Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-02-06T06:20:14.641Z Has data issue: false hasContentIssue false

Cyclic parallel structure Jacobi operator for real hypersurfaces in complex two-plane Grassmannians

Published online by Cambridge University Press:  12 August 2021

Hyunjin Lee
Affiliation:
The Research Institute of Real and Complex Manifolds (RIRCM), Kyungpook National University, Daegu 41566, Repulic of Korea (lhjibis@hanmail.net)
Young Jin Suh
Affiliation:
Department of Mathematics & RIRCM, Kyungpook National University, Daegu 41566, Repulic of Korea (yjsuh@knu.ac.kr)
Changhwa Woo
Affiliation:
Department of Applied Mathematics, Pukyong National University, Busan 48513, Republic of Korea (legalgwch@pknu.ac.kr)
Rights & Permissions [Opens in a new window]

Abstract

In this paper, from the property of Killing for structure Jacobi tensor $\mathbb {R}_{\xi }$, we introduce a new notion of cyclic parallelism of structure Jacobi operator$R_{\xi }$ on real hypersurfaces in the complex two-plane Grassmannians. By virtue of geodesic curves, we can give the equivalent relation between cyclic parallelism of $R_{\xi }$ and Killing property of $\mathbb {R}_{\xi }$. Then, we classify all Hopf real hypersurfaces with cyclic parallel structure Jacobi operator in complex two-plane Grassmannians.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

1. Introduction

In the class of complex Grassmannians of rank 2, we can give the examples of Hermitian symmetric spaces $G_{2}(\mathbb {C}^{m+2})=SU_{m+2}/S(U_2U_m)$ and $G_{2}^{*}(\mathbb {C}^{m+2})=SU_{2,m}/S(U_2U_m)$, which are said to be complex two-plane Grassmannians of compact type and complex hyperbolic two-plane Grassmannians of non-compact type, respectively. They are viewed as Hermitian symmetric spaces and quaternionic Kähler symmetric spaces equipped with the Kähler structure $J$ and the quaternionic Kähler structure $\mathcal {J}=\mathrm {span}\{J_{1}, J_{2}, J_{3}\}$ (see [Reference Berndt and Suh6, Reference Eberlein11, Reference Kobayashi and Nomizu15, Reference Suh31, Reference Suh33, Reference Suh38]). Among them, in this paper we will consider our subject on complex two-plane Grassmannians and its real hypersurfaces with cyclic parallel structure Jacobi operator.

Now let us denote by ${G_2({\mathbb {C}}^{m+2})}=SU_{m+2}/S(U_2U_m)$ the set of all complex 2-dimensional linear subspaces in the complex Euclidean space $\mathbb {C}^{m+2}$. If $m = 1$, then we see that $G_{2}(\mathbb {C}^{3})$ is isometric to the 2-dimensional complex projective space $\mathbb {C} P^{2}$ with constant holomorphic sectional curvature 8. And the isomorphism $\mathrm {Spin} (6) \simeq SU(4)$ yields an isometry between $G_{2}(\mathbb {C}^{4})$ and the real Grassmann manifold $G_{2}^{+}(\mathbb {R}^{6})$ of oriented 2-dimensional linear subspaces in $\mathbb {R}^{6}$. So, we will consider $m \geq 3$ hereafter, unless otherwise stated.

Recall that a non-zero vector field $X$ of Hermitian symmetric spaces $(\bar M, g)$ of rank 2 is called singular if it is tangent to more than one maximal flat in $\bar M$. In particular, there are exactly two types of singular tangent vectors $X$ of $G_{2}(\mathbb {C}^{m+2})$ which are characterized by the geometric properties $JX \in {\mathcal {J}}X$ and $JX \perp {\mathcal {J}}X$ (see [Reference Berndt3, Reference Berndt and Suh4]).

The Riemannian curvature tensor $\bar R$ of ${G_2({\mathbb {C}}^{m+2})}$ is locally given by

(1.1)\begin{equation} \begin{split} & \bar R (X,Y)Z \\ & = g(Y,Z)X - g(X,Z)Y + g(JY, Z) JX - g(JX,Z)JY - 2g(JX, Y)JZ \end{split} \end{equation}
\begin{equation*} \begin{split} & + \sum_{\nu=1}^{3}\big \{ g(J_{\nu}Y, Z) J_{\nu} X - g(J_{\nu}X, Z) J_{\nu}Y - 2g(J_{\nu}X, Y) J_{\nu}Z \big \} \\ & + \sum_{\nu=1}^{3}\big \{ g(J_{\nu}J Y, Z) J_{\nu} JX - g(J_{\nu}JX, Z) J_{\nu}JY \big \}, \end{split} \end{equation*}

where $\{J_{1}$, $J_{2}$, $J_{3}\}$ is any canonical local basis of $\mathcal {J}$ and the tensor $g$ of type (0,2) stands for the Riemannian metric on complex two-plane Grassmannians ${G_2({\mathbb {C}}^{m+2})}$ (see [Reference Berndt3, Reference Berndt and Suh4, Reference Berndt and Suh9]).

For a real hypersurface $M$ in complex two-plane Grassmannians ${G_2({\mathbb {C}}^{m+2})}$, we have the following two natural geometric conditions: the $1$-dimensional distribution $\mathcal {C}^{\bot }= \mathrm {span} \{\xi \}$ and the $3$-dimensional distribution $\mathcal {Q}^{\bot } = \mathrm {span}\{\xi _{1},\xi _{2}, \xi _{3}\}$ are invariant under the shape operator $A$ of $M$. Here the almost contact structure vector field $\xi$ defined by $\xi = -JN$ is said to be a Reeb vector field, where $N$ denotes a local unit normal vector field of $M$ in ${G_2({\mathbb {C}}^{m+2})}$. The almost contact 3-structure vector fields $\xi _{1},\xi _{2},\xi _{3}$ spanning the 3-dimensional distribution $\mathcal {Q}^{\bot }$ of $M$ in ${G_2({\mathbb {C}}^{m+2})}$ are defined by $\xi _{\nu } = - J_{\nu } N$ $(\nu =1, 2, 3$), such that $TM = \mathcal {Q} \oplus \mathcal {Q}^{\bot } = \mathcal {C} \oplus \mathcal {C}^{\bot }$. By using these invariant conditions for two kinds of distributions $\mathcal {C}^{\bot }$ and $\mathcal {Q}^{\bot }$ in $T{G_2({\mathbb {C}}^{m+2})}$, Berndt and Suh gave a classification of real hypersurfaces in complex two-plane Grassmannians as follows:

Theorem A [Reference Berndt and Suh4]

Let $M$ be a connected real hypersurface in complex two-plane Grassmannians ${G_2({\mathbb {C}}^{m+2})}$, $m \geq 3$. Then both $\mathcal {C}^{\bot }$ and ${{\mathcal {Q}}^{\bot }}$ are invariant under the shape operator $A$ of $M$ if and only if

  1. ( $\mathcal{T}_{A}$) $M$ is an open part of a tube around a totally geodesic ${G_2({\mathbb {C}}^{m+1})}$ in ${G_2({\mathbb {C}}^{m+2})}$, or

  2. ( $\mathcal{T}_{B}$) $m$ is even, say $m=2n$, and $M$ is an open part of a tube around a totally geodesic ${\mathbb {H}}P^{n}$ in ${G_2({\mathbb {C}}^{m+2})}$.

On the other hand, we say that a real hypersurface $M$ in complex two-plane Grassmannians ${G_2({\mathbb {C}}^{m+2})}$ is Hopf if and only if the Reeb vector field $\xi$ is Hopf, that is, $A\xi \in \mathcal {C}^{\bot }$. In addition, when the distribution $\mathcal {Q}^{\bot }$ of $M$ in ${G_2({\mathbb {C}}^{m+2})}$ is invariant under the shape operator, $M$ is said to be a $\mathcal {Q}^{\bot }$-invariant real hypersurface.

Moreover, we say that the Reeb flow of $M$ in ${G_2({\mathbb {C}}^{m+2})}$ is isometric, when the Reeb vector field $\xi$ of $M$ is Killing. It implies that the metric tensor $g$ of $M$ is invariant under the Reeb flow of $\xi$, that is, $\mathcal {L}_{\xi }g =0$ where $\mathcal {L}_{\xi }$ denotes the Lie derivative along the direction of $\xi$. Related to this notion, for complex two-plane Grassmannians ${G_2({\mathbb {C}}^{m+2})}$, Berndt and Suh gave a remarkable characterization for real hypersurface of type $(\mathcal {T}_{A})$ mentioned in theorem ${\rm A}$ (see [Reference Berndt and Suh5]).

Indeed, the notion of isometric Reeb flow is regarded as a typical example of Killing vector fields which are classical objects of differential geometry. As mentioned above, Killing vector fields are defined by vanishing of the Lie derivative of metric tensor $g$ with respect to a vector $X$, that is, $\mathcal {L}_{X}g=0$. Recently, the notion of isometric Reeb flow is considered for real hypersurfaces in Hermitian symmetric spaces including complex Grassmannians and complex quadrics, etc. (see [Reference Berndt and Suh5, Reference Berndt and Suh7, Reference Suh32, Reference Suh35]). By using Lie algebraic method given in [Reference Adams1, Reference Ballmann2, Reference Borel and De Siebenthal10], Berndt–Suh [Reference Berndt and Suh8] gave a complete classification of real hypersurfaces with isometric Reeb flow in Hermitian symmetric spaces.

Let us consider a Killing tensor field which is a generalization of a Killing vector field on $(\bar M, g)$. Let $\mathbb {K}$ be a tensor field of type $(0,k)$ on $(\bar M, g)$. Then, $\mathbb {K}$ is said to be Killing if the complete symmetrization of $\nabla \mathbb {K}$ vanishes. That is, it means that $\mathbb {K}$ satisfies

\[ (\nabla_{X}\mathbb{K})(X, X, \ldots, X) = 0 \]

for any vector field $X$. It follows that for such a Killing tensor, the expression $\mathbb {K} (\dot {\gamma }, \dot {\gamma }, \cdots , \dot {\gamma })$ is constant along any geodesic $\gamma$ (see [Reference Semmelmann29]). In particular, the existing literature on symmetric Killing tensors is huge, especially coming from theoretical physics (see [Reference Heil, Moroianu and Semmelmann12, Reference Semmelmann29]). As examples of such a symmetric Killing tensor, real hypersurfaces in complex two-plane Grassmannians ${G_2({\mathbb {C}}^{m+2})}$ with Killing shape operator were considered by Lee and Suh (see [Reference Lee and Suh20]). Recently, Lee, Woo and Suh [Reference Lee, Woo and Suh21] considered the notion of Killing normal Jacobi operator of Hopf real hypersurfaces in complex Grassmannians of rank 2. In addition, Suh gave a classification for Hopf real hypersurfaces with Killing Ricci tensor in complex Grassmannians of rank 2 (see [Reference Suh36, Reference Suh37]).

Now, we define a structure Jacobi tensor $\mathbb {R}_{\xi }$ which is a symmetric tensor field of type (0,2) on $M$ in ${G_2({\mathbb {C}}^{m+2})}$ given by

(1.2)\begin{equation} \mathbb{R}_{\xi} (Y, Z) = g({R_{\xi}}Y, Z) \end{equation}

for any tangent vector fields $Y$ and $Z$ on $M$. Here, ${R_{\xi }}$ is a symmetric tensor field of type (1,1) on $M$ (so-called, the structure Jacobi operator of $M$). If the structure Jacobi tensor $\mathbb {R}_{\xi }$ satisfies

\begin{equation*} ({\nabla}_X \mathbb{R}_{\xi}) (X, X)=0 \end{equation*}

for any tangent vector field $X$ on $M$, then $\mathbb {R}_{\xi }$ is said to be Killing. Taking the covariant derivative of (1.2), the property of Killing with respect to $\mathbb {R}_{\xi }$ becomes

(1.3)\begin{equation} ({\nabla}_X \mathbb{R}_{\xi})(X,X)= g((\nabla_{X} {R_{\xi}})X, X)=0. \end{equation}

By virtue of the linearization, (1.3) can be rearranged as

(1.4)\begin{equation} g\big(({\nabla}_X {R_{\xi}})Y, Z \big) + g\big(({\nabla}_Y {R_{\xi}})Z, X \big) +g\big(({\nabla}_Z {R_{\xi}}) X, Y \big) = 0 \end{equation}

for any tangent vector fields $X$, $Y$ and $Z \in TM$. If the structure Jacobi operator ${R_{\xi }}$ of $M$ in ${G_2({\mathbb {C}}^{m+2})}$ satisfies (1.4), we say that ${R_{\xi }}$ is cyclic parallel. Moreover, by local existence and uniqueness theorem for geodesics, (1.4) can be interpreted that the structure Jacobi curvature ${\mathbb {R}}_{\xi }(\dot \gamma , \dot \gamma ):=g({R_{\xi }} \dot \gamma , \dot \gamma )$ is constant along the geodesic $\gamma$ with $\gamma (0)=p$ and ${\dot \gamma }(0)=X_{p}$ for any point $p \in M$ and any tangent vector $X(p)=X_{p} \in T_{p}M$.

From the assumption of structure Jacobi operator being cyclic parallel, first we assert that the unit normal vector field $N$ becomes singular as follows:

Theorem 1 Let $M$ be a Hopf real hypersurface in complex two-plane Grassmannians ${G_2({\mathbb {C}}^{m+2})}$ for $m \geq 3$. If $M$ has a cyclic parallel structure Jacobi operator, then the normal vector field $N$ of $M$ is singular.

Next, by using theorem 1 we give a classification of Hopf real hypersurfaces in complex two-plane Grassmannians ${G_2({\mathbb {C}}^{m+2})}$, $m \geq 3$, with cyclic parallel structure Jacobi operator as follows:

Theorem 2 Let $M$ be a Hopf real hypersurface in complex two-plane Grassmannians ${G_2({\mathbb {C}}^{m+2})}$, $m \geq 3$. Then the structure Jacobi operator ${R_{\xi }}$ of $M$ is cyclic parallel if and only if $M$ is locally congruent to an open part of a tube of $r = ({\pi }/{4 \sqrt {2})}$ around a totally geodesic ${G_2({\mathbb {C}}^{m+1})}$ in ${G_2({\mathbb {C}}^{m+2})}$.

2. Preliminaries

As mentioned in the introduction, the complete classifications of real hypersurfaces in complex two-plane Grassmannians ${G_2({\mathbb {C}}^{m+2})}$, $m \geq 3$, satisfying two invariant conditions for the distributions $\mathcal {C}^{\bot }=\mathrm {span}\{\xi \}$ and ${{\mathcal {Q}}^{\bot }}=\mathrm {span}\{\xi _{1}, \xi _{2}, \xi _{3}\}$ was given in [Reference Berndt and Suh4].

In fact, in [Reference Berndt3, Reference Berndt and Suh4] Berndt and Suh gave the characterizations of the singular unit normal vector $N$ of $M$ in complex two-plane Grassmannians ${G_2({\mathbb {C}}^{m+2})}$: There are two types of singular normal vector, those $N$ for which $JN \bot \mathcal {J} N$, and those for which $JN \in \mathcal {J} N$. In other words, it means that $\xi \in \mathcal {Q}$ or $\xi \in {{\mathcal {Q}}^{\bot }}$ because $JN=-\xi$, $\mathcal {J}N=\mathrm {span}\{\xi _{1}, \xi _{2}, \xi _{3}\}={{\mathcal {Q}}^{\bot }}$, and $TM=\mathcal {Q} \oplus {{\mathcal {Q}}^{\bot }}$. The following proposition tells us that the normal vector field $N$ on the model spaces of $(\mathcal {T}_{A})$ is singular of type of $JN \in \mathcal {J} N$, that is, $\xi \in {{\mathcal {Q}}^{\bot }}$.

Proposition A [Reference Berndt and Suh4, Reference Berndt and Suh9]

Let $(\mathcal {T}_{A})$ be the tube of radius $0 < r < \frac {\pi }{\sqrt {8}}$ around the totally geodesic ${G_2({\mathbb {C}}^{m+1})}$ in ${G_2({\mathbb {C}}^{m+2})}$. Then the following statements hold:

  1. 1. $(\mathcal {T}_{A})$ is a Hopf hypersurface.

  2. 2. Every unit normal vector field $N$ of $(\mathcal {T}_{A})$ is singular and of type $JN \in \mathcal {J} N$.

  3. 3. The eigenvalues and their corresponding eigenspaces and multiplicities are given in Table 1.

  4. 4. The Reeb flow on $(\mathcal {T}_{A})$ is isometric.

Table 1. Principal curvatures of a model space of type $(\mathcal {T}_{A})$

In proposition ${\rm A}$, the notion of isometric Reeb flow gave a kind of characterizations of real hypersurface of type $(\mathcal {T}_{A})$. Like for such an investigation, many geometric conditions were considered as characterizations of the model space of $(\mathcal {T}_{A})$ in complex two-plane Grassmannians (see [Reference Jeong, Pérez, Suh and Woo14, Reference Machado and Pérez22, Reference Machado and Pérez23, Reference Pérez25, Reference Pérez, Lee, Suh and Woo26, Reference Pérez, Suh and Woo28, Reference Suh, Lee and Kim39, Reference Suh, Lee and Kim40]).

On the other hand, by using the notion of isometric Reeb flow, that is, the shape operator $A$ of a Hopf real hypersurface $M$ in ${G_2({\mathbb {C}}^{m+2})}$ commutes with structure tensor $\phi$, that is, $A \phi = \phi A$, Berndt and Suh gave:

(2.1)\begin{equation} \begin{split} (\nabla_{X}A)Y & ={-} \eta(Y) \phi X +(X\alpha)\eta(Y) \xi + \alpha g(A \phi X, Y) \xi - g(A^{2} \phi X, Y) \xi \\ & \quad - \sum_{i=1}^{3}\big\{ \eta_{\nu}(Y)\phi_{\nu} X + g(\phi_{\nu} \xi, Y) \phi \phi_{\nu} X + 2g(\phi_{\nu} \xi, X) \phi \phi_{\nu} Y \\ & \quad + g(\phi_{\nu} \xi, X) \eta_{\nu} (Y) \xi - \eta_{\nu}(\xi) g(\phi_{\nu} X, Y) \xi + g(\phi_{\nu} X, Y){{\xi}_{\nu}} \\ & \quad - \eta(X)\eta_{\nu}(Y) \phi_{\nu} \xi + g(\phi_{\nu} \phi X, Y) \phi_{\nu} \xi \big \} \end{split} \end{equation}

for any tangent vector fields $X$ and $Y$ on $M$ (see proposition 4 in [Reference Berndt and Suh5]). In fact, from (iv) in proposition ${\rm A}$, we see that the shape operator $A$ of $(\mathcal {T}_{A})$ satisfies $A \phi = \phi A$. Thus, the above equation (2.1) holds on $(\mathcal {T}_{A})$ and it can be rearranged as

(2.2)\begin{equation} \begin{split} (\nabla_{X}A)Y & ={-} \eta(Y) \phi X + \alpha g(A \phi X, Y) \xi - g(A^{2} \phi X, Y) \xi \\ & \quad - \sum_{i=1}^{3}\big\{ \eta_{\nu}(Y)\phi_{\nu} X + g(\phi_{\nu} \xi, Y) \phi \phi_{\nu} X + 2g(\phi_{\nu} \xi, X) \phi \phi_{\nu} Y \\ & \quad + g(\phi_{\nu} \xi, X) \eta_{\nu} (Y) \xi - \eta_{\nu}(\xi) g(\phi_{\nu} X, Y) \xi + g(\phi_{\nu} X, Y){{\xi}_{\nu}} \\ & \quad - \eta(X)\eta_{\nu}(Y) \phi_{\nu} \xi + g(\phi_{\nu} \phi X, Y) \phi_{\nu} \xi \big \} \end{split} \end{equation}

for any tangent vector fields $X$ and $Y$ on $T(\mathcal {T}_{A})=T_{\alpha }\oplus T_{\beta }\oplus T_{\lambda }\oplus T_{\mu }$.

3. Fundamental equations of real hypersurfaces in ${G_2({\mathbb {C}}^{m+2})}$

We use some references [Reference Lee and Suh17, Reference Pérez and Suh27, Reference Suh34] to recall the Riemannian geometry of complex two-plane Grassmannians ${G_2({\mathbb {C}}^{m+2})}$, $m \geq 3$, and some fundamental formulas including the Codazzi and Gauss equations for a real hypersurface in ${G_2({\mathbb {C}}^{m+2})}$.

Let $M$ be a real hypersurface of complex two-plane Grassmannians ${G_2({\mathbb {C}}^{m+2})}$, $m \geq 3$, that is, a submanifold of ${G_2({\mathbb {C}}^{m+2})}$ with real codimension one. The induced Riemannian metric on $M$ will also be denoted by $g$, and $\nabla$ denotes the Riemannian connection of $(M,g)$. Let $N$ be a local unit normal field of $M$ in ${G_2({\mathbb {C}}^{m+2})}$ and $S$ the shape operator of $M$ with respect to $N$, that is, ${\bar \nabla }_{X}N = -SX$. The Kähler structure $J$ of complex two-plane Grassmannians ${G_2({\mathbb {C}}^{m+2})}$ induces on $M$ an almost contact metric structure $(\phi ,\xi ,\eta ,g)$. Furthermore, let $\{J_1, J_2, J_3 \}$ be a canonical local basis of the quaternionic Kähler structure ${\mathcal {J}}$. Then each $J_\nu$ induces an almost contact metric structure $(\phi _\nu ,\xi _\nu ,\eta _\nu ,g)$ on $M$. Now let us put

(3.1)\begin{equation} JX={{{\phi}}}X+{\eta}(X)N,\quad J_{\nu}X={{{\phi}}}_{\nu}X+{\eta}_{\nu}(X)N \end{equation}

for any tangent vector $X$ on a real hypersurface $M$ in ${G_2({\mathbb {C}}^{m+2})}$, where $N$ denotes a normal vector of $M$ in ${G_2({\mathbb {C}}^{m+2})}$. Then the following identities can be proved in a straightforward method and will be used frequently in subsequent calculations:

(3.2)\begin{equation} \begin{split} & {\phi}_{\nu +1}{\xi}_{\nu}={-}{\xi}_{{\nu}+2},\quad {\phi}_{\nu}{\xi}_{{\nu}+1}={\xi}_{{\nu}+2}, \quad {\phi}{\xi}_{\nu}={\phi}_{\nu}{\xi},\quad {\eta}_{\nu}({\phi}X)={\eta}({\phi}_{\nu}X),\\ & {\phi}_{\nu}{\phi}_{{\nu}+1}X={\phi}_{{\nu}+2}X+{\eta}_{{\nu}+1}(X){\xi}_{\nu}, \quad {\phi}_{{\nu}+1}{\phi}_{\nu}X={-}{\phi}_{{\nu}+2}X+{\eta}_{\nu}(X){\xi}_{{\nu}+1}, \end{split} \end{equation}

where we have used that $J_{\nu }J_{\nu +1}=J_{\nu +2}= - J_{\nu +1}J_{\nu }$.

On the other hand, from the parallelism of $J$ and $\mathcal {J}$ which are defined by

\begin{equation*} \bar \nabla_{X} J =0 \ \ \mathrm{and} \ \ \bar \nabla_{X}J_{\nu} = q_{\nu+2}(X)J_{\nu+1} - q_{\nu+1}(X) J_{\nu+2} \ (\nu \ \mathrm{mod}\ 3), \end{equation*}

together with Gauss and Weingarten formulas, it follows that

(3.3)\begin{gather} ({\nabla}_X{{{\phi}}})Y={\eta}(Y)AX-g(AX,Y){\xi},\quad {\nabla}_X{\xi}={{{\phi}}}AX, \end{gather}
(3.4)\begin{gather} {\nabla}_X{\xi}_{\nu}=q_{{\nu}+2}(X){\xi}_{{\nu}+1}-q_{{\nu}+1}(X){\xi}_{{\nu}+2} +{{{\phi}}}_{\nu}AX, \end{gather}
(3.5)\begin{gather} \begin{split} ({\nabla}_X{{{\phi}}}_{\nu})Y & ={-}q_{{\nu}+1}(X){{{\phi}}}_{{\nu}+2}Y+q_{{\nu}+2}(X){{{\phi}}}_{{\nu}+1}Y\\ & \quad + {\eta}_{\nu}(Y)AX -g(AX,Y){\xi}_{\nu}. \end{split} \end{gather}

Combining these formulas, we find the following

(3.6)\begin{equation} \begin{split} {\nabla}_X({{{\phi}}}_{\nu}{\xi}) & ={\nabla}_X({{{\phi}}}{\xi}_{\nu}) \\ & =({\nabla}_X{{{\phi}}}){\xi}_{\nu}+{{{\phi}}}({\nabla}_X{\xi}_{\nu})\\ & =q_{{\nu}+2}(X){{{\phi}}}_{{\nu}+1}{\xi}-q_{{\nu}+1}(X){{{\phi}}}_{{\nu}+2}{\xi}+{{{\phi}}}_{\nu}{{{\phi}}}AX \\ & \quad \ - g(AX,{\xi}){\xi}_{\nu}+{\eta}({\xi}_{\nu})AX. \end{split} \end{equation}

Moreover, from $JJ_{\nu }=J_{\nu }J$, ${\nu }=1,2,3$, it follows that

(3.7)\begin{equation} {{{\phi}}}{{{\phi}}}_{\nu}X={{{\phi}}}_{\nu}{{{\phi}}}X+{\eta}_{\nu}(X){\xi}-{\eta}(X){\xi}_{\nu}. \end{equation}

Finally, using the explicit expression for the Riemannian curvature tensor $\bar {R}$ of complex two-plane Grassmannians ${G_2({\mathbb {C}}^{m+2})}$ in the introduction, the Codazzi and Gauss equations of $M$ in ${G_2({\mathbb {C}}^{m+2})}$ are given respectively by

(3.8)\begin{equation} \begin{split} (\nabla_XA)Y - (\nabla_YA)X & = \eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X,Y)\xi \\ & \quad + \sum_{\nu=1}^{3} \big\{\eta_\nu(X)\phi_\nu Y - \eta_\nu(Y)\phi_\nu X - 2g(\phi_\nu X,Y)\xi_\nu\big\} \\ & \quad + \sum_{\nu=1}^{3} \big\{\eta_\nu(\phi X)\phi_\nu\phi Y - \eta_\nu(\phi Y)\phi_\nu\phi X\big\} \\ & \quad + \sum_{\nu=1}^{3} \big\{\eta(X)\eta_\nu(\phi Y) - \eta(Y)\eta_\nu(\phi X)\big\}\xi_{\nu} \end{split} \end{equation}

and

(3.9)\begin{equation} \begin{split} R(X,Y)Z & = g(Y,Z)X - g(X,Z)Y + g({\phi}Y,Z){\phi}X - g({\phi}X,Z){\phi}Y \\ & \quad - 2g({\phi}X,Y){\phi}Z+ g(AY,Z)AX - g(AX,Z)AY \\ & \quad + \sum_{\nu=1}^{3} \Big \{g({{\phi}_{\nu}}Y,Z){{\phi}_{\nu}}X - g({{\phi}_{\nu}}X,Z){{\phi}_{\nu}}Y - 2g({{\phi}_{\nu}}X,Y){{\phi}_{\nu}}Z \\ & \quad + g({{\phi}_{\nu}}{\phi}Y,Z){{\phi}_{\nu}} {\phi}X - g({{\phi}_{\nu}}{\phi}X,Z){{{\phi}_{\nu}}}{\phi}Y \\ & \quad + \eta(X){{{\eta}_{\nu}}}(Z){{{\phi}_{\nu}}}{\phi}Y - {\eta}(Y){{{\eta}_{\nu}}}(Z){{{\phi}_{\nu}}}{\phi}X \\ & \quad + {\eta}(Y)g({{{\phi}_{\nu}}}{\phi}X,Z){{\xi}_{\nu}} - {\eta}(X)g({{{\phi}_{\nu}}}{\phi}Y,Z){{{\xi}_{\nu}}} \Big \} \end{split} \end{equation}

for any tangent vector fields $X$, $Y$ and $Z$ on $M$.

On the other hand, we can derive some important facts from the geometric condition of $M$ being Hopf, that is, $A\xi = \alpha \xi$ where $\alpha = g(A\xi , \xi )$. Among them, we introduce the following formulas which are induced from the Codazzi equation:

Lemma A [Reference Berndt and Suh5]

If $M$ is a connected orientable Hopf real hypersurface in complex two-plane Grassmannians ${G_2({\mathbb {C}}^{m+2})}$, $m \geq 3$, then

(3.10)\begin{equation} \mathrm{grad} \, \alpha = (\xi \alpha)\xi + 4\sum_{\nu=1}^{3} \eta_{\nu}(\xi)\phi_{\nu} \xi \end{equation}

and

(3.11) \begin{equation} \begin{split} & 2 A \phi A X - \alpha A\phi X - \alpha \phi A X \\ & \quad = 2 \phi X + 2 \sum_{\nu=1}^{3} \big\{ \eta_{\nu} (X) \phi_{\nu} \xi - g(\phi_{\nu}\xi, X) \xi_{\nu} + \eta_{\nu} (\xi) \phi_{\nu} X \big\} \\ & \quad \quad -4 \sum_{\nu=1}^{3} \big \{ \eta(X) \eta_{\nu} (\xi) \phi_{\nu} \xi - \eta_{\nu}(\xi) g(\phi_{\nu} \xi, X) \xi \big\} \end{split} \end{equation}

for any tangent vector field $X$ on $M$ in ${G_2({\mathbb {C}}^{m+2})}$.

4. Proof of theorem 1

Let $M$ be a Hopf real hypersurface with cyclic parallel structure Jacobi operator in complex two-plane Grassmannians ${G_2({\mathbb {C}}^{m+2})}$, $m \geq 3$.

From (3.9) the structure Jacobi operator ${R_{\xi }} \in \mathrm {End}(TM)$ is given as follows

(4.1)\begin{equation} \begin{split} R_{\xi}(Y) & = R(Y,\xi)\xi \\ & = Y - \eta(Y) \xi + \alpha AY - \alpha^{2} \eta(Y) \xi \\ & \quad - \sum_{\nu=1}^{3} \big\{ \eta_{\nu}(Y) {{\xi}_{\nu}} - \eta(Y) \eta_{\nu}(\xi) {{\xi}_{\nu}} - 3g(\phi_{\nu} \xi, Y) \phi_{\nu} \xi + \eta_{\nu}(\xi) \phi_{\nu} \phi Y \big \} \end{split} \end{equation}

for any tangent vector field $Y \in TM$ (see [Reference Lee and Suh19, Reference Machado, Pérez and Suh24]).

Taking the covariant derivative of (4.1) along the direction of $X$ implies

(4.2)\begin{equation} \begin{split} (\nabla_{X}R_{\xi})Y & = \nabla_{X}({R_{\xi}}Y) - {R_{\xi}} (\nabla_{X}Y) \\ & ={-}g(\phi AX, Y) \xi - \eta(Y) \phi AX \\ & \quad - \sum_{\nu=1}^{3} \Big [ g(\phi_{\nu} AX, Y) {{\xi}_{\nu}} + 2\eta(Y) g(\phi_{\nu} \xi, AX) {{\xi}_{\nu}} + \eta_{\nu}(Y) \phi_{\nu} AX \\ & \quad + 3 g(\phi_{\nu} AX, \phi Y) \phi_{\nu} \xi + 3 \eta(Y) \eta_{\nu}(AX) \phi_{\nu} \xi \\ & \quad - 3g(\phi_{\nu} \xi, Y) \phi_{\nu} \phi AX + 3 \alpha \eta (X) g(\phi_{\nu} \xi, Y) {{\xi}_{\nu}} \\ & \quad - 4 \eta_{\nu}(\xi) g(\phi_{\nu} \xi, Y) AX - 4 \eta_{\nu}(\xi)g(AX, Y) \phi_{\nu} \xi \\ & \quad - 2g(\phi_{\nu} \xi, AX) \phi_{\nu}\phi Y \Big ] \\ & \quad + g((\nabla_{X}A)\xi, \xi)AY + \alpha (\nabla_{X}A)Y - \alpha g((\nabla_{X}A)Y, \xi)\xi \\ & \quad - \alpha g(AY, \phi AX) \xi - \alpha \eta(Y) (\nabla_{X}A) \xi - \alpha \eta(Y) A \phi AX \end{split} \end{equation}

for any tangent vector fields $X$ and $Y$ on $M$ (see [Reference Lee and Suh19]). From this and using symmetric property of the structure Jacobi operator ${R_{\xi }}$ in ${G_2({\mathbb {C}}^{m+2})}$, the cyclic parallelism of the structure Jacobi operator (1.4) can be rearranged as follows:

(4.3) \begin{align} 0 & = g\big((\nabla_{X}{R_{\xi}})Y, Z \big) + g\big((\nabla_{Y}{R_{\xi}})Z, X \big)+g\big((\nabla_{Z}{R_{\xi}})X, Y \big)\nonumber\\ & = g\big((\nabla_{X}{R_{\xi}})Y, Z \big) + g\big((\nabla_{Y}{R_{\xi}})X, Z \big)\nonumber \\ & \quad + g(A\phi X, Z) \eta(Y) + \eta(X) g(A \phi Y, Z) + (\xi \alpha) g(AX, Y)\eta(Z)\nonumber \\ & \quad - \alpha (\xi \alpha) \eta(X) \eta(Y) \eta(Z) + \alpha^{2} \eta(Y) g(A \phi X, Z) - \alpha \eta(Y) g(A \phi A X, Z)\nonumber \\ & \quad + \alpha \eta(Y) g(A \phi AX, Z) + \alpha \eta(X) g(A \phi AY, Z) - \alpha (\xi \alpha) \eta(X) \eta(Y) \eta(Z)\nonumber \\ & \quad + \alpha^{2} \eta(X) g(A \phi Y, Z) - \alpha \eta(X) g(A \phi A Y, Z) + \alpha g((\nabla_X A)Y, Z)\nonumber \\ & \quad + \alpha g( \phi X, Y)\eta(Z) + \alpha \eta(X)g(\phi Y, Z) + 2\alpha \eta(Y) g(\phi X, Z) \nonumber \\ & \quad + \sum_{\nu=1}^{3} \Big [ \eta_{\nu}(Y) g(A \phi_{\nu} X, Z) - 2\eta(X)\eta_{\nu}(Y) g(A \phi_{\nu} \xi, Z) + \eta_{\nu}(X) g(A \phi_{\nu} Y, Z) \nonumber\\ & \quad + 3g(\phi_{\nu} \xi, Y) g(A \phi_{\nu} \phi X, Z) - 3 \eta(X) g(\phi_{\nu} \xi, Y) g(A{{\xi}_{\nu}}, Z)\nonumber \\ & \quad + 3g(\phi_{\nu} \xi, X) g(A \phi \phi_{\nu} Y, Z) - 3 \alpha g(\phi_{\nu} \xi, X) \eta_{\nu}(Y)\eta(Z)\nonumber \\ & \quad + 4 \eta_{\nu}(\xi) g(\phi_{\nu} \xi, X) g(AY, Z) + 4 \eta_{\nu}(\xi) g(\phi_{\nu} \xi, Y)g(AX, Z)\nonumber\\ & \quad + 2 g(\phi_{\nu}\phi X, Y)g(A \phi_{\nu} \xi, Z) + 4 g(AX, Y) \eta_{\nu}(\xi) g(\phi_{\nu} \xi, Z)\nonumber\\ & \quad - 4 \alpha \eta(X) \eta(Y) \eta_{\nu}(\xi) g(\phi_{\nu} \xi, Z) - 4 \alpha \eta(X) \eta(Y) \eta_{\nu}(\xi) g(\phi_{\nu} \xi, Z) \Big ]\nonumber \\ & \quad + \alpha \sum_{\nu=1}^{3} \Big [ g(\phi_\nu X, Y)\eta_\nu(Z) + \eta_\nu(X)g(\phi_\nu Y, Z) + 2\eta_{\nu}(Y) g(\phi_\nu X,Z)\nonumber \\ & \quad - g(\phi_\nu\phi X, Y)g(\phi_{\nu} \xi, Z) + g(\phi_{\nu} \xi, X)g(\phi \phi_\nu Y, Z)\nonumber \\ & \quad + \eta_\nu(\phi X)\eta_{\nu}(Y) \eta(Z) + \eta(X)\eta_{\nu}(Y) g(\phi_{\nu} \xi, Z)\Big ], \end{align}

where we have used

\begin{equation*} \begin{split} g((\nabla_{Z}A)\xi, X) & = (Z \alpha) \eta(X) - \alpha g(A \phi X, Z) + g(A \phi A X, Z) \\ & = (\xi \alpha) \eta(Z) \eta(X) + 4 \sum_{\nu=1}^{3} \eta_{\nu}(\xi) g(\phi_{\nu} \xi, Z) \eta(X) \\ & \quad \ - \alpha g(A \phi X, Z) + g(A \phi A X, Z) \end{split} \end{equation*}

and

\begin{equation*} \begin{split} & g((\nabla_ZA)X, Y) \\ & = g((\nabla_X A)Z, Y) + \eta(Z)g( \phi X, Y) - \eta(X)g(\phi Z, Y) - 2g(\phi Z,X)\eta(Y) \\ & \quad + \sum_{\nu=1}^{3} \big\{\eta_\nu(Z)g(\phi_\nu X, Y) - \eta_\nu(X)g(\phi_\nu Z, Y) - 2g(\phi_\nu Z,X)\eta_{\nu}(Y) \big\} \\ & \quad + \sum_{\nu=1}^{3} \big\{\eta_\nu(\phi Z)g(\phi_\nu\phi X, Y) - \eta_\nu(\phi X)g(\phi_\nu\phi Z, Y) \big\} \\ & \quad + \sum_{\nu=1}^{3} \big\{\eta(Z)\eta_\nu(\phi X) - \eta(X)\eta_\nu(\phi Z)\big\}\eta_{\nu}(Y) \end{split} \end{equation*}

for any tangent vector fields $X$, $Y$ and $Z$ on $M$. Deleting $Z$ from (4.3) and using (4.2) gives

(4.4)\begin{align} & -g(\phi AX, Y) \xi - \eta(Y) \phi AX -g(\phi AY, X) \xi - \eta(X) \phi AY + \eta(Y)A\phi X \nonumber\\ & + \eta(X) A \phi Y + (\xi \alpha) g(AX, Y) \xi - 2 \alpha (\xi \alpha) \eta(X) \eta(Y) \xi + \alpha^{2} \eta(Y) A \phi X \nonumber\\ & + \alpha^{2} \eta(X) A \phi Y + \alpha (\nabla_X A)Y + \alpha g(\phi X, Y)\xi + \alpha \eta(X) \phi Y + 2\alpha \eta(Y) \phi X \nonumber\\ & - \sum_{\nu=1}^{3} \Big [ g(\phi_{\nu} AX, Y) {{\xi}_{\nu}} + 2\eta(Y) g(\phi_{\nu} \xi, AX) {{\xi}_{\nu}} + \eta_{\nu}(Y) \phi_{\nu} AX \nonumber\\ & +3 g(\phi_{\nu} AX, \phi Y) \phi_{\nu} \xi + 3 \eta(Y) \eta_{\nu}(AX) \phi_{\nu} \xi - 3g(\phi_{\nu} \xi, Y) \phi_{\nu} \phi AX \nonumber\\ &+ 3 \alpha \eta (X) g(\phi_{\nu} \xi, Y) {{\xi}_{\nu}} - 4 \eta_{\nu}(\xi) g(\phi_{\nu} \xi, Y) AX \nonumber\\ & \quad \quad \quad - 4 \eta_{\nu}(\xi)g(AX, Y) \phi_{\nu} \xi - 2g(\phi_{\nu} \xi, AX) \phi_{\nu}\phi Y \nonumber\\ &+ g(\phi_{\nu} AY, X) {{\xi}_{\nu}} + 2\eta(X) g(\phi_{\nu} \xi, AY) {{\xi}_{\nu}} + \eta_{\nu}(X) \phi_{\nu} AY \nonumber\\ &+3 g(\phi_{\nu} AY, \phi X) \phi_{\nu} \xi + 3 \eta(X) \eta_{\nu}(AY) \phi_{\nu} \xi - 3g(\phi_{\nu} \xi, X) \phi_{\nu} \phi AY \nonumber\\ & + 3 \alpha \eta (Y) g(\phi_{\nu} \xi, X) {{\xi}_{\nu}} - 4 \eta_{\nu}(\xi) g(\phi_{\nu} \xi, X) AY \nonumber\\ & - 4 \eta_{\nu}(\xi)g(AY, X) \phi_{\nu} \xi - 2g(\phi_{\nu} \xi, AY) \phi_{\nu}\phi X \Big ] \nonumber\\ & + \sum_{\nu=1}^{3} \Big [ \eta_{\nu}(Y) A \phi_{\nu} X - 2\eta(X)\eta_{\nu}(Y) A \phi_{\nu} \xi + \eta_{\nu}(X) A \phi_{\nu} Y \nonumber\\ &+ 3g(\phi_{\nu} \xi, Y) A \phi_{\nu} \phi X - 3 \eta(X) g(\phi_{\nu} \xi, Y) A{{\xi}_{\nu}} \nonumber\\ &+ 3g(\phi_{\nu} \xi, X) A \phi \phi_{\nu} Y - 3 \alpha g(\phi_{\nu} \xi, X) \eta_{\nu}(Y)\xi \nonumber\\ &+ 4 \eta_{\nu}(\xi) g(\phi_{\nu} \xi, X) AY + 4 \eta_{\nu}(\xi) g(\phi_{\nu} \xi, Y) AX \nonumber\\ &+ 2 g(\phi_{\nu}\phi X, Y) A \phi_{\nu} \xi + 4 g(AX, Y)\eta_{\nu}(\xi) \phi_{\nu} \xi \nonumber\\ &- 4 \alpha \eta(X) \eta(Y) \eta_{\nu}(\xi) \phi_{\nu} \xi - 4 \alpha \eta(X) \eta(Y) \eta_{\nu}(\xi) \phi_{\nu} \xi \Big ] \nonumber\\ & + \alpha \sum_{\nu=1}^{3} \Big [ g(\phi_\nu X, Y) {{\xi}_{\nu}} + \eta_\nu(X) \phi_\nu Y + 2\eta_{\nu}(Y) \phi_\nu X - g(\phi_\nu\phi X, Y) \phi_{\nu} \xi\nonumber\\ & + g(\phi_{\nu} \xi, X) \phi \phi_\nu Y + \eta_\nu(\phi X)\eta_{\nu}(Y) \xi + \eta(X)\eta_{\nu}(Y) \phi_{\nu} \xi \Big ]\nonumber\\ & + g((\nabla_{X}A)\xi, \xi)AY - \alpha g((\nabla_{X}A)Y, \xi)\xi - \alpha g(AY, \phi AX) \xi \nonumber\\ & - \alpha \eta(Y) A \phi AX + g((\nabla_{Y}A)\xi, \xi)AX - \alpha g((\nabla_{Y}A)X, \xi)\xi \nonumber\\ & - \alpha g(AX, \phi AY) \xi - \alpha \eta(X) A \phi AY + \alpha (\nabla_{X}A)Y - \alpha \eta(Y) (\nabla_{X}A) \xi \nonumber\\ & + \alpha (\nabla_{Y}A)X - \alpha \eta(X) (\nabla_{Y}A) \xi =0. \end{align}

On the other hand, by using the Codazzi equation (3.8) and (3.10) in the latter part of (4.4), we obtain

(4.5)\begin{align} & g((\nabla_{X}A)\xi, \xi)AY - \alpha g((\nabla_{X}A)Y, \xi)\xi - \alpha g(AY, \phi AX) \xi - \alpha \eta(Y) A \phi AX\nonumber\\ & + g((\nabla_{Y}A)\xi, \xi)AX - \alpha g((\nabla_{Y}A)X, \xi)\xi - \alpha g(AX, \phi AY) \xi - \alpha \eta(X) A \phi AY\nonumber\\ & + \alpha (\nabla_{X}A)Y + \alpha (\nabla_{Y}A)X - \alpha \eta(Y) (\nabla_{X}A) \xi - \alpha \eta(X) (\nabla_{Y}A) \xi\nonumber\\ & = (\xi \alpha) \eta(X) AY + 4 \sum_{\nu=1}^{3} \eta_{\nu}(\xi) g(\phi_{\nu} \xi, X) AY - \alpha g(A\phi AX, Y) \xi \nonumber\\ & \quad - \alpha \eta(Y) A \phi AX -\alpha (\xi \alpha) \eta(X) \eta(Y)\xi - 4\alpha \sum_{\nu=1}^{3} \eta_{\nu}(\xi) g(\phi_{\nu} \xi, X) \eta(Y)\xi \nonumber\\ & \quad - \alpha^{2} g(\phi AX,Y) \xi + \alpha g(A \phi AX, Y) \xi + (\xi \alpha) \eta(Y) AX \nonumber\\ & \quad + 4 \sum_{\nu=1}^{3} \eta_{\nu}(\xi) g(\phi_{\nu} \xi, Y) AX + \alpha g(A\phi AX, Y) \xi \nonumber\\ & \quad - \alpha \eta(X) A \phi AY -\alpha (\xi \alpha) \eta(X) \eta(Y) \xi \nonumber\\ & \quad -4 \alpha \sum_{\nu=1}^{3} \eta_{\nu}(\xi) \eta(X) g(\phi_{\nu} \xi, Y) \xi - \alpha^{2} g(\phi AY,X)\xi + \alpha g(A \phi AY, X) \xi \nonumber\\ & \quad + 2 \alpha (\nabla_X A)Y + \alpha \eta(Y)\phi X - \alpha \eta(X)\phi Y - 2\alpha g(\phi Y,X)\xi \nonumber\\ & \quad+ \alpha \sum_{\nu=1}^{3} \big \{ \eta_\nu(Y)\phi_\nu X - \eta_\nu(X)\phi_\nu Y - 2g(\phi_\nu Y,X)\xi_\nu \eta_\nu(\phi Y)\phi_\nu\phi X \big \}\nonumber\\ & \quad + \alpha \sum_{\nu=1}^{3} \big \{ - \eta_\nu(\phi X)\phi_\nu\phi Y + \eta(Y)\eta_\nu(\phi X){{\xi}_{\nu}} - \eta(X)\eta_\nu(\phi Y)\xi_{\nu} \big \}\nonumber\\ & \quad-\alpha \eta(Y) \{(\xi \alpha) \eta(X) \xi + 4 \sum_{\nu=1}^{3} \eta_{\nu}(\xi) g(\phi_{\nu} \xi, X) \xi + \alpha \phi AX - A\phi AX \big \}\nonumber\\ & \quad-\alpha \eta(X) \{(\xi \alpha) \eta(Y) \xi + 4 \sum_{\nu=1}^{3} \eta_{\nu}(\xi) g(\phi_{\nu} \xi, Y) \xi + \alpha \phi AY - A\phi AY \big \}. \end{align}

From now on, we want to prove that the normal vector field $N$ of a Hopf real hypersurface $M$ in ${G_2({\mathbb {C}}^{m+2})}$ is singular. Then by the meaning of singularity mentioned in the introduction, we see that either $\xi \in \mathcal {Q}$ or $\xi \in {{\mathcal {Q}}^{\bot }}$ where $\mathcal {Q}$ is the maximal quaternionic subbundle of $TM = \mathcal {Q} \oplus {{\mathcal {Q}}^{\bot }}$. In order to do this, we may put the Reeb vector field $\xi$ as follows:

(*)\begin{equation} \xi = \eta(X_{0}){X_{0}} + \eta({{\xi}_1}) {{\xi}_1} \end{equation}

for unit vector fields ${X_{0}} \in \mathcal {Q}$ and ${{\xi }_1} \in {{\mathcal {Q}}^{\bot }}$ with $\eta ({X_{0}}) \eta ({{\xi }_1}) \neq 0$. By using the notation (*) we obtain that the Reeb function $\alpha$ is constant along the direction of $\xi$ if and only if the distribution $\mathcal {Q}$- or the $\mathcal {Q}^{\bot }$-component of the structure vector field $\xi$ is invariant by the shape operator, that is $A {X_{0}} = \alpha {X_{0}}$ and $A {{\xi }_1} = \alpha {{\xi }_1}$ (see [Reference Jeong, Machado, Pérez and Suh13, Reference Lee and Suh18]). From this fact, we obtain the following useful formulas for Hopf real hypersurfaces in ${G_2({\mathbb {C}}^{m+2})}$.

Lemma 4.1 Let $M$ be a Hopf real hypersurface with non-vanishing geodesic Reeb flow in ${G_2({\mathbb {C}}^{m+2})}$, $m \geq 3$. If the distribution $\mathcal {Q}$ or $\mathcal {Q}^{\bot }$ component of the structure vector field $\xi$ is invariant by the shape operator, then the following formulas hold:

  1. 1. $A \phi {X_{0}} = \mu \phi {X_{0}}$,

  2. 2. $A \phi {{\xi }_1} = \mu \phi {{\xi }_1}$,

  3. 3. $A \phi _{1} {X_{0}} = \mu \phi _{1} {X_{0}}$

where the function $\mu$ is given by $\mu = ({\alpha ^{2}+ 4 \eta ^{2}({X_{0}})}/{\alpha })$.

Proof. Putting $X = {X_{0}}$ in (3.11) and using $A{X_{0}} = \alpha {X_{0}}$, it yields

(4.6)\begin{equation} \begin{split} & \alpha A \phi {X_{0}} = \alpha^{2} \phi {X_{0}} + 2 \phi {X_{0}} + 2 \eta ({{\xi}_1}) \phi_{1} {X_{0}} -4 \eta({X_{0}}) \eta (\xi_{1}) \phi_{1} \xi ,\end{split} \end{equation}

where we have used $g(\phi _{\nu } \xi , {X_{0}}) =0$ for $\nu =1,2,3$ and $\eta _{2}(\xi ) = \eta _{3}(\xi )=0$.

On the other hand, by (*) we obtain

(4.7)\begin{equation} \phi_{1} \xi = \eta({X_{0}}) \phi_{1} {X_{0}} + \eta({{\xi}_1}) \phi_{1} {{\xi}_1} = \eta({X_{0}}) \phi_{1} {X_{0}}. \end{equation}

In addition, from (*) and $\phi _{1} \xi = \phi _{1} \xi$ we have

\begin{equation*} \begin{split} 0 = \phi \xi & = \eta({X_{0}}) \phi {X_{0}} + \eta({{\xi}_1}) \phi {{\xi}_1} \\ & = \eta({X_{0}}) \phi {X_{0}} + \eta({{\xi}_1}) \phi_{1} \xi \\ & = \eta({X_{0}}) \phi {X_{0}} + \eta({{\xi}_1}) \eta({X_{0}}) \phi_{1} {X_{0}}, \end{split} \end{equation*}

which means

(4.8)\begin{equation} \phi {X_{0}} ={-} \eta({{\xi}_1}) \phi_{1} {X_{0}} \end{equation}

because of $\eta ({X_{0}}) \eta ({{\xi }_1})\neq 0$. Substituting (4.7) and (4.8) to (4.6), we get

\begin{equation*} \alpha A \phi {X_{0}} = \alpha^{2} \phi {X_{0}} + 4 \eta^{2}({X_{0}}) \phi {X_{0}} = (\alpha^{2} + 4 \eta^{2}({X_{0}})) \phi {X_{0}}. \end{equation*}

Since $M$ has non-vanishing geodesic Reeb flow, we see that the vector field $\phi {X_{0}}$ is principal with corresponding principal curvature $\mu = ({\alpha ^{2}+ 4 \eta ^{2}({X_{0}})}/{\alpha })$.

Similarly, using (4.7) and (4.8), together with $\eta ({X_{0}}) \eta ({{\xi }_1}) \neq 0$, the formula (4.6) gives (b) and (c).

When the Reeb function $\alpha$ is vanishing, Pérez and Suh gave the following

Lemma B [Reference Pérez and Suh27]

Let $M$ be a Hopf real hypersurface in ${G_2({\mathbb {C}}^{m+2})}$, $m \geq 3$. If $M$ has vanishing geodesic Reeb flow, then the unit normal vector field $N$ of $M$ is singular, that is, either $\xi \in \mathcal {Q}$ or $\xi \in \mathcal {Q}^{\bot }$.

Remark 4.2 By using the method in the proof of lemma ${\rm B}$, we can assert that if $M$ is a Hopf real hypersurface with constant Reeb curvature, then the unit normal vector field $N$ of $M$ is singular. In fact, since $M$ has constant Reeb function, (3.10) becomes

\[ 4 \sum_{\nu=1}^{3} \eta_{\nu}(\xi) \phi_{\nu} \xi=0 \]

By using (*), this equation yields $\eta ({{\xi }_1}) \phi _{1} \xi =0$. From our assumption of $\eta (X)\eta ({{\xi }_1}) \neq 0$ and (4.7), it leads to $\phi _{1} {X_{0}} =0$. Taking the inner product with $\phi _{1} {X_{0}}$, it implies

\[ g(\phi_{1} {X_{0}}, \phi_{1} {X_{0}}) ={-} g(\phi_{1} ^{2}{X_{0}}, {X_{0}}) = g({X_{0}}, {X_{0}}) - \big(\eta_{1}({X_{0}})\big)^{2}= 1, \]

which gives us a contradiction.

By using lemma ${\rm B}$, in the latter part of this section, we prove that the normal vector field $N$ of $M$ is singular, when a Hopf real hypersurface $M$ in ${G_2({\mathbb {C}}^{m+2})}$ has non-vanishing geodesic Reeb flow $\alpha =g(A\xi , \xi )$.

Lemma 4.3 Let $M$ be a Hopf real hypersurface with non-vanishing geodesic Reeb flow in complex two-plane Grassmannians ${G_2({\mathbb {C}}^{m+2})}$, $m \geq 3$. If the structure Jacobi operator ${R_{\xi }}$ of $M$ is cyclic parallel, then the unit normal vector field $N$ of $M$ is singular.

Proof. In [Reference Lee and Loo16], Lee and Loo show that if $M$ is Hopf, then the Reeb function $\alpha$ is constant along the direction of structure vector field $\xi$, that is, $\xi \alpha =0$. Then we see that the distribution $\mathcal {Q}$- and the $\mathcal {Q}^{\bot }$-component of $\xi$ are invariant by the shape operator $A$, that is $A{X_{0}} = \alpha {X_{0}}$ and $A{{\xi }_1} = \alpha {{\xi }_1}$.

Bearing in mind of these facts, putting $X={X_{0}}$ and $Y= {{\xi }_1}$ in (4.4) and using (4.5), we obtain

\begin{equation*} \begin{split} & \quad - \alpha \eta({X_{0}}) \phi {{\xi}_1} + \mu \eta({{\xi}_1}) \phi {X_{0}} + \mu \eta({X_{0}}) \phi {{\xi}_1} + 3\alpha (\nabla_{{X_{0}}} A){{\xi}_1} + 2\alpha \eta({{\xi}_1}) \phi {X_{0}} \\ & \quad -\alpha^{3} \eta({{\xi}_1}) \phi {X_{0}} + \mu \alpha^{2} \eta({{\xi}_1}) \phi {X_{0}} - \alpha^{3} \eta({X_{0}}) \phi {{\xi}_1} + \mu \alpha^{2} \eta({X_{0}}) \phi {{\xi}_1} \\ & \quad + \sum_{\nu=1}^{3} \Big [ \alpha \eta_{\nu}({{\xi}_1}) \phi_{\nu} {X_{0}} - 3 \alpha g(\phi_{\nu} {X_{0}}, \phi {{\xi}_1}) \phi_{\nu} \xi - 2 \alpha \eta({X_{0}}) \eta_{\nu}({{\xi}_1}) \phi_{\nu} \xi + \eta_{\nu}({{\xi}_1}) A \phi_{\nu} {X_{0}} \\ & \quad \quad \quad \quad - 2\eta({X_{0}})\eta_{\nu}({{\xi}_1}) A \phi_{\nu} \xi - 8 \alpha \eta({X_{0}}) \eta({{\xi}_1}) \eta_{\nu}(\xi) \phi_{\nu} \xi + \alpha \eta_\nu({{\xi}_1})\phi_\nu {X_{0}} \Big ] =0, \end{split} \end{equation*}

where we have used $g(\phi {{\xi }_1}, {X_{0}}) = - g(\phi {X_{0}}, {{\xi }_1})=0$ and

\[ g(\phi_{\nu} {X_{0}}, {{\xi}_1}) = g(\phi_{\nu} \xi, {X_{0}}) = g(\phi_{\nu} \xi, {{\xi}_1}) = g(\phi_{\nu}\phi {X_{0}}, {{\xi}_1}) =0 \]

for all $\nu =1,2,3$. Since $\eta _{2}(\xi )=\eta _{3}(\xi )=0$, together with $g(\phi _{1} {X_{0}}, \phi _{1} {X_{0}}) = 1$, this equation can be rearranged as

(4.9)\begin{equation} \begin{split} & - \alpha \eta({X_{0}}) \phi {{\xi}_1} + \mu \eta({{\xi}_1}) \phi {X_{0}} + \mu \eta({X_{0}}) \phi {{\xi}_1} + 3\alpha (\nabla_{{X_{0}}} A){{\xi}_1} \\ & + 2\alpha \eta({{\xi}_1}) \phi {X_{0}} -\alpha^{3} \eta({{\xi}_1}) \phi {X_{0}} + \mu \alpha^{2} \eta({{\xi}_1}) \phi {X_{0}} \\ & - \alpha^{3} \eta({X_{0}}) \phi {{\xi}_1} + \mu \alpha^{2} \eta({X_{0}}) \phi {{\xi}_1} + 2 \alpha \phi_{1} {X_{0}} - 5 \alpha \eta({X_{0}}) \phi \xi_{1}\\ & + \mu \phi_{1} {X_{0}} - 2\mu \eta({X_{0}}) \phi_{1} \xi - 8 \alpha \eta({X_{0}}) \big(\eta({{\xi}_1})\big)^{2} \phi_{1} \xi =0. \end{split} \end{equation}

From (4.7) and (4.8), (4.9) becomes

(4.10)\begin{equation} \begin{split} & \eta^{2}({X_{0}}) \big \{ - 6\alpha - \mu - \alpha^{3} + \mu \alpha^{2} - 8 \alpha \eta^{2}({{\xi}_1}) \big\}\phi_{1} {X_{0}} \\ & \quad - \eta^{2}({{\xi}_1})\big \{ \mu + 2\alpha -\alpha^{3} + \mu \alpha^{2} \big \} \phi_{1} {X_{0}} \\ & \quad + ( 2 \alpha + \mu ) \phi_{1} {X_{0}} + 3\alpha (\nabla_{{X_{0}}} A){{\xi}_1} =0. \end{split} \end{equation}

On the other hand, from (3.4) and (3.10), the assumption $A{{\xi }_1} = \alpha {{\xi }_1}$ yields

\begin{equation*} \begin{split} (\nabla_{X}A)\xi_{1} & = (X \alpha) {{\xi}_1} + \alpha \nabla_{X}{{\xi}_1} - A(\nabla_{X}{{\xi}_1}) \\ & = 4\eta({{\xi}_1}) g(\phi_{1} \xi, X) {{\xi}_1} + \alpha \{ q_{3}(X) {{\xi}_2} - q_{2}(X) {{\xi}_3} + \phi_{1} AX\} \\ & \quad \ - q_{3}(X) A{{\xi}_2} + q_{2}(X) A{{\xi}_3} - A\phi_{1} AX \end{split} \end{equation*}

for any tangent vector field $X$ on $M$. From this, taking the inner product with $\phi _{1} {X_{0}}$ to (4.10) and (3.4), together with $\alpha \mu = \alpha ^{2}+ 4 \eta ^{2}({X_{0}})$, we get

(4.11)\begin{equation} \begin{split} & \eta^{2}({X_{0}}) \big \{ - 14 \alpha - \mu + 12 \alpha \eta^{2}({X_{0}})\big\} - \eta^{2}({{\xi}_1})\big \{ \mu + 2\alpha + 4 \alpha \eta^{2}({X_{0}}) \big \} \\ & \quad + 2 \alpha + \mu -12 \alpha \eta^{2}({X_{0}})=0, \end{split} \end{equation}

where we have used $g(\phi _{1} {X_{0}}, \phi _{1} {X_{0}}) = 1$, $\eta ^{2}({X_{0}}) + \eta ^{2}({{\xi }_1})=1$, and

\begin{equation*} \begin{split} g((\nabla_{{X_{0}}}A)\xi_{1}, \phi_{1} {X_{0}}) & = \alpha g(\phi_{1} A{X_{0}}, \phi_{1}{X_{0}}) - g(A\phi_{1} A{X_{0}}, \phi_{1}{X_{0}}) \\ & = \alpha^{2} - \alpha \mu ={-}4 \eta^{2}({X_{0}}). \end{split} \end{equation*}

By using non-vanishing Reeb function $\alpha \neq 0$ and $\alpha \mu = \alpha ^{2}+ 4 \eta ^{2}({X_{0}})$, together with $\eta ^{2}({{\xi }_1}) = 1 - \eta ^{2}({X_{0}})$, (4.11) becomes

(4.12)\begin{equation} \begin{split} \eta^{2}({X_{0}}) \big \{ - 28 \alpha^{2} + 16 \alpha^{2}\eta^{2}({X_{0}}) \big\} =0. \end{split} \end{equation}

By virtue of $\xi = \eta ({X_{0}}) {X_{0}} + \eta ({{\xi }_1}){{\xi }_1}$ in (*) for $\eta ({X_{0}})\eta ({{\xi }_1}) \neq 0$, and our assumption of non-vanishing geodesic Reeb flow, that is, $\alpha \neq 0$, (4.12) implies that $\eta ^{2} ({X_{0}}) = \frac {7}{4}$. Since the structure vector field $\xi$ is unit, we should have $\eta ^{2}({X_{0}})+ \eta ^{2}({{\xi }_1}) =1$. From these facts, we obtain $\eta ^{2}({{\xi }_1}) =~- \frac {3}{4}$. It makes a contradiction. This means that either $\xi =\eta ({X_{0}}){X_{0}} = \pm {X_{0}} \in \mathcal {Q}$ or $\xi =\eta ({{\xi }_1}){{\xi }_1} = \pm {{\xi }_1} \in {{\mathcal {Q}}^{\bot }}$, which gives the unit normal vector field $N$ is singular.

Summing up lemmas ${\rm B}$ and 4.3, we assert that our theorem 1 in the introduction.

5. Cyclic parallel structure Jacobi operator for $JN \in \mathcal {J} N$

Hereafter, let $M$ be a Hopf real hypersurface with cyclic parallel structure Jacobi operator in complex two-plane Grassmannians ${G_2({\mathbb {C}}^{m+2})}$ for $m \geq 3$. Then by theorem 1, our discussions can be divided into two cases accordingly as the Reeb vector field $\xi \in {{\mathcal {Q}}^{\bot }}$ or $\xi \in \mathcal {Q}$.

In this section, we consider the case of $\xi \in {{\mathcal {Q}}^{\bot }}$ (i.e. $JN \in \mathcal {J} N$ where $N$ is a unit normal vector field on $M$ in ${G_2({\mathbb {C}}^{m+2})}$, $m \geq 3$). Since ${{\mathcal {Q}}^{\bot }}$ is 3-dimensional distribution defined by ${{\mathcal {Q}}^{\bot }} = \mathrm {span}\{{{\xi }_1}, {{\xi }_2}, {{\xi }_3} \}$, we may put $\xi = {{\xi }_1}$. From this, we give an important lemma as follows.

Lemma 5.1 Let $M$ be a real hypersurface in complex two-plane Grassmannians ${G_2({\mathbb {C}}^{m+2})}$, $m \geq 3$. Let $J_{1} \in \mathcal {J}$ be the almost Hermitian structure such that $JN = J_{1}N$ (or $\xi = {{\xi }_1})$. Then we obtain

\begin{equation*} \phi AX = 2 g(AX, {{\xi}_3}){{\xi}_2} - 2g(AX, {{\xi}_2}){{\xi}_3} + \phi_{1}AX \end{equation*}

for any tangent vector field $X$ on $M$.

Proof. Differentiating $\xi = {{\xi }_1}$ along any vector field $X \in TM$ and using (3.4), we obtain

(5.1)\begin{equation} \begin{split} \phi AX & = \nabla_{X}\xi \\ & = \nabla_{X}{{\xi}_1} = q_{3}(X) {{\xi}_2} - q_{2}(X) {{\xi}_3} + \phi_{1} AX. \end{split} \end{equation}

Taking the inner product of (5.1) with ${{\xi }_2}$ and ${{\xi }_3}$, we obtain

\begin{equation*} g(\phi AX, {{\xi}_2}) = q_{3}(X) + g(\phi_{1} A\xi, {{\xi}_2}) \end{equation*}

and

\begin{equation*} g(\phi AX, {{\xi}_3}) ={-}q_{2}(X) + g(\phi_{1} A\xi, {{\xi}_3}) \end{equation*}

respectively. It follows that

\begin{equation*} q_{3}(X) = 2 g(AX, {{\xi}_3}) \quad \mathrm{and} \quad q_{2}(X) = 2 g(AX, {{\xi}_2}). \end{equation*}

From this, (5.1) becomes

(5.2)\begin{equation} \phi AX = 2 g(AX, {{\xi}_3}){{\xi}_2} - 2g(AX, {{\xi}_2}){{\xi}_3} + \phi_{1}AX \end{equation}

for any tangent vector field $X$ on $M$. Moreover, taking the symmetric part of (5.2) we obtain

(5.3)\begin{equation} A \phi X = 2 \eta_{3}(X) A {{\xi}_2} - 2\eta_{2}(X) A {{\xi}_3} + A \phi_{1} X. \end{equation}

Then, by virtue of lemma 5.1, we prove the following

Lemma 5.2 Let $M$ be a Hopf hypersurface with cyclic parallel structure Jacobi operator in complex two-plane Grassmannians ${G_2({\mathbb {C}}^{m+2})}$, $m\geq 3$. If the Reeb vector field $\xi$ belongs to ${{\mathcal {Q}}^{\bot }}$ (i.e. $\xi ={{\xi }_1}$), then the distribution ${{\mathcal {Q}}^{\bot }}$ is invariant by the shape operator $A$ of $M$, that is, $g(A\mathcal {Q}, {{\mathcal {Q}}^{\bot }})=0$.

Proof. By (3.10) we obtain $X \alpha = (\xi \alpha )\eta (X)$ for any $X \in TM$, when the Reeb vector field $\xi$ belongs to the distribution $\mathcal {Q}$. From this and taking the inner product of (4.4) with $\xi$, we have

\begin{equation*} \begin{split} & -g(\phi AX, Y) + g(A \phi X, Y) + (\xi \alpha) g(AX, Y) - \alpha (\xi \alpha) \eta(X) \eta(Y)+ 3 \alpha^{2} g(\phi AX, Y) \\ & - \alpha g(A\phi AX, Y) + 3\alpha g(\phi X, Y) +\alpha^{2} g(A \phi X, Y)-\alpha^{2} g(\phi AX,Y) \\ & + \sum_{\nu=1}^{3} \Big [ -\eta_{\nu}(\xi) g(\phi_{\nu} AX, Y) - g(\phi_{\nu} \xi, AX)\eta_{\nu}(Y) - 3 g(AX,{{\xi}_{\nu}})g(\phi_{\nu} \xi, Y)\\ & \quad \quad \quad + 4 \alpha \eta_{\nu}(\xi) \eta(X) g(\phi_{\nu} \xi, Y)+ \eta_{\nu}(\xi) g(A \phi_{\nu} X, Y) - \eta_{\nu}(X) g(\phi_{\nu} \xi, AY) \\ & \quad \quad \quad - 3g(\phi_{\nu} \xi, X)g({{\xi}_{\nu}}, AY)+ 4 \alpha \eta_{\nu}(\xi) g(\phi_{\nu} \xi, X) \eta(Y) \\ & \quad \quad \quad - 9 \alpha g(\phi_{\nu} \xi, X)\eta_{\nu}(Y) - 3 \alpha \eta_{\nu}(X) g(\phi_{\nu} \xi, Y )+ 3 \alpha \eta_{\nu}(\xi) g(\phi_\nu X, Y) \Big ] =0, \end{split} \end{equation*}

where we have used

\begin{equation*} \begin{split} g((\nabla_{X}A)Y, \xi) = g((\nabla_{X}A)\xi, Y) & = (X \alpha) \eta(Y) + \alpha g(\phi A X, Y) - g(A \phi AX, Y)\\ & = (\xi \alpha) \eta(X) \eta(Y) + \alpha g(\phi A X, Y) - g(A \phi AX, Y), \end{split} \end{equation*}
\begin{equation*} g(\phi_{\nu} \phi AX, \xi) = g(\phi \phi_{\nu} \xi, AX) = g(\phi^{2} {{\xi}_{\nu}}, AX) ={-}g({{\xi}_{\nu}}, AX) + \alpha \eta({{\xi}_{\nu}}) \eta(X) \end{equation*}

and

\begin{equation*} g(\phi_{\nu} \phi X, \xi) = g(\phi^{2}{{\xi}_{\nu}}, X) ={-} \eta_{\nu}(X) + \eta_{\nu}(\xi) \eta(X) \end{equation*}

for any tangent vector fields $X$ and $Y$ on $M$.

On the other hand, from the assumption $\xi = {{\xi }_1} \in {{\mathcal {Q}}^{\bot }}$ we get $\phi _{2} \xi = \phi _{2} {{\xi }_1} = -{{\xi }_3}$ and $\phi _{3} \xi = \phi _{3} {{\xi }_1} = {{\xi }_2}$. By using these formulas into the preceding equation, we get

(5.4)\begin{equation} \begin{split} & -g(\phi AX, Y) + g(A \phi X, Y) + (\xi \alpha) g(AX, Y) - \alpha (\xi \alpha) \eta(X) \eta(Y)\\ & + 2 \alpha^{2} g(\phi AX, Y) - \alpha g(A\phi AX, Y) + 3\alpha g(\phi X, Y) +\alpha^{2} g(A \phi X, Y) \\ & -g(\phi_{1} AX, Y) - 2 \eta_{3}(AX) \eta_{2}(Y) + 2 \eta_{2}(AX) \eta_{3}(Y) \\ & + g(A\phi_{1} X, Y) - 2 \eta_{2}(X) g(A{{\xi}_3}, Y) + 2 \eta_{3}(X) g(A{{\xi}_2}, Y) \\ & + 6\alpha \eta_{3}(X)\eta_{2}(Y) - 6\alpha \eta_{2}(X) \eta_{3}(Y) + 3 \alpha g(\phi_{1}X, Y) =0. \end{split} \end{equation}

Deleting $Y$ from (5.4), we get

(5.5)\begin{equation} \begin{split} & - \phi AX + A \phi X + (\xi \alpha) AX - \alpha (\xi \alpha) \eta(X) \xi + 2 \alpha^{2} \phi AX - \alpha A\phi AX +\alpha^{2} A \phi X \\ & -\phi_{1} AX - 2 \eta_{3}(AX) {{\xi}_2} + 2 \eta_{2}(AX) \xi_{3} + A\phi_{1} X - 2 \eta_{2}(X) A{{\xi}_3} + 2 \eta_{3}(X) A{{\xi}_2} \\ & + 3\alpha \big \{ 2\eta_{3}(X)\xi_{2} - 2\eta_{2}(X) \xi_{3} + \phi X + \phi_{1}X \big \}=0 \end{split} \end{equation}

for any tangent vector field $X$ on $M$.

On the other hand, when $\xi ={{\xi }_1} \in \mathcal {Q}$, (3.11) gives us

(5.6)\begin{equation} \phi X + \phi_{1} X - 2 \eta_{2}(X){{\xi}_3} + 2 \eta_{3}(X){{\xi}_2} = A\phi AX - \frac{\alpha}{2} A \phi X - \frac{\alpha}{2} \phi AX \end{equation}

for any tangent vector field $X$ on $M$. Substituting (5.6) into (5.5), it follows that

\begin{equation*} \begin{split} & -\phi AX + A \phi X + (\xi \alpha) AX - \alpha (\xi \alpha) \eta(X) \xi + 2 \alpha^{2} \phi AX - \alpha A\phi AX +\alpha^{2} A \phi X \\ & -\phi_{1} AX - 2 \eta_{3}(AX) {{\xi}_2} + 2 \eta_{2}(AX) \xi_{3} + A\phi_{1} X - 2 \eta_{2}(X) A{{\xi}_3} + 2 \eta_{3}(X) A{{\xi}_2} \\ & + 3\alpha \big \{ A\phi AX - \frac{\alpha}{2} A \phi X - \frac{\alpha}{2} \phi AX \big \}=0, \end{split} \end{equation*}

which implies

(5.7)\begin{equation} \begin{split} & ({-}2 + 7\alpha^{2}) \phi AX + (2- \alpha^{2}) A \phi X + 2(\xi \alpha) AX - 2\alpha (\xi \alpha) \eta(X) \xi \\ & \quad + 4 \alpha A\phi AX - 2 \big \{ \phi_{1} AX + 2 \eta_{3}(AX) {{\xi}_2} -2 \eta_{2}(AX) \xi_{3} \big \} \\ & \quad + 2 \big \{ A\phi_{1} X - 2 \eta_{2}(X) A{{\xi}_3} +2 \eta_{3}(X) A{{\xi}_2} \big \} =0 \end{split} \end{equation}

for any $X \in TM$. Bearing in mind of (5.2) and (5.3), the above equation reduces to

(5.8)\begin{equation} \begin{split} & ({-}4 + 7\alpha^{2}) \phi AX + (4- \alpha^{2}) A \phi X + 2(\xi \alpha) AX \\ & \quad - 2\alpha (\xi \alpha) \eta(X) \xi + 4 \alpha A\phi AX =0. \end{split} \end{equation}

From (5.2) and (5.3), we get

(5.9)\begin{equation} 2 \eta_{3}(AX) {{\xi}_2} - 2 \eta_{2}(AX) = \phi AX - \phi_{1}AX \end{equation}

and

(5.10)\begin{equation} 2 \eta_{3}(X) A {{\xi}_2} - 2 \eta_{2}(X) A{{\xi}_3} = A \phi X - A \phi_{1}X, \end{equation}

respectively. Substituting (5.9) and (5.10) into (5.7), it becomes

\begin{equation*} \begin{split} & ({-}2 + 7\alpha^{2}) \phi AX + (2- \alpha^{2}) A \phi X + 2(\xi \alpha) AX - 2\alpha (\xi \alpha) \eta(X) \xi + 4 \alpha A\phi AX \\ & - 2 \big \{ \phi_{1} AX + \phi AX - \phi_{1}AX \big \} + 2 \big \{ A\phi_{1} X - A \phi X + A \phi_{1}X \big \} =0, \end{split} \end{equation*}

which yields

(5.11)\begin{equation} \begin{split} & ({-}4 + 7\alpha^{2}) \phi AX - \alpha^{2} A \phi X + 2(\xi \alpha) AX - 2\alpha (\xi \alpha) \eta(X) \xi \\ & \quad + 4 \alpha A\phi AX + 4 A \phi_{1} X =0. \end{split} \end{equation}

Subtracting (5.11) from (5.8), we have $A \phi X = A \phi _{1} X$, which means that $\phi A X = \phi _{1} AX$ for any tangent vector field $X$ on $M$. From this, (5.2) becomes

(5.12)\begin{equation} g(A{{\xi}_2}, X) {{\xi}_2} - g(A{{\xi}_2}, X) {{\xi}_3} = 0 \end{equation}

for any tangent vector field $X$ on $M$. Taking the inner product of (5.12) with ${{\xi }_2}$ (resp. ${{\xi }_3}$), we get the following for any tangent vector field $X$ on $M$

(5.13)\begin{equation} g(A{{\xi}_2}, X) = g(AX, {{\xi}_2}) = 0 \quad (\mathrm{resp.}\ \ g(A{{\xi}_3}, X) = g(AX, {{\xi}_3}) =0), \end{equation}

which means that $g(A\mathcal {Q}, {{\mathcal {Q}}^{\bot }})=0$. It gives a complete proof of lemma 5.2.

By theorem ${\rm A}$ and proposition ${\rm A}$, lemma 5.2 assures that if a Hopf real hypersurface satisfies all of geometric conditions mentioned in lemma 5.2, then $M$ is locally congruent to an open part of the model spaces of type $(\mathcal {T}_{A})$.

From now on, we will check whether a real hypersurface of type $(\mathcal {T}_{A})$ satisfies our hypothesis given in lemma 5.2. By proposition A mentioned in §2, we see that such real hypersurface is Hopf and its normal vector field satisfies $JN \in \mathcal {J}N$.

In the remaining part of this section, we want to check if the structure Jacobi operator ${R_{\xi }}$ for a model space of type $(\mathcal {T}_{A})$ satisfies the cyclic parallelism. In order to do this, we want to find some necessary and sufficient conditions for structure Jacobi operator ${R_{\xi }}$ of a real hypersurface $(\mathcal {T}_{A})$ to be cyclic parallel according to each eigenspace including the vector $Y$.

From such a view point, first, we consider the following case.

Case A. $Y \in T_{\lambda }$

In other words, from (4.4) and (4.5), together with (2.2), the structure Jacobi operator ${R_{\xi }}$ of a real hypersurface of type $(\mathcal {T}_{A})$ satisfies the following for any tangent vector field $X \in T(\mathcal {T}_{A})$

(5.14)\begin{equation} \begin{split} & 3\alpha ( \lambda^{2}- \alpha \lambda -2 )g(\phi Y, X) \xi -2 (2 \alpha - \beta - \lambda) g(\phi_{2}Y, X) {{\xi}_2} \\ & \quad -2 (2 \alpha - \beta - \lambda) g(\phi_{3}Y, X) {{\xi}_3} -2 (2 \alpha - \beta - \lambda) \eta_{2}(X) \phi_{2}Y \\ & \quad -2 (2 \alpha - \beta - \lambda) \eta_{3}(X) \phi_{3}Y =0, \end{split} \end{equation}

where $T(\mathcal {T}_{A})$ denotes a tangent space of type $(\mathcal {T}_{A})$ and we have used $\phi \phi _{2} Y = \phi _{2} \phi Y = - \phi _{3}Y \in T_{\mu }$ and $\phi \phi _{3} Y = \phi _{3} \phi Y = \phi _{2}Y \in T_{\mu }$ for any $Y \in T_{\lambda }$.

From now on, we want to check a solution of the equation (5.14) to be satisfied for type $(\mathcal {T}_{A})$. In fact, the left side of (5.14) depends on the eigenspaces of $(\mathcal {T}_{A})$ and is given as

\begin{equation*} \mathrm{Left\ side\ of\ } (5.14) = \left\{ \begin{array}{@{}ll} 0 & \mbox{for} \ X \in T_{\alpha}, \\ - 2 (2 \alpha - \beta - \lambda) \phi_{2}Y & \mbox{for} \ X ={{\xi}_2} \in T_{\beta}, \\ - 2 (2 \alpha - \beta - \lambda) \phi_{3}Y & \mbox{for} \ X={{\xi}_3} \in T_{\beta}, \\ 3\alpha ( \lambda^{2}- \alpha \lambda -2 )g(\phi Y, X) \xi & \mbox{for} \ X \in T_{\lambda}, \\ - 2 (2 \alpha - \beta - \lambda) g(\phi_{2}Y, X) ({{\xi}_2} + {{\xi}_3}) & \mbox{for} \ X \in T_{\mu} \\ \end{array}\right. \end{equation*}

for $Y \in T_{\lambda }$. By using $\alpha = 2 \sqrt {2} \cot (2 \sqrt {2}r)=\sqrt {2}(\cot (\sqrt {2}r) - \tan (\sqrt {2}r))$ and $\lambda = - \sqrt {2} \tan (\sqrt {2}r)$ with $r \in (0, ({\pi }/{2 \sqrt {2})})$, we get $\lambda ^{2}- \alpha \lambda -2 =0$. From this, the previous formula follows

(5.15)\begin{equation} \begin{split} & \mathrm{Left\ side\ of\ } (5.14) \\ & \quad \quad = \left\{ \begin{array}{@{}ll} 0 & \mbox{for} \ X \in T_{\alpha}, \\ - 2 (2 \alpha - \beta - \lambda) \phi_{2}Y & \mbox{for} \ X ={{\xi}_2} \in T_{\beta}, \\ - 2 (2 \alpha - \beta - \lambda) \phi_{3}Y & \mbox{for} \ X={{\xi}_3} \in T_{\beta}, \\ 0 & \mbox{for} \ X \in T_{\lambda}, \\ - 2 (2 \alpha - \beta - \lambda) g(\phi_{2}Y, X) ({{\xi}_2} + {{\xi}_3}) & \mbox{for} \ X \in T_{\mu} \end{array}\right. \end{split} \end{equation}

for $Y \in T_{\lambda }$.

Bearing in mind of proposition ${\rm A}$, if $r=({\pi }/{4\sqrt {2})}$, then $2 \alpha - \beta - \lambda =0$. Hence, when $Y \in T_{\lambda }$, the structure Jacobi operator ${R_{\xi }}$ is cyclic parallel if and only if the radius $r$ of the tube $(\mathcal {T}_{A})$ is $({\pi }/{4\sqrt {2})}$.

Under these situations, we consider our problem for the other cases $Y \in T_{\alpha } \oplus T_{\beta } \oplus T_{\mu }$ as follows.

Case B. $Y \in T_{\alpha } \oplus T_{\beta } \oplus T_{\mu }$ where $\alpha = \mu = 0$, $\beta = \sqrt {2}$, and $\lambda = - \sqrt {2}$

By the affect of case ${\rm A}$ in $(\mathcal {T}_{A})$, we have seen that in order to be cyclic parallel for the structure Jacobi operator ${R_{\xi }}$ of $(\mathcal {T}_{A})$, the radius $r$ of $(\mathcal {T}_{A})$ should satisfy $r=({\pi }/{4\sqrt {2})}$. From this fact, we obtain $\alpha = \mu = 0$, $\beta = \sqrt {2}$, and $\lambda = - \sqrt {2}$. Then, the left side of (4.4) becomes

(5.16) \begin{equation} \begin{split} & \mathrm{Left\ side\ of\ } (4.4) \\ & ={-}g(\phi AX, Y) \xi - \eta(Y) \phi AX -g(\phi AY, X) \xi \\ & \quad - \eta(X) \phi AY + \eta(Y)A\phi X + \eta(X) A \phi Y \\ & \quad - \sum_{\nu=1}^{3} \Big [ g(\phi_{\nu} AX, Y) {{\xi}_{\nu}} + 2\eta(Y) g(\phi_{\nu} \xi, AX) {{\xi}_{\nu}} + \eta_{\nu}(Y) \phi_{\nu} AX \\ & \quad + 3 g(\phi_{\nu} AX, \phi Y) \phi_{\nu} \xi + 3 \eta(Y) \eta_{\nu}(AX) \phi_{\nu} \xi \\ & \quad - 3g(\phi_{\nu} \xi, Y) \phi_{\nu} \phi AX - 2g(\phi_{\nu} \xi, AX) \phi_{\nu}\phi Y + \eta_{\nu}(X) \phi_{\nu} AY \\ & \quad - 2g(\phi_{\nu} \xi, AY) \phi_{\nu}\phi X + g(\phi_{\nu} AY, X) {{\xi}_{\nu}} + 2\eta(X) g(\phi_{\nu} \xi, AY) {{\xi}_{\nu}} \\ & \quad + 3 g(\phi_{\nu} AY, \phi X) \phi_{\nu} \xi + 3 \eta(X) \eta_{\nu}(AY) \phi_{\nu} \xi - 3g(\phi_{\nu} \xi, X) \phi_{\nu} \phi AY \\ & \quad - \eta_{\nu}(Y) A \phi_{\nu} X + 2\eta(X)\eta_{\nu}(Y) A \phi_{\nu} \xi - \eta_{\nu}(X) A \phi_{\nu} Y \\ & \quad - 3g(\phi_{\nu} \xi, Y) A \phi_{\nu} \phi X + 3 \eta(X) g(\phi_{\nu} \xi, Y) A{{\xi}_{\nu}} \\ & \quad - 3g(\phi_{\nu} \xi, X) A \phi \phi_{\nu} Y - 2 g(\phi_{\nu}\phi X, Y) A \phi_{\nu} \xi \Big ] \end{split} \end{equation}

for any $X \in T(\mathcal {T}_{A})$ and $Y \in T_{\alpha } \oplus T_{\beta } \oplus T_{\mu }$.

Subcase B-1. $Y = \xi \in T_{\alpha }$ where $\alpha =0$

From this assumption, we get $A Y= A\xi =\alpha \xi =0$. Then, (5.16) becomes

(5.17)\begin{equation} \begin{split} & - \phi AX + A\phi X - \sum_{\nu=1}^{3} \big \{ g(A\phi_{\nu} \xi, X) {{\xi}_{\nu}} + \eta_{\nu}(\xi) \phi_{\nu} AX + 3 g(A{{\xi}_{\nu}}, X) \phi_{\nu} \xi \big \} \\ & \quad + \sum_{\nu=1}^{3} \big \{ \eta_{\nu}(X) A \phi_{\nu} \xi - 3g(\phi_{\nu} \xi, X) A {{\xi}_{\nu}} + \eta_{\nu}(\xi) A \phi_{\nu} X \big \}\\ & ={-} \phi AX + A\phi X - \phi_{1} AX + A \phi_{1} X,\end{split} \end{equation}

where we have used $\phi _{2}\xi = - {{\xi }_3}$, $\phi _{3}\xi = {{\xi }_2}$, and $\phi \phi _{\nu } \xi = \phi ^{2}{{\xi }_{\nu }} = - {{\xi }_{\nu }} + \eta ({{\xi }_{\nu }})\xi$. According to the composition of the eigenspaces for $(\mathcal {T}_{A})$, we see that each eigenspace $T_{\sigma }$ of $(\mathcal {T}_{A})$ is $\phi$-(or $\phi _{1}$-)invariant, that is, $\phi T_{\sigma } = \phi _{1} T_{\sigma } = T_{\sigma }$. From this, (5.17) vanishes on all eigenspaces of $(\mathcal {T}_{A})$. So, this means that the structure Jacobi operator ${R_{\xi }}$ is cyclic parallel when $Y \in T_{\alpha }$.

Subcase B-2. $Y \in T_{\beta }$ where $\beta = \sqrt {2}$

Since $T_{\beta }=\mathrm {span}\{{{\xi }_2}, {{\xi }_3}\}$, we have the following two subcases.

  • $Y ={{\xi }_2} \in T_{\beta }$

    Using $\alpha = 0$, (5.16) can be rearranged as

    (5.18)\begin{equation} \begin{split} & 6 \beta \eta_{3}(X) \xi + \beta\eta(X) {{\xi}_3} - \phi_{2} AX + 3 \phi_{3} \phi AX \\ & \quad + 2 \beta \phi_{3}\phi X + A\phi_{2} X + 3 A \phi_{3} \phi X \end{split} \end{equation}
    for any eigenvector $X$ on $(\mathcal {T}_{A})$. It is well-known that for $X \in T_{\lambda }$ (resp. $X \in T_{\mu }$), by the straightforward calculation with (3.2), we obtain
    \begin{gather*} \phi_{2}\phi X \underset{X \in T_{\lambda}}= \phi_{2}\phi_{1}X \underset{3.2}{=} -\phi_{3}X \in T_{\mu} \\ \ \ (\mathrm{resp.}\ \phi_{2}\phi X \underset{X \in T_{\mu}}={-}\phi_{2}\phi_{1}X = \phi_{3}X \in T_{\lambda}), \\ \phi_{3}\phi X \underset{X \in T_{\lambda}}= \phi_{3}\phi_{1}X \underset{3.2}{=} \phi_{2}X \in T_{\mu} \\ \ \ (\mathrm{resp.} \ \phi_{3}\phi X \underset{X \in T_{\mu}}={-}\phi_{3}\phi_{1}X ={-}\phi_{2}X \in T_{\lambda} ), \end{gather*}
    and
    \begin{equation*} \phi X = \phi_{1} X \in T_{\lambda} \ \ (\mathrm{resp.}\ \phi X = \phi_{1} X \in T_{\mu}). \end{equation*}
    Bearing in mind such properties, together with $\beta =\sqrt {2}$ and $\lambda = - \sqrt {2}$, (5.18) is identically vanishing for any tangent vector field $X$ on $(\mathcal {T}_{A})$.
  • $Y ={{\xi }_3} \in T_{\beta }$

    Similarly, from (5.16) we obtain

    (5.19)\begin{equation} \begin{split} & -6 \beta \eta_{2}(X) \xi - \beta \eta(X) {{\xi}_2} - \phi_{3} AX - 3 \phi_{2} \phi AX \\ & \quad - 2 \beta \phi_{2}\phi X + A\phi_{3} X - 3 A \phi_{2} \phi X \end{split} \end{equation}
    for any eigenvector $X$ on $(\mathcal {T}_{A})$. More specifically, according to each eigenspace $T_{\alpha }$, $T_{\beta }$, $T_{\lambda }$ and $T_{\mu }$, it follows that
    \begin{equation*} (5.19) = \left\{ \begin{array}{@{}ll} - \beta {{\xi}_2} + A \phi_{3}\xi ={-} \beta {{\xi}_2} + A {{\xi}_2} = 0 & \mbox{for} \ X \in T_{\alpha}, \\ - 6 \beta \xi - \phi_{3} A {{\xi}_2} - 3 \phi_{2} \phi A {{\xi}_2} - 2 \beta \phi_{2} \phi {{\xi}_2} =0 & \mbox{for} \ X ={{\xi}_2} \in T_{\beta}, \\ - 3 \phi_{2}\phi A {{\xi}_3} - 2 \beta \phi_{2} \phi \xi_{3} - 3 A \phi_{2} \phi {{\xi}_3} = 0 & \mbox{for} \ X={{\xi}_3} \in T_{\beta}, \\ - \lambda \phi_{3}X - 3\lambda \phi_{2}\phi X - 2 \beta \phi_{2} \phi X = 2 (\lambda + \beta)\phi_{3}X=0 & \mbox{for} \ X \in T_{\lambda}, \\ - 2 \beta \phi_{2} \phi X + \lambda \phi_{3}X - 3 A \phi_{3}X ={-}2\beta (\beta + \lambda) \phi_{3}X =0 & \mbox{for} \ X \in T_{\mu}, \\ \end{array}\right. \end{equation*}
    where we have used $\phi _{2}\phi {{\xi }_2} = - \phi _{2}{{\xi }_3} = -\xi$, $\phi _{2}\phi {{\xi }_2} = \phi _{2}{{\xi }_2} =0$, $\beta = \sqrt {2}$ and $\lambda =-\sqrt {2}$.

Subcase B-3. $Y \in T_{\mu }$ where $\mu = 0$

Since a real hypersurface of type $(\mathcal {T}_{A})$ has isometric Reeb flow, we obtain $\phi Y \in T_{\mu =0}$, that is, $A \phi Y = \phi A Y = \mu \phi Y = 0$ for any $Y \in T_{\mu =0}$. From this and the construction of $T_{\mu }=\{Y \in \mathcal {Q} \, | \, \phi Y = -\phi _{1}Y \}$, we also obtain $A \phi _{1} Y = - A \phi Y = 0$ for $Y \in T_{\mu =0}$. From these properties, (5.16) becomes

(5.20)\begin{equation} \begin{split} & - \sum_{\nu=1}^{3} \big \{ g(\phi_{\nu}AX, Y) {{\xi}_{\nu}} + 3 g(\phi_{\nu} AX, \phi Y) \phi_{\nu} \xi - 2g(\phi_{\nu} \xi, AX) \phi_{\nu} \phi Y \\ & \quad \quad \quad - \eta_{\nu}(X) A \phi_{\nu} Y - 3g(\phi_{\nu} \xi, X) A \phi \phi_{\nu} Y - 2 g(\phi_{\nu} \phi X, Y) A \phi_{\nu} \xi \big \} \\ & ={-}2 (\beta + \lambda) \big \{ g(\phi_{2}X, Y) {{\xi}_2} + g(\phi_{3}X, Y) {{\xi}_3} + \eta_{2}(X) \phi_{2}Y + \eta_{3}(X) \phi_{3}Y \big\}, \end{split} \end{equation}

where we have used $\phi _{2} \phi Y = \phi _{3}Y \in T_{\lambda }$ and $\phi _{3} \phi Y = -\phi _{2}Y \in T_{\lambda }$ for any $Y \in T_{\mu =0}$. Since $\beta = \sqrt {2}$ and $\lambda =-\sqrt {2}$, (5.20) is identically vanishing for any tangent vector field $X$ on $(\mathcal {T}_{A})$.

Summing up these discussions, we assert that the structure Jacobi operator ${R_{\xi }}$ of a real hypersurface of type $(\mathcal {T}_{A})$ is cyclic parallel if and only if the radius $r$ of the tube around of type $(\mathcal {T}_{A})$ is $({\pi }/{4\sqrt {2})}$.

6. Cyclic parallel structure Jacobi operator for $JN \bot \mathcal {J} N$

Let $M$ be a Hopf real hypersurface with cyclic parallel structure Jacobi operator ${R_{\xi }}$ in complex two-plane Grassmannians ${G_2({\mathbb {C}}^{m+2})}$, $m \geq 3$. Assume that the unit normal vector field $N$ of $M$ satisfies $JN \bot {\mathcal {J}}N$ (i.e. $\xi \in \mathcal {Q}$). Related to the Reeb vector field $\xi$ of $M$ in ${G_2({\mathbb {C}}^{m+2})}$, Lee and Suh gave:

Theorem B [Reference Lee and Suh17]

Let $M$ be a connected orientable Hopf real hypersurface in complex two-plane Grassmannians of compact type ${G_2({\mathbb {C}}^{m+2})}$, $m \geq 3$. Then the Reeb vector $\xi$ belongs to the distribution $\mathcal {Q}$ if and only if $M$ is locally congruent to an open part of $(\mathcal {T}_{B})$: a tube around a totally geodesic $\mathbb {H} P^{n}$ in ${G_2({\mathbb {C}}^{m+2})}$, where $m = 2n$.

By virtue of theorem $1$ and theorem ${\rm B}$, we assert that a Hopf real hypersurface $M$ in complex two-plane Grassmannians ${G_2({\mathbb {C}}^{m+2})}$, $m \geq 3$, satisfying the hypothesis in our theorem $2$ is locally congruent to an open part of the model space mentioned in theorem ${\rm B}$. Hereafter, conversely, let us check whether the structure Jacobi operator ${R_{\xi }}$ of the model space of type $(\mathcal {T}_{B})$ satisfies our assumption of cyclic parallel structure Jacobi operator.

In order to do this, we introduce a proposition given in [Reference Suh30] as follows:

Proposition B Let $M$ be a connected real hypersurface in complex two-plane Grassmannians ${G_2({\mathbb {C}}^{m+2})}$. Suppose that $A\mathcal {Q} \subset \mathcal {Q}$, $A\xi = \alpha \xi$, and $\xi$ is tangent to $\mathcal {Q}$. Then the quaternionic dimension $m$ of ${G_2({\mathbb {C}}^{m+2})}$ is even, say $m =2n$, and $M$ has five distinct constant principal curvatures

\begin{equation*} \alpha ={-}2 \tan(2 r), \ \beta= 2 \cot (2r), \ \gamma=0, \ \lambda = \cot (r), \ \mu ={-} \tan (r) \end{equation*}

with some $r \in (0, \frac {\pi }{4})$. The corresponding multiplicities are

\begin{equation*} m(\alpha) =1, \ \ m(\beta)=3=m(\gamma), \ \ m(\lambda) = 4n-4 = m(\mu) \end{equation*}

and the corresponding eigenspaces are

\begin{equation*} \begin{split} & T_{\alpha} = \mathbb{R} \xi = \mathcal{C}^{\bot} = \mathrm{span}\{\xi\}, \\ & T_{\beta} = \mathcal{J} J\xi = \mathrm{span}\{{{\xi}_1}, {{\xi}_2}, {{\xi}_3}\}, \\ & T_{\gamma} = \mathcal{J} \xi = \mathrm{span}\{\phi {{\xi}_1}, \phi {{\xi}_2}, \phi {{\xi}_3}\},\\ & T_{\lambda}, \ \ T_{\mu}, \end{split} \end{equation*}

where

\[ T_{\lambda} \oplus T_{\mu} = TM \ominus (\mathbb{R} \xi \oplus \mathcal{J} J \xi ), \ \ \mathcal{J} T_{\lambda}= T_{\lambda}, \ \ \mathcal{J} T_{\mu} = T_{\mu},\ \ J T_{\lambda} = T_{\mu}. \]

In order to check the converse part, we assume that the structure Jacobi operator ${R_{\xi }}$ of our model space of type $(\mathcal {T}_{B})$ satisfies the property of cyclic parallelism. Accordingly, by $A \phi \xi _{\nu } =0$ for $\nu = 1,2,3$, the property (1.4) can be rearranged as

(6.1) \begin{equation} \begin{split} & g(X, A\phi Y) \xi - \eta(Y) \phi AX -g(X, \phi AY) \xi - \eta(X) \phi AY + \eta(Y)A\phi X \\ & + \eta(X) A \phi Y + \alpha^{2} \eta(Y) A \phi X + \alpha^{2} \eta(X) A \phi Y + 3\alpha (\nabla_X A)Y \\ & + \alpha g(\phi X, Y)\xi + 3\alpha \eta(Y) \phi X +\alpha^{2}g(X,A \phi Y)\xi -\alpha^{2} g(\phi AY,X)\xi \\ & - 2 \alpha g(\phi Y,X)\xi -\alpha ^{2}\eta(Y) \phi AX - \alpha^{2} \eta(X) \phi AY \\ & + \sum_{\nu=1}^{3} \Big [{-}g(\phi_{\nu} AX, Y) {{\xi}_{\nu}} - \eta_{\nu}(Y) \phi_{\nu} AX -3 g(\phi_{\nu} AX, \phi Y) \phi_{\nu} \xi \\ & - 3 \eta(Y) \eta_{\nu}(AX) \phi_{\nu} \xi + 3g(\phi_{\nu} \xi, Y) \phi_{\nu} \phi AX \\ & - 3 \alpha \eta (X) g(\phi_{\nu} \xi, Y) {{\xi}_{\nu}} + 2g(\phi_{\nu} \xi, AX) \phi_{\nu}\phi Y \\ & - g(\phi_{\nu} AY, X) {{\xi}_{\nu}} - 2\eta(X) g(\phi_{\nu} \xi, AY) {{\xi}_{\nu}} - \eta_{\nu}(X) \phi_{\nu} AY \\ & - 3 g(\phi_{\nu} AY, \phi X) \phi_{\nu} \xi - 3 \eta(X) \eta_{\nu}(AY) \phi_{\nu} \xi + 3g(\phi_{\nu} \xi, X) \phi_{\nu} \phi AY \\ & - 3 \alpha \eta (Y) g(\phi_{\nu} \xi, X) {{\xi}_{\nu}} + 2g(\phi_{\nu} \xi, AY) \phi_{\nu}\phi X +\eta_{\nu}(Y) A \phi_{\nu} X \\ & + \eta_{\nu}(X) A \phi_{\nu} Y + 3g(\phi_{\nu} \xi, Y) A \phi_{\nu} \phi X - 3 \eta(X) g(\phi_{\nu} \xi, Y) A{{\xi}_{\nu}}\\ & + 3g(\phi_{\nu} \xi, X) A \phi \phi_{\nu} Y - 3 \alpha g(\phi_{\nu} \xi, X) \eta_{\nu}(Y)\xi + \alpha g(\phi_\nu X, Y) {{\xi}_{\nu}} \\ & + 2\alpha \eta_{\nu}(Y) \phi_\nu X - \alpha g(\phi_\nu\phi X, Y) \phi_{\nu} \xi + \alpha g(\phi_{\nu} \xi, X) \phi \phi_\nu Y \\ & + \alpha \eta_\nu(\phi X)\eta_{\nu}(Y) \xi +\alpha \eta(X)\eta_{\nu}(Y) \phi_{\nu} \xi + \alpha \eta_\nu(Y)\phi_\nu X \\ & - 2 \alpha g(\phi_\nu Y,X)\xi_\nu + \alpha \eta_\nu(\phi Y)\phi_\nu\phi X - \alpha \eta_\nu(\phi X)\phi_\nu\phi Y \\ & + \alpha \eta(Y)\eta_\nu(\phi X){{\xi}_{\nu}} - \alpha \eta(X)\eta_\nu(\phi Y)\xi_{\nu} \Big ]=0 \end{split} \end{equation}

for any tangent vector field $X$ on type $(\mathcal {T}_{B})$.

Bearing in mind of our assumption, the structure Jacobi operator ${R_{\xi }}$ for the tube of type $(\mathcal {T}_{B})$ is cyclic parallel, taking $Y \in T_{\alpha }$ in (6.1) yields

(6.2)\begin{equation} \begin{split} & - \phi AX + A\phi X + \alpha^{2} A \phi X + 2\alpha^{2} \phi AX - 3 \alpha A \phi AX + 3\alpha \phi X \\ & -3 \sum_{\nu=1}^{3} \Big [ \beta \eta_{\nu}(X) \phi_{\nu} \xi +3 \alpha g(\phi_{\nu} \xi, X) {{\xi}_{\nu}} + \alpha \eta_{\nu}(X) \phi_{\nu} \xi + \beta g(\phi_{\nu} \xi, X) {{\xi}_{\nu}} \Big ]=0, \end{split} \end{equation}

where we have used $(\nabla _{X}A)\xi = \alpha \phi AX - A \phi AX$ and $\phi \phi _{\nu } \xi = \phi ^{2}{{\xi }_{\nu }} = - {{\xi }_{\nu }}$. Furthermore, taking $X=\xi _{\mu } \in T_{\beta }$ in (6.2) follows

\begin{equation*} \begin{split} 0 & ={-} \phi A \xi_{\mu} + A\phi \xi_{\mu} + \alpha^{2} A \phi \xi_{\mu} + 2\alpha^{2} \phi A \xi_{\mu} - 3 \alpha A \phi A \xi_{\mu} + 3\alpha \phi \xi_{\mu} \\ & \quad -3 \sum_{\nu=1}^{3} \Big [ \beta \eta_{\nu}(\xi_{\mu}) \phi_{\nu} \xi +3 \alpha g(\phi_{\nu} \xi, \xi_{\mu}) {{\xi}_{\nu}} + \alpha \eta_{\nu}(\xi_{\mu}) \phi_{\nu} \xi + \beta g(\phi_{\nu} \xi, \xi_{\mu}) {{\xi}_{\nu}} \Big ] \\ & = 2 \beta ( \alpha^{2} -2) \phi_{\mu} \xi, \end{split} \end{equation*}

which implies $\beta ( \alpha ^{2} -2) =0$. Since $\beta = 2 \cot (2r)$ for $r \in (0,({\pi }/{4}))$, we obtain $\alpha ^{2}=2$.

On the other hand, taking $X \in T_{\lambda }$ in (6.2), together with $\phi T_{\lambda }=T_{\mu }$, provides

\begin{equation*} \begin{split} 0 & ={-} \lambda \phi X + \mu \phi X + \alpha^{2} \mu \phi X + 2\alpha^{2} \lambda \phi X - 3 \alpha \lambda \mu \phi X + 3\alpha \phi X \\ & = 3 (\beta + 2 \alpha) \phi X, \end{split} \end{equation*}

where we have used $\alpha ^{2}=2$, $\lambda \mu = (\cot r) \cdot (-\tan r) =-1$, and $\lambda + \mu = 2 \cot (2t) = \beta$.

Applying a method to (6.2) that is done above, the left side of (6.2) according to each eigenspace of type $(\mathcal {T}_{\beta })$ is given as

\begin{equation*} \mathrm{Left\ side \ of \ } (6.2) = \left\{ \begin{array}{@{}ll} 0 & \mbox{for} \ X \in T_{\alpha}, \\ 2 \beta (\alpha^{2} -2) \phi_{\mu} \xi & \mbox{for} \ X =\xi_{\mu} \in T_{\beta}, \\ - 6 (\beta + 2 \alpha) \xi_{\mu} & \mbox{for} \ X=\phi_{\mu} \xi \in T_{\gamma}, \\ 3 (\beta + 2 \alpha) \phi X & \mbox{for} \ X \in T_{\lambda}, \\ 3 (\beta + 2 \alpha) \phi X & \mbox{for} \ X \in T_{\mu}. \\ \end{array}\right. \end{equation*}

Now, as the other case we consider the case $Y \in T_{\lambda }$. Then, by using $JT_{\lambda }=T_{\mu }$ and $\mathcal {J} T_{\lambda }=T_{\lambda }$, equation (6.1) is rearranged as

(6.3) \begin{equation} \begin{split} & g(X, A\phi Y) \xi -g(X, \phi AY) \xi - \eta(X) \phi AY + \eta(X) A \phi Y + \alpha^{2} \eta(X) A \phi Y \\ & + 3\alpha (\nabla_X A)Y + \alpha g(\phi X, Y)\xi +\alpha^{2}g(X,A \phi Y)\xi \\ & -\alpha^{2} g(\phi AY,X)\xi - 2 \alpha g(\phi Y,X)\xi - \alpha^{2} \eta(X) \phi AY \\ & + \sum_{\nu=1}^{3} \Big [{-}g(\phi_{\nu} AX, Y) {{\xi}_{\nu}} -3 g(\phi_{\nu} AX, \phi Y) \phi_{\nu} \xi - g(\phi_{\nu} AY, X) {{\xi}_{\nu}} \\ & - \eta_{\nu}(X) \phi_{\nu} AY -3 g(\phi_{\nu} AY, \phi X) \phi_{\nu} \xi + 3g(\phi_{\nu} \xi, X) \phi_{\nu} \phi AY \\ & + \eta_{\nu}(X) A \phi_{\nu} Y + \alpha g(\phi_\nu X, Y) {{\xi}_{\nu}} + 3g(\phi_{\nu} \xi, X) A \phi \phi_{\nu} Y \\ & - \alpha g(\phi_\nu\phi X, Y) \phi_{\nu} \xi + \alpha g(\phi_{\nu} \xi, X) \phi \phi_\nu Y \\ & - 2 \alpha g(\phi_\nu Y,X)\xi_\nu + \alpha g( \phi_\nu \xi, X) \phi_\nu\phi Y \Big ] \\ & = (\mu - \lambda - 3 \alpha + \alpha^{2}\mu - \alpha^{2} \lambda) g(X, \phi Y) \xi + (\lambda + \mu + \alpha^{2} \mu - \alpha^{2} \lambda ) \eta(X) \phi Y \\ & + 3 \alpha (\nabla_{X}A) Y + \sum_{\nu=1}^{3} \Big [- 3\alpha g(\phi_{\nu}Y, X)\xi_{\nu} + (3\mu + 3\lambda - \alpha) g(\phi \phi_{\nu}Y, X) \phi_{\nu}\xi \Big ] \\ & + \sum_{\nu=1}^{3} (3\lambda + 3 \mu + 2 \alpha) g(\phi_{\nu}\xi, X) \phi \phi_{\nu} Y =0 \end{split} \end{equation}

for any tangent vector field $X$ on type $(\mathcal {T}_{B})$. Restricting $X \in T_{\alpha }$ in (6.3) provides

(6.4)\begin{equation} (\lambda + \mu + \alpha^{2} \mu - \alpha^{2} \lambda ) \phi Y + 3 \alpha (\nabla_{\xi}A) Y =0 \end{equation}

for any $Y \in T_{\lambda }$. By the equation of Codazzi (3.8), we get

\begin{equation*} \begin{split} (\nabla_{\xi} A)Y & = (\nabla_Y A)\xi + \phi Y + \sum_{\nu=1}^{3} \big\{- \eta_\nu(Y)\phi_\nu \xi - 3g(\phi_\nu \xi,Y)\xi_\nu \big\} \\ & = \alpha \phi AY - A \phi AY + \phi Y = (\alpha \lambda - \lambda \mu + 1) \phi Y \end{split} \end{equation*}

for any $Y \in T_{\lambda }$. From this, (6.4) becomes

\begin{equation*} (\lambda + \mu + \alpha^{2} \mu - \alpha^{2} \lambda + 3 \alpha^{2} \lambda - 3 \alpha \lambda \mu + 3 \alpha) \phi Y =0. \end{equation*}

Since $\alpha ^{2}=2$, $\beta +2\alpha =0$, $\lambda + \mu =\beta$ and $\lambda \mu = -1$, the previous equation gives

(6.5)\begin{equation} \begin{split} \beta + 2 \mu + 4 \lambda + 6 \alpha ={-}2 (\beta - \mu -2 \lambda)=0, \end{split} \end{equation}

which gives us a contradiction. In fact, by proposition ${\rm B}$ we see that $\beta =2 \cot (2r)$, $\lambda =\cot (r)$ and $\mu =-\tan (r)$ where $r \in (0, \frac {\pi }{4})$. From this, we get

\[ \beta - \mu -2 \lambda ={-} \frac{1}{\tan r}, \]

which means that the function $\beta - \mu -2 \lambda$ is non-vanishing for any $r \in (0, ({\pi }/{4}))$.

Summing up those documents in this section, we can assert that there does not exist a Hopf real hypersurface in complex two-plane Grassmannians ${G_2({\mathbb {C}}^{m+2})}$, $m \geq 3$, with cyclic parallel structure Jacobi operator when the normal vector field of $M$ is of type $JN \bot \mathcal {J} N$.

Acknowledgements

The authors would like to give their sincere gratitude to the reviewer for his/her efforts and careful reading for the manuscript. The first author was supported by grant Proj. No. NRF-2019-R1I1A1A-01050300, the second by Proj. No. NRF-2018-R1D1A1B-05040381, and the third by NRF-2020-R1A2C1A-01101518 from National Research Foundation of Korea.

References

Adams, J. F.. Lectures on Exceptional Lie Groups. Chicago Lectures in Mathematics (Chicago, IL: University of Chicago Press, 1996).Google Scholar
Ballmann, W.. Lectures on Kähler Manifolds. ESI Lectures in Mathematics and Physics (Zürich: European Mathematical Society (EMS), 2006).CrossRefGoogle Scholar
Berndt, J.. Riemannian geometry of complex two-plane Grassmannians. Rend. Sem. Mat. Univ. Politec. Torino 55 (1997), 1983.Google Scholar
Berndt, J. and Suh, Y. J.. Real hypersurfaces in complex two-plane Grassmannians. Monatsh. Math. 127 (1999), 114.CrossRefGoogle Scholar
Berndt, J. and Suh, Y. J.. Isometric flows on real hypersurfaces in complex two-plane Grassmannians. Monatsh. Math. 137 (2002), 8798.CrossRefGoogle Scholar
Berndt, J. and Suh, Y. J.. Hypersurfaces in noncompact complex Grassmannians of rank two. Internat. J. Math. 23 (2012), 1250103 (35 pages).CrossRefGoogle Scholar
Berndt, J. and Suh, Y. J.. Real hypersurfaces with isometric Reeb flow in complex quadrics. Internat. J. Math. 24 (2013), 1350050, 18 pp.CrossRefGoogle Scholar
Berndt, J. and Suh, Y. J.. Real hypersurfaces with isometric Reeb flow in Kähler manifolds. Commun. Contemp. Math. 23 (2021) 1950039, 33 pp.CrossRefGoogle Scholar
Berndt, J. and Suh, Y. J.. Real hypersurfaces in Hermitian Symmetric Spaces, Advances in Analysis and Geometry, Editor in Chief, Jie Xiao, ©2021 Copyright-Text, Walter de Gruyter GmbH, Berlin/Boston (in Press).CrossRefGoogle Scholar
Borel, A. and De Siebenthal, J.. Les sous-groupes fermés de rang maximum des groupes de Lie clos. Comment. Math. Helv. 23 (1949), 200221.CrossRefGoogle Scholar
Eberlein, P. B.. Geometry of Nonpositively Curved Manifolds. Chicago Lectures in Mathematics (Chicago, IL: University of Chicago Press, 1996).Google Scholar
Heil, K., Moroianu, A. and Semmelmann, U.. Killing and conformal Killing tensors. J. Geom. Phys. 106 (2016), 383400.CrossRefGoogle Scholar
Jeong, I., Machado, C. J. G., Pérez, J. D. and Suh, Y. J.. Real hypersrufaces in complex two-plane Grassmannians with $\mathfrak D^{\bot }$-parallel structure Jacobi operator. Interant. J. Math. 22 (2011), 655673.CrossRefGoogle Scholar
Jeong, I., Pérez, J. D., Suh, Y. J. and Woo, C.. Lie derivatives and Ricci tensor on real hypersurfaces in complex two-plane Grassmannians. Canad. Math. Bull. 61 (2018), 543552.CrossRefGoogle Scholar
Kobayashi, S. and Nomizu, K.. Foundations of Differential Geometry, Vol. I. Reprint of the 1963 original, Wiley Classics Library, A Wiley-Interscience Publication (New York: John Wiley & Sons, Inc., 1996).Google Scholar
Lee, R.-H. and Loo, T.-H.. Hopf hypersurfaces in complex Grassmannians of rank two. Results Math. 71 (2017), 10831107.CrossRefGoogle Scholar
Lee, H. and Suh, Y. J.. Real hypersurfaces of type $(B)$in complex two-plane Grassmannians related to the Reeb vector. Bull. Korean Math. Soc. 47 (2010), 551561.CrossRefGoogle Scholar
Lee, H. and Suh, Y. J.. Remarks on the components of the Reeb vector field for real hypersurfaces in complex two-plane Grassmannians, Proceedings of the 17th International Workshop on Differential Geometry and the 7th KNUGRG-OCAMI Differential Geometry Workshop, Vol. 17, 153–169, Natl. Inst. Math. Sci.(NIMS), Taej$\breve{o}$n, 2013.Google Scholar
Lee, H. and Suh, Y. J.. Reeb recurrent structure Jacobi operator on real hypersurfaces in complex two-plane Grassmannians, Hermitian-Grassmannian submanifolds, 69–82, Springer Proc. Math. Stat., 203, Springer, Singapore, 2017.CrossRefGoogle Scholar
Lee, H. and Suh, Y. J.. Cyclic parallel hypersurfaces in complex Grassmannians of rank 2. Internat. J. Math. 31 (2020), 2050014, 14 pp.CrossRefGoogle Scholar
Lee, H., Woo, C. and Suh, Y. J.. Quadratic Killing normal Jacobi operator for real hypersurfaces in complex Grassmannians of rank 2. J. Geom. Phys. 160 (2021), 103975, 14 pp.CrossRefGoogle Scholar
Machado, C. J. G. and Pérez, J. D.. On the structure vector field of a real hypersurface in complex two-plane Grassmannians. Cent. Eur. J. Math. 10 (2012), 451455.CrossRefGoogle Scholar
Machado, C. J. G. and Pérez, J. D.. Real hypersurfaces in complex two-plane Grassmannians some of whose Jacobi operators are $\xi$-invariant. Internat. J. Math. 23 (2012), 1250002, 12 pp.CrossRefGoogle Scholar
Machado, C. J. G., Pérez, J. D. and Suh, Y. J.. Commuting structure Jacobi operator for real hypersurfaces in complex two-plane Grassmannians. Acta Math. Sin. (Engl. Ser.) 31 (2015), 111122.CrossRefGoogle Scholar
Pérez, J. D.. Lie derivatives on a real hypersurface in complex two-plane Grassmannians. Publ. Math. Debrecen. 89 (2016), 6371.CrossRefGoogle Scholar
Pérez, J. D., Lee, H., Suh, Y. J. and Woo, C.. Real hypersurfaces in complex two-plane Grassmannians with Reeb parallel Ricci tensor in the GTW connection. Canad. Math. Bull. 59 (2016), 721733.CrossRefGoogle Scholar
Pérez, J. D. and Suh, Y. J.. The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians. J. Korean Math. Soc. 44 (2007), 211235.CrossRefGoogle Scholar
Pérez, J. D., Suh, Y. J. and Woo, C.. Real hypersurfaces in complex two-plane Grassmannians with GTW harmonic curvature. Canad. Math. Bull. 58 (2015), 835845.CrossRefGoogle Scholar
Semmelmann, U.. Conformal Killing forms on Riemannian manifolds. Math. Z. 245 (2003), 503527.CrossRefGoogle Scholar
Suh, Y. J.. Real hypersurfaces of type B in complex two-plane Grassmannians. Monatsh. Math. 147 (2006), 337355.Google Scholar
Suh, Y. J.. Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor. Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), 13091324.CrossRefGoogle Scholar
Suh, Y. J.. Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians. Adv. in Appl. Math. 50 (2013), 645659.CrossRefGoogle Scholar
Suh, Y. J.. Real hypersurfaces in complex two-plane Grassmannians with harmonic curvature. J. Math. Pures Appl. 100 (2013), 1633.CrossRefGoogle Scholar
Suh, Y. J.. Real hypersurfaces in complex two-plane Grassmannians with Reeb parallel Ricci tensor. J. Geom. Phys. 64 (2013), 111.CrossRefGoogle Scholar
Suh, Y. J.. Real hypersurfaces in the complex hyperbolic quadrics with isometric Reeb flow. Commun. Contemp. Math. 20 (2018), 1750031, 20 pp.CrossRefGoogle Scholar
Suh, Y. J.. Generalized Killing Ricci tensor for real hypersurfaces in complex hyperbolic two-plane Grassmannians. Mediterr. J. Math. 18 (2021), Paper No. 88, 28 pp.CrossRefGoogle Scholar
Suh, Y. J.. Generalized Killing Ricci tensor for real hypersurfaces in complex two-plane Grassmannians. J. Geom. Phys. 159 (2021), 103799, 15 pp.CrossRefGoogle Scholar
Suh, Y. J.. Harmonic curvature for real hypersurfaces in complex hyperbolic two plane Grassmannians. J. Geom. Phys. 161 (2021), 103829, 22 pp.CrossRefGoogle Scholar
Suh, Y. J., Lee, H. and Kim, G. J.. Addendum to the paper ‘Real hypersurfaces in complex two-plane Grassmannians with $\xi$-invariant Ricci tensor’. J. Geom. Phys. 83 (2014), 99103.Google Scholar
Suh, Y. J., Lee, H. and Kim, S.. Real hypersurfaces in complex two-plane Grassmannians with certain commuting condition II. Czechoslovak Math. J. 64 (2014), 133148.Google Scholar
Figure 0

Table 1. Principal curvatures of a model space of type $(\mathcal {T}_{A})$