c0(log x)1/3−ε).

This together with (2.1) and (2.2) shows that, for θ ∈ (0, 5/12) and 1 ≤ k < x5/12−θ−ε,∑
x<n≤2x

Λ(n)e(αnθ)

� k1/2x(1+θ)/2(log x)C + k−1/2x1−θ/2 exp(−c0(log x)1/3−ε) + k−1x1−θ + kxθ

� k−1/2x1−θ/2 exp(−c0(log x)1/3−ε).

This finishes the proof of Theorem 1.1. �
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