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In this paper, from the property of Killing for structure Jacobi tensor Rξ, we
introduce a new notion of cyclic parallelism of structure Jacobi operator Rξ on real
hypersurfaces in the complex two-plane Grassmannians. By virtue of geodesic
curves, we can give the equivalent relation between cyclic parallelism of Rξ and
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1. Introduction

In the class of complex Grassmannians of rank 2, we can give the examples
of Hermitian symmetric spaces G2(Cm+2) = SUm+2/S(U2Um) and G∗

2(C
m+2) =

SU2,m/S(U2Um), which are said to be complex two-plane Grassmannians of com-
pact type and complex hyperbolic two-plane Grassmannians of non-compact type,
respectively. They are viewed as Hermitian symmetric spaces and quaternionic
Kähler symmetric spaces equipped with the Kähler structure J and the quaternionic
Kähler structure J = span{J1, J2, J3} (see [6, 11, 15, 31, 33, 38]). Among them,
in this paper we will consider our subject on complex two-plane Grassmannians
and its real hypersurfaces with cyclic parallel structure Jacobi operator.
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Now let us denote by G2(Cm+2) = SUm+2/S(U2Um) the set of all complex 2-
dimensional linear subspaces in the complex Euclidean space C

m+2. If m = 1,
then we see that G2(C3) is isometric to the 2-dimensional complex projective
space CP 2 with constant holomorphic sectional curvature 8. And the isomorphism
Spin(6) � SU(4) yields an isometry between G2(C4) and the real Grassmann man-
ifold G+

2 (R6) of oriented 2-dimensional linear subspaces in R
6. So, we will consider

m � 3 hereafter, unless otherwise stated.
Recall that a non-zero vector field X of Hermitian symmetric spaces (M̄, g) of

rank 2 is called singular if it is tangent to more than one maximal flat in M̄ . In
particular, there are exactly two types of singular tangent vectors X of G2(Cm+2)
which are characterized by the geometric properties JX ∈ JX and JX ⊥ JX (see
[3, 4]).

The Riemannian curvature tensor R̄ of G2(Cm+2) is locally given by

R̄(X,Y )Z

= g(Y,Z)X − g(X,Z)Y + g(JY,Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ
(1.1)

+
3∑

ν=1

{
g(JνY,Z)JνX − g(JνX,Z)JνY − 2g(JνX,Y )JνZ

}

+
3∑

ν=1

{
g(JνJY,Z)JνJX − g(JνJX,Z)JνJY

}
,

where {J1, J2, J3} is any canonical local basis of J and the tensor g of type (0,2)
stands for the Riemannian metric on complex two-plane Grassmannians G2(Cm+2)
(see [3, 4, 9]).

For a real hypersurface M in complex two-plane Grassmannians G2(Cm+2), we
have the following two natural geometric conditions: the 1-dimensional distribution
C⊥ = span{ξ} and the 3-dimensional distribution Q⊥ = span{ξ1, ξ2, ξ3} are invari-
ant under the shape operator A of M . Here the almost contact structure vector
field ξ defined by ξ = −JN is said to be a Reeb vector field, where N denotes a local
unit normal vector field of M in G2(Cm+2). The almost contact 3-structure vector
fields ξ1, ξ2, ξ3 spanning the 3-dimensional distribution Q⊥ of M in G2(Cm+2) are
defined by ξν = −JνN (ν = 1, 2, 3), such that TM = Q⊕Q⊥ = C ⊕ C⊥. By using
these invariant conditions for two kinds of distributions C⊥ and Q⊥ in TG2(Cm+2),
Berndt and Suh gave a classification of real hypersurfaces in complex two-plane
Grassmannians as follows:

Theorem A ([4]). Let M be a connected real hypersurface in complex two-plane
Grassmannians G2(Cm+2), m � 3. Then both C⊥ and Q⊥ are invariant under the
shape operator A of M if and only if

(TA) M is an open part of a tube around a totally geodesic G2(Cm+1) in
G2(Cm+2), or

(TB) m is even, say m = 2n, and M is an open part of a tube around a
totally geodesic HPn in G2(Cm+2).
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On the other hand, we say that a real hypersurface M in complex two-plane
Grassmannians G2(Cm+2) is Hopf if and only if the Reeb vector field ξ is Hopf, that
is, Aξ ∈ C⊥. In addition, when the distribution Q⊥ of M in G2(Cm+2) is invariant
under the shape operator, M is said to be a Q⊥-invariant real hypersurface.

Moreover, we say that the Reeb flow of M in G2(Cm+2) is isometric, when the
Reeb vector field ξ of M is Killing. It implies that the metric tensor g of M is
invariant under the Reeb flow of ξ, that is, Lξg = 0 where Lξ denotes the Lie
derivative along the direction of ξ. Related to this notion, for complex two-plane
Grassmannians G2(Cm+2), Berndt and Suh gave a remarkable characterization for
real hypersurface of type (TA) mentioned in theorem A (see [5]).

Indeed, the notion of isometric Reeb flow is regarded as a typical example of
Killing vector fields which are classical objects of differential geometry. As men-
tioned above, Killing vector fields are defined by vanishing of the Lie derivative of
metric tensor g with respect to a vector X, that is, LXg = 0. Recently, the notion
of isometric Reeb flow is considered for real hypersurfaces in Hermitian symmetric
spaces including complex Grassmannians and complex quadrics, etc. (see [5, 7, 32,
35]). By using Lie algebraic method given in [1, 2, 10], Berndt–Suh [8] gave a
complete classification of real hypersurfaces with isometric Reeb flow in Hermitian
symmetric spaces.

Let us consider a Killing tensor field which is a generalization of a Killing vector
field on (M̄, g). Let K be a tensor field of type (0, k) on (M̄, g). Then, K is said to
be Killing if the complete symmetrization of ∇K vanishes. That is, it means that
K satisfies

(∇XK)(X,X, . . . ,X) = 0

for any vector field X. It follows that for such a Killing tensor, the expression
K(γ̇, γ̇, · · · , γ̇) is constant along any geodesic γ (see [29]). In particular, the existing
literature on symmetric Killing tensors is huge, especially coming from theoreti-
cal physics (see [12, 29]). As examples of such a symmetric Killing tensor, real
hypersurfaces in complex two-plane Grassmannians G2(Cm+2) with Killing shape
operator were considered by Lee and Suh (see [20]). Recently, Lee, Woo and Suh
[21] considered the notion of Killing normal Jacobi operator of Hopf real hypersur-
faces in complex Grassmannians of rank 2. In addition, Suh gave a classification
for Hopf real hypersurfaces with Killing Ricci tensor in complex Grassmannians of
rank 2 (see [36, 37]).

Now, we define a structure Jacobi tensor Rξ which is a symmetric tensor field of
type (0,2) on M in G2(Cm+2) given by

Rξ(Y,Z) = g(RξY,Z) (1.2)

for any tangent vector fields Y and Z on M . Here, Rξ is a symmetric tensor field
of type (1,1) on M (so-called, the structure Jacobi operator of M). If the structure
Jacobi tensor Rξ satisfies

(∇XRξ)(X,X) = 0
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for any tangent vector field X on M , then Rξ is said to be Killing. Taking the
covariant derivative of (1.2), the property of Killing with respect to Rξ becomes

(∇XRξ)(X,X) = g((∇XRξ)X,X) = 0. (1.3)

By virtue of the linearization, (1.3) can be rearranged as

g
(
(∇XRξ)Y,Z

)
+ g

(
(∇Y Rξ)Z,X

)
+ g

(
(∇ZRξ)X,Y

)
= 0 (1.4)

for any tangent vector fields X, Y and Z ∈ TM . If the structure Jacobi operator
Rξ of M in G2(Cm+2) satisfies (1.4), we say that Rξ is cyclic parallel. Moreover, by
local existence and uniqueness theorem for geodesics, (1.4) can be interpreted that
the structure Jacobi curvature Rξ(γ̇, γ̇) := g(Rξγ̇, γ̇) is constant along the geodesic
γ with γ(0) = p and γ̇(0) = Xp for any point p ∈ M and any tangent vector X(p) =
Xp ∈ TpM .

From the assumption of structure Jacobi operator being cyclic parallel, first we
assert that the unit normal vector field N becomes singular as follows:

Theorem 1. Let M be a Hopf real hypersurface in complex two-plane Grassman-
nians G2(Cm+2) for m � 3. If M has a cyclic parallel structure Jacobi operator,
then the normal vector field N of M is singular.

Next, by using theorem 1 we give a classification of Hopf real hypersurfaces in
complex two-plane Grassmannians G2(Cm+2), m � 3, with cyclic parallel structure
Jacobi operator as follows:

Theorem 2. Let M be a Hopf real hypersurface in complex two-plane Grassmanni-
ans G2(Cm+2), m � 3. Then the structure Jacobi operator Rξ of M is cyclic parallel
if and only if M is locally congruent to an open part of a tube of r = (π/4

√
2) around

a totally geodesic G2(Cm+1) in G2(Cm+2).

2. Preliminaries

As mentioned in the introduction, the complete classifications of real hypersurfaces
in complex two-plane Grassmannians G2(Cm+2), m � 3, satisfying two invariant
conditions for the distributions C⊥ = span{ξ} and Q⊥ = span{ξ1, ξ2, ξ3} was given
in [4].

In fact, in [3, 4] Berndt and Suh gave the characterizations of the singular unit
normal vector N of M in complex two-plane Grassmannians G2(Cm+2): There
are two types of singular normal vector, those N for which JN⊥JN , and those for
which JN ∈ JN . In other words, it means that ξ ∈ Q or ξ ∈ Q⊥ because JN = −ξ,
JN = span{ξ1, ξ2, ξ3} = Q⊥, and TM = Q⊕Q⊥. The following proposition tells
us that the normal vector field N on the model spaces of (TA) is singular of type
of JN ∈ JN , that is, ξ ∈ Q⊥.

Proposition A ([4, 9]). Let (TA) be the tube of radius 0 < r < π√
8

around the
totally geodesic G2(Cm+1) in G2(Cm+2). Then the following statements hold:
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Table 1. Principal curvatures of a model space of type (TA)

Type Eigenvalues Eigenspace Multiplicity

(TA) α=
√

8 cot(
√

8r) Tα=C⊥=span{ξ}=span{ξ1} 1

β=
√

2 cot(
√

2r) Tβ=C�Q=span{ξ2,ξ3} 2

λ=−
√

2 tan(
√

2r) Tλ=E−1={X∈Q |φX=φ1X} 2m−2

μ=0 Tμ=E+1={X∈Q |φX=−φ1X} 2m−2

1. (TA) is a Hopf hypersurface.

2. Every unit normal vector field N of (TA) is singular and of type JN ∈ JN .

3. The eigenvalues and their corresponding eigenspaces and multiplicities are
given in Table 1.

4. The Reeb flow on (TA) is isometric.

In proposition A, the notion of isometric Reeb flow gave a kind of character-
izations of real hypersurface of type (TA). Like for such an investigation, many
geometric conditions were considered as characterizations of the model space of
(TA) in complex two-plane Grassmannians (see [14, 22, 23, 25, 26, 28, 39, 40]).

On the other hand, by using the notion of isometric Reeb flow, that is, the shape
operator A of a Hopf real hypersurface M in G2(Cm+2) commutes with structure
tensor φ, that is, Aφ = φA, Berndt and Suh gave:

(∇XA)Y = −η(Y )φX + (Xα)η(Y )ξ + αg(AφX, Y )ξ − g(A2φX, Y )ξ

−
3∑

i=1

{
ην(Y )φνX + g(φνξ, Y )φφνX + 2g(φνξ,X)φφνY

+ g(φνξ,X)ην(Y )ξ − ην(ξ)g(φνX,Y )ξ + g(φνX,Y )ξν

− η(X)ην(Y )φνξ + g(φνφX, Y )φνξ
}

(2.1)

for any tangent vector fields X and Y on M (see proposition 4 in [5]). In fact, from
(iv) in proposition A, we see that the shape operator A of (TA) satisfies Aφ = φA.
Thus, the above equation (2.1) holds on (TA) and it can be rearranged as

(∇XA)Y = −η(Y )φX + αg(AφX, Y )ξ − g(A2φX, Y )ξ

−
3∑

i=1

{
ην(Y )φνX + g(φνξ, Y )φφνX + 2g(φνξ,X)φφνY

+ g(φνξ,X)ην(Y )ξ − ην(ξ)g(φνX,Y )ξ + g(φνX,Y )ξν

− η(X)ην(Y )φνξ + g(φνφX, Y )φνξ
}

(2.2)

for any tangent vector fields X and Y on T (TA) = Tα ⊕ Tβ ⊕ Tλ ⊕ Tμ.
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3. Fundamental equations of real hypersurfaces in G2(Cm+2)

We use some references [17, 27, 34] to recall the Riemannian geometry of com-
plex two-plane Grassmannians G2(Cm+2), m � 3, and some fundamental formulas
including the Codazzi and Gauss equations for a real hypersurface in G2(Cm+2).

Let M be a real hypersurface of complex two-plane Grassmannians G2(Cm+2),
m � 3, that is, a submanifold of G2(Cm+2) with real codimension one. The induced
Riemannian metric on M will also be denoted by g, and ∇ denotes the Riemannian
connection of (M, g). Let N be a local unit normal field of M in G2(Cm+2) and S the
shape operator of M with respect to N , that is, ∇̄XN = −SX. The Kähler structure
J of complex two-plane Grassmannians G2(Cm+2) induces on M an almost contact
metric structure (φ, ξ, η, g). Furthermore, let {J1, J2, J3} be a canonical local basis
of the quaternionic Kähler structure J . Then each Jν induces an almost contact
metric structure (φν , ξν , ην , g) on M . Now let us put

JX = φX + η(X)N, JνX = φνX + ην(X)N (3.1)

for any tangent vector X on a real hypersurface M in G2(Cm+2), where N denotes
a normal vector of M in G2(Cm+2). Then the following identities can be proved in
a straightforward method and will be used frequently in subsequent calculations:

φν+1ξν = −ξν+2, φνξν+1 = ξν+2, φξν = φνξ, ην(φX) = η(φνX),

φνφν+1X = φν+2X + ην+1(X)ξν , φν+1φνX = −φν+2X + ην(X)ξν+1,
(3.2)

where we have used that JνJν+1 = Jν+2 = −Jν+1Jν .
On the other hand, from the parallelism of J and J which are defined by

∇̄XJ = 0 and ∇̄XJν = qν+2(X)Jν+1 − qν+1(X)Jν+2 (ν mod 3),

together with Gauss and Weingarten formulas, it follows that

(∇Xφ)Y = η(Y )AX − g(AX,Y )ξ, ∇Xξ = φAX, (3.3)

∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + φνAX, (3.4)

(∇Xφν)Y = −qν+1(X)φν+2Y + qν+2(X)φν+1Y

+ ην(Y )AX − g(AX,Y )ξν .
(3.5)

Combining these formulas, we find the following

∇X(φνξ) = ∇X(φξν)

= (∇Xφ)ξν + φ(∇Xξν)

= qν+2(X)φν+1ξ − qν+1(X)φν+2ξ + φνφAX

− g(AX, ξ)ξν + η(ξν)AX.

(3.6)

Moreover, from JJν = JνJ , ν = 1, 2, 3, it follows that

φφνX = φνφX + ην(X)ξ − η(X)ξν . (3.7)

Finally, using the explicit expression for the Riemannian curvature tensor R̄ of
complex two-plane Grassmannians G2(Cm+2) in the introduction, the Codazzi and

https://doi.org/10.1017/prm.2021.42 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.42


Cyclic parallel structure Jacobi operator 945

Gauss equations of M in G2(Cm+2) are given respectively by

(∇XA)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+
3∑

ν=1

{
ην(X)φνY − ην(Y )φνX − 2g(φνX,Y )ξν

}

+
3∑

ν=1

{
ην(φX)φνφY − ην(φY )φνφX

}

+
3∑

ν=1

{
η(X)ην(φY ) − η(Y )ην(φX)

}
ξν

(3.8)

and

R(X,Y )Z = g(Y,Z)X − g(X,Z)Y + g(φY,Z)φX − g(φX,Z)φY

− 2g(φX, Y )φZ + g(AY,Z)AX − g(AX,Z)AY

+
3∑

ν=1

{
g(φνY,Z)φνX − g(φνX,Z)φνY − 2g(φνX,Y )φνZ

+ g(φνφY,Z)φνφX − g(φνφX,Z)φνφY

+ η(X)ην(Z)φνφY − η(Y )ην(Z)φνφX

+ η(Y )g(φνφX,Z)ξν − η(X)g(φνφY,Z)ξν

}

(3.9)

for any tangent vector fields X, Y and Z on M .
On the other hand, we can derive some important facts from the geometric con-

dition of M being Hopf, that is, Aξ = αξ where α = g(Aξ, ξ). Among them, we
introduce the following formulas which are induced from the Codazzi equation:

Lemma A ([5]). If M is a connected orientable Hopf real hypersurface in complex
two-plane Grassmannians G2(Cm+2), m � 3, then

grad α = (ξα)ξ + 4
3∑

ν=1

ην(ξ)φνξ (3.10)

and

2AφAX − αAφX − αφAX

= 2φX + 2
3∑

ν=1

{
ην(X)φνξ − g(φνξ,X)ξν + ην(ξ)φνX

}

− 4
3∑

ν=1

{
η(X)ην(ξ)φνξ − ην(ξ)g(φνξ,X)ξ

}
(3.11)

for any tangent vector field X on M in G2(Cm+2).
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4. Proof of theorem 1

Let M be a Hopf real hypersurface with cyclic parallel structure Jacobi operator
in complex two-plane Grassmannians G2(Cm+2), m � 3.

From (3.9) the structure Jacobi operator Rξ ∈ End(TM) is given as follows

Rξ(Y ) = R(Y, ξ)ξ

= Y − η(Y )ξ + αAY − α2η(Y )ξ

−
3∑

ν=1

{
ην(Y )ξν − η(Y )ην(ξ)ξν − 3g(φνξ, Y )φνξ + ην(ξ)φνφY

}
(4.1)

for any tangent vector field Y ∈ TM (see [19, 24]).
Taking the covariant derivative of (4.1) along the direction of X implies

(∇XRξ)Y = ∇X(RξY ) − Rξ(∇XY )

= −g(φAX, Y )ξ − η(Y )φAX

−
3∑

ν=1

[
g(φνAX,Y )ξν + 2η(Y )g(φνξ,AX)ξν + ην(Y )φνAX

+ 3g(φνAX,φY )φνξ + 3η(Y )ην(AX)φνξ

− 3g(φνξ, Y )φνφAX + 3αη(X)g(φνξ, Y )ξν

− 4ην(ξ)g(φνξ, Y )AX − 4ην(ξ)g(AX,Y )φνξ

− 2g(φνξ,AX)φνφY
]

+ g((∇XA)ξ, ξ)AY + α(∇XA)Y − αg((∇XA)Y, ξ)ξ

− αg(AY, φAX)ξ − αη(Y )(∇XA)ξ − αη(Y )AφAX

(4.2)

for any tangent vector fields X and Y on M (see [19]). From this and using symmet-
ric property of the structure Jacobi operator Rξ in G2(Cm+2), the cyclic parallelism
of the structure Jacobi operator (1.4) can be rearranged as follows:

0 = g
(
(∇XRξ)Y,Z

)
+ g

(
(∇Y Rξ)Z,X

)
+ g

(
(∇ZRξ)X,Y

)

= g
(
(∇XRξ)Y,Z

)
+ g

(
(∇Y Rξ)X,Z

)

+ g(AφX,Z)η(Y ) + η(X)g(AφY,Z) + (ξα)g(AX,Y )η(Z)

− α(ξα)η(X)η(Y )η(Z) + α2η(Y )g(AφX,Z) − αη(Y )g(AφAX,Z)

+ αη(Y )g(AφAX,Z) + αη(X)g(AφAY,Z) − α(ξα)η(X)η(Y )η(Z)

+ α2η(X)g(AφY,Z) − αη(X)g(AφAY,Z) + αg((∇XA)Y,Z)

+ αg(φX, Y )η(Z) + αη(X)g(φY,Z) + 2αη(Y )g(φX,Z)
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+
3∑

ν=1

[
ην(Y )g(AφνX,Z) − 2η(X)ην(Y )g(Aφνξ, Z) + ην(X)g(AφνY,Z)

+ 3g(φνξ, Y )g(AφνφX,Z) − 3η(X)g(φνξ, Y )g(Aξν , Z)

+ 3g(φνξ,X)g(AφφνY,Z) − 3αg(φνξ,X)ην(Y )η(Z)

+ 4ην(ξ)g(φνξ,X)g(AY,Z) + 4ην(ξ)g(φνξ, Y )g(AX,Z)

+ 2g(φνφX, Y )g(Aφνξ, Z) + 4g(AX,Y )ην(ξ)g(φνξ, Z)

− 4αη(X)η(Y )ην(ξ)g(φνξ, Z) − 4αη(X)η(Y )ην(ξ)g(φνξ, Z)
]

+ α

3∑
ν=1

[
g(φνX,Y )ην(Z) + ην(X)g(φνY,Z) + 2ην(Y )g(φνX,Z)

− g(φνφX, Y )g(φνξ, Z) + g(φνξ,X)g(φφνY,Z)

+ ην(φX)ην(Y )η(Z) + η(X)ην(Y )g(φνξ, Z)
]
, (4.3)

where we have used

g((∇ZA)ξ,X) = (Zα)η(X) − αg(AφX,Z) + g(AφAX,Z)

= (ξα)η(Z)η(X) + 4
3∑

ν=1

ην(ξ)g(φνξ, Z)η(X)

− αg(AφX,Z) + g(AφAX,Z)

and

g((∇ZA)X,Y )

= g((∇XA)Z, Y ) + η(Z)g(φX, Y ) − η(X)g(φZ, Y ) − 2g(φZ,X)η(Y )

+
3∑

ν=1

{
ην(Z)g(φνX,Y ) − ην(X)g(φνZ, Y ) − 2g(φνZ,X)ην(Y )

}

+
3∑

ν=1

{
ην(φZ)g(φνφX, Y ) − ην(φX)g(φνφZ, Y )

}

+
3∑

ν=1

{
η(Z)ην(φX) − η(X)ην(φZ)

}
ην(Y )

for any tangent vector fields X, Y and Z on M . Deleting Z from (4.3) and using
(4.2) gives

− g(φAX, Y )ξ − η(Y )φAX − g(φAY,X)ξ − η(X)φAY + η(Y )AφX

+ η(X)AφY + (ξα)g(AX,Y )ξ − 2α(ξα)η(X)η(Y )ξ + α2η(Y )AφX

+ α2η(X)AφY + α(∇XA)Y + αg(φX, Y )ξ + αη(X)φY + 2αη(Y )φX
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−
3∑

ν=1

[
g(φνAX,Y )ξν + 2η(Y )g(φνξ,AX)ξν + ην(Y )φνAX

+ 3g(φνAX,φY )φνξ + 3η(Y )ην(AX)φνξ − 3g(φνξ, Y )φνφAX

+ 3αη(X)g(φνξ, Y )ξν − 4ην(ξ)g(φνξ, Y )AX

− 4ην(ξ)g(AX,Y )φνξ − 2g(φνξ,AX)φνφY

+ g(φνAY,X)ξν + 2η(X)g(φνξ,AY )ξν + ην(X)φνAY

+ 3g(φνAY, φX)φνξ + 3η(X)ην(AY )φνξ − 3g(φνξ,X)φνφAY

+ 3αη(Y )g(φνξ,X)ξν − 4ην(ξ)g(φνξ,X)AY

− 4ην(ξ)g(AY,X)φνξ − 2g(φνξ,AY )φνφX
]

+
3∑

ν=1

[
ην(Y )AφνX − 2η(X)ην(Y )Aφνξ + ην(X)AφνY

+ 3g(φνξ, Y )AφνφX − 3η(X)g(φνξ, Y )Aξν

+ 3g(φνξ,X)AφφνY − 3αg(φνξ,X)ην(Y )ξ

+ 4ην(ξ)g(φνξ,X)AY + 4ην(ξ)g(φνξ, Y )AX

+ 2g(φνφX, Y )Aφνξ + 4g(AX,Y )ην(ξ)φνξ

− 4αη(X)η(Y )ην(ξ)φνξ − 4αη(X)η(Y )ην(ξ)φνξ
]

+ α

3∑
ν=1

[
g(φνX,Y )ξν + ην(X)φνY + 2ην(Y )φνX − g(φνφX, Y )φνξ

+ g(φνξ,X)φφνY + ην(φX)ην(Y )ξ + η(X)ην(Y )φνξ
]

+ g((∇XA)ξ, ξ)AY − αg((∇XA)Y, ξ)ξ − αg(AY, φAX)ξ

− αη(Y )AφAX + g((∇Y A)ξ, ξ)AX − αg((∇Y A)X, ξ)ξ

− αg(AX,φAY )ξ − αη(X)AφAY + α(∇XA)Y − αη(Y )(∇XA)ξ

+ α(∇Y A)X − αη(X)(∇Y A)ξ = 0. (4.4)

On the other hand, by using the Codazzi equation (3.8) and (3.10) in the latter
part of (4.4), we obtain

g((∇XA)ξ, ξ)AY − αg((∇XA)Y, ξ)ξ − αg(AY, φAX)ξ − αη(Y )AφAX

+ g((∇Y A)ξ, ξ)AX − αg((∇Y A)X, ξ)ξ − αg(AX,φAY )ξ − αη(X)AφAY

+ α(∇XA)Y + α(∇Y A)X − αη(Y )(∇XA)ξ − αη(X)(∇Y A)ξ

= (ξα)η(X)AY + 4
3∑

ν=1

ην(ξ)g(φνξ,X)AY − αg(AφAX, Y )ξ
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− αη(Y )AφAX − α(ξα)η(X)η(Y )ξ − 4α

3∑
ν=1

ην(ξ)g(φνξ,X)η(Y )ξ

− α2g(φAX, Y )ξ + αg(AφAX, Y )ξ + (ξα)η(Y )AX

+ 4
3∑

ν=1

ην(ξ)g(φνξ, Y )AX + αg(AφAX, Y )ξ

− αη(X)AφAY − α(ξα)η(X)η(Y )ξ

− 4α
3∑

ν=1

ην(ξ)η(X)g(φνξ, Y )ξ − α2g(φAY,X)ξ + αg(AφAY,X)ξ

+ 2α(∇XA)Y + αη(Y )φX − αη(X)φY − 2αg(φY,X)ξ

+ α

3∑
ν=1

{
ην(Y )φνX − ην(X)φνY − 2g(φνY,X)ξνην(φY )φνφX

}

+ α
3∑

ν=1

{
− ην(φX)φνφY + η(Y )ην(φX)ξν − η(X)ην(φY )ξν

}

− αη(Y ){(ξα)η(X)ξ + 4
3∑

ν=1

ην(ξ)g(φνξ,X)ξ + αφAX − AφAX
}

− αη(X){(ξα)η(Y )ξ + 4
3∑

ν=1

ην(ξ)g(φνξ, Y )ξ + αφAY − AφAY
}
. (4.5)

From now on, we want to prove that the normal vector field N of a Hopf real
hypersurface M in G2(Cm+2) is singular. Then by the meaning of singularity men-
tioned in the introduction, we see that either ξ ∈ Q or ξ ∈ Q⊥ where Q is the
maximal quaternionic subbundle of TM = Q⊕Q⊥. In order to do this, we may
put the Reeb vector field ξ as follows:

ξ = η(X0)X0 + η(ξ1)ξ1 (*)

for unit vector fields X0 ∈ Q and ξ1 ∈ Q⊥ with η(X0)η(ξ1) �= 0. By using the nota-
tion (*) we obtain that the Reeb function α is constant along the direction of ξ if
and only if the distribution Q- or the Q⊥-component of the structure vector field ξ
is invariant by the shape operator, that is AX0 = αX0 and Aξ1 = αξ1 (see [13, 18]).
From this fact, we obtain the following useful formulas for Hopf real hypersurfaces
in G2(Cm+2).

Lemma 4.1. Let M be a Hopf real hypersurface with non-vanishing geodesic Reeb
flow in G2(Cm+2), m � 3. If the distribution Q or Q⊥ component of the structure
vector field ξ is invariant by the shape operator, then the following formulas hold:

1. AφX0 = μφX0,

2. Aφξ1 = μφξ1,

3. Aφ1X0 = μφ1X0
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where the function μ is given by μ = (α2 + 4η2(X0)/α).

Proof. Putting X = X0 in (3.11) and using AX0 = αX0, it yields

αAφX0 = α2φX0 + 2φX0 + 2η(ξ1)φ1X0 − 4η(X0)η(ξ1)φ1ξ, (4.6)

where we have used g(φνξ,X0) = 0 for ν = 1, 2, 3 and η2(ξ) = η3(ξ) = 0.
On the other hand, by (*) we obtain

φ1ξ = η(X0)φ1X0 + η(ξ1)φ1ξ1 = η(X0)φ1X0. (4.7)

In addition, from (*) and φ1ξ = φ1ξ we have

0 = φξ = η(X0)φX0 + η(ξ1)φξ1

= η(X0)φX0 + η(ξ1)φ1ξ

= η(X0)φX0 + η(ξ1)η(X0)φ1X0,

which means

φX0 = −η(ξ1)φ1X0 (4.8)

because of η(X0)η(ξ1) �= 0. Substituting (4.7) and (4.8) to (4.6), we get

αAφX0 = α2φX0 + 4η2(X0)φX0 = (α2 + 4η2(X0))φX0.

Since M has non-vanishing geodesic Reeb flow, we see that the vector field φX0 is
principal with corresponding principal curvature μ = (α2 + 4η2(X0)/α).

Similarly, using (4.7) and (4.8), together with η(X0)η(ξ1) �= 0, the formula (4.6)
gives (b) and (c). �

When the Reeb function α is vanishing, Pérez and Suh gave the following

Lemma B ([27]). Let M be a Hopf real hypersurface in G2(Cm+2), m � 3. If
M has vanishing geodesic Reeb flow, then the unit normal vector field N of M is
singular, that is, either ξ ∈ Q or ξ ∈ Q⊥.

Remark 4.2. By using the method in the proof of lemma B, we can assert that if
M is a Hopf real hypersurface with constant Reeb curvature, then the unit normal
vector field N of M is singular. In fact, since M has constant Reeb function, (3.10)
becomes

4
3∑

ν=1

ην(ξ)φνξ = 0

By using (*), this equation yields η(ξ1)φ1ξ = 0. From our assumption of
η(X)η(ξ1) �= 0 and (4.7), it leads to φ1X0 = 0. Taking the inner product with φ1X0,
it implies

g(φ1X0, φ1X0) = −g(φ2
1X0,X0) = g(X0,X0) −

(
η1(X0)

)2 = 1,

which gives us a contradiction.
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By using lemma B, in the latter part of this section, we prove that the normal
vector field N of M is singular, when a Hopf real hypersurface M in G2(Cm+2) has
non-vanishing geodesic Reeb flow α = g(Aξ, ξ).

Lemma 4.3. Let M be a Hopf real hypersurface with non-vanishing geodesic Reeb
flow in complex two-plane Grassmannians G2(Cm+2), m � 3. If the structure Jacobi
operator Rξ of M is cyclic parallel, then the unit normal vector field N of M is
singular.

Proof. In [16], Lee and Loo show that if M is Hopf, then the Reeb function α is
constant along the direction of structure vector field ξ, that is, ξα = 0. Then we see
that the distribution Q- and the Q⊥-component of ξ are invariant by the shape
operator A, that is AX0 = αX0 and Aξ1 = αξ1.

Bearing in mind of these facts, putting X = X0 and Y = ξ1 in (4.4) and using
(4.5), we obtain

− αη(X0)φξ1 + μη(ξ1)φX0 + μη(X0)φξ1 + 3α(∇X0A)ξ1 + 2αη(ξ1)φX0

− α3η(ξ1)φX0 + μα2η(ξ1)φX0 − α3η(X0)φξ1 + μα2η(X0)φξ1

+
3∑

ν=1

[
αην(ξ1)φνX0 − 3αg(φνX0, φξ1)φνξ − 2αη(X0)ην(ξ1)φνξ + ην(ξ1)AφνX0

− 2η(X0)ην(ξ1)Aφνξ − 8αη(X0)η(ξ1)ην(ξ)φνξ + αην(ξ1)φνX0

]
= 0,

where we have used g(φξ1,X0) = −g(φX0, ξ1) = 0 and

g(φνX0, ξ1) = g(φνξ,X0) = g(φνξ, ξ1) = g(φνφX0, ξ1) = 0

for all ν = 1, 2, 3. Since η2(ξ) = η3(ξ) = 0, together with g(φ1X0, φ1X0) = 1, this
equation can be rearranged as

− αη(X0)φξ1 + μη(ξ1)φX0 + μη(X0)φξ1 + 3α(∇X0A)ξ1

+ 2αη(ξ1)φX0 − α3η(ξ1)φX0 + μα2η(ξ1)φX0

− α3η(X0)φξ1 + μα2η(X0)φξ1 + 2αφ1X0 − 5αη(X0)φξ1

+ μφ1X0 − 2μη(X0)φ1ξ − 8αη(X0)
(
η(ξ1)

)2
φ1ξ = 0.

(4.9)

From (4.7) and (4.8), (4.9) becomes

η2(X0)
{
− 6α − μ − α3 + μα2 − 8αη2(ξ1)

}
φ1X0

− η2(ξ1)
{
μ + 2α − α3 + μα2

}
φ1X0

+ (2α + μ)φ1X0 + 3α(∇X0A)ξ1 = 0.

(4.10)

On the other hand, from (3.4) and (3.10), the assumption Aξ1 = αξ1 yields

(∇XA)ξ1 = (Xα)ξ1 + α∇Xξ1 − A(∇Xξ1)

= 4η(ξ1)g(φ1ξ,X)ξ1 + α{q3(X)ξ2 − q2(X)ξ3 + φ1AX}
− q3(X)Aξ2 + q2(X)Aξ3 − Aφ1AX
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for any tangent vector field X on M . From this, taking the inner product with
φ1X0 to (4.10) and (3.4), together with αμ = α2 + 4η2(X0), we get

η2(X0)
{
− 14α − μ + 12αη2(X0)

}
− η2(ξ1)

{
μ + 2α + 4αη2(X0)

}

+ 2α + μ − 12αη2(X0) = 0,
(4.11)

where we have used g(φ1X0, φ1X0) = 1, η2(X0) + η2(ξ1) = 1, and

g((∇X0A)ξ1, φ1X0) = αg(φ1AX0, φ1X0) − g(Aφ1AX0, φ1X0)

= α2 − αμ = −4η2(X0).

By using non-vanishing Reeb function α �= 0 and αμ = α2 + 4η2(X0), together with
η2(ξ1) = 1 − η2(X0), (4.11) becomes

η2(X0)
{
− 28α2 + 16α2η2(X0)

}
= 0. (4.12)

By virtue of ξ = η(X0)X0 + η(ξ1)ξ1 in (*) for η(X0)η(ξ1) �= 0, and our assumption
of non-vanishing geodesic Reeb flow, that is, α �= 0, (4.12) implies that η2(X0) = 7

4 .
Since the structure vector field ξ is unit, we should have η2(X0) + η2(ξ1) = 1. From
these facts, we obtain η2(ξ1) = − 3

4 . It makes a contradiction. This means that
either ξ = η(X0)X0 = ±X0 ∈ Q or ξ = η(ξ1)ξ1 = ±ξ1 ∈ Q⊥, which gives the unit
normal vector field N is singular. �

Summing up lemmas B and 4.3, we assert that our theorem 1 in the introduction.

5. Cyclic parallel structure Jacobi operator for JN ∈ J N

Hereafter, let M be a Hopf real hypersurface with cyclic parallel structure Jacobi
operator in complex two-plane Grassmannians G2(Cm+2) for m � 3. Then by
theorem 1, our discussions can be divided into two cases accordingly as the Reeb
vector field ξ ∈ Q⊥ or ξ ∈ Q.

In this section, we consider the case of ξ ∈ Q⊥ (i.e. JN ∈ JN where N is a
unit normal vector field on M in G2(Cm+2), m � 3). Since Q⊥ is 3-dimensional
distribution defined by Q⊥ = span{ξ1, ξ2, ξ3}, we may put ξ = ξ1. From this, we
give an important lemma as follows.

Lemma 5.1. Let M be a real hypersurface in complex two-plane Grassmannians
G2(Cm+2), m � 3. Let J1 ∈ J be the almost Hermitian structure such that JN =
J1N (or ξ = ξ1). Then we obtain

φAX = 2g(AX, ξ3)ξ2 − 2g(AX, ξ2)ξ3 + φ1AX

for any tangent vector field X on M .
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Proof. Differentiating ξ = ξ1 along any vector field X ∈ TM and using (3.4), we
obtain

φAX = ∇Xξ

= ∇Xξ1 = q3(X)ξ2 − q2(X)ξ3 + φ1AX.
(5.1)

Taking the inner product of (5.1) with ξ2 and ξ3, we obtain

g(φAX, ξ2) = q3(X) + g(φ1Aξ, ξ2)

and

g(φAX, ξ3) = −q2(X) + g(φ1Aξ, ξ3)

respectively. It follows that

q3(X) = 2g(AX, ξ3) and q2(X) = 2g(AX, ξ2).

From this, (5.1) becomes

φAX = 2g(AX, ξ3)ξ2 − 2g(AX, ξ2)ξ3 + φ1AX (5.2)

for any tangent vector field X on M . Moreover, taking the symmetric part of (5.2)
we obtain

AφX = 2η3(X)Aξ2 − 2η2(X)Aξ3 + Aφ1X. (5.3)

�

Then, by virtue of lemma 5.1, we prove the following

Lemma 5.2. Let M be a Hopf hypersurface with cyclic parallel structure Jacobi
operator in complex two-plane Grassmannians G2(Cm+2), m � 3. If the Reeb vector
field ξ belongs to Q⊥ (i.e. ξ = ξ1), then the distribution Q⊥ is invariant by the shape
operator A of M , that is, g(AQ,Q⊥) = 0.

Proof. By (3.10) we obtain Xα = (ξα)η(X) for any X ∈ TM , when the Reeb vector
field ξ belongs to the distribution Q. From this and taking the inner product of
(4.4) with ξ, we have

− g(φAX, Y ) + g(AφX, Y ) + (ξα)g(AX,Y ) − α(ξα)η(X)η(Y ) + 3α2g(φAX, Y )

− αg(AφAX, Y ) + 3αg(φX, Y ) + α2g(AφX, Y ) − α2g(φAX, Y )

+
3∑

ν=1

[
− ην(ξ)g(φνAX,Y ) − g(φνξ,AX)ην(Y ) − 3g(AX, ξν)g(φνξ, Y )

+ 4αην(ξ)η(X)g(φνξ, Y ) + ην(ξ)g(AφνX,Y ) − ην(X)g(φνξ,AY )

− 3g(φνξ,X)g(ξν , AY ) + 4αην(ξ)g(φνξ,X)η(Y )

− 9αg(φνξ,X)ην(Y ) − 3αην(X)g(φνξ, Y ) + 3αην(ξ)g(φνX,Y )
]

= 0,
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where we have used

g((∇XA)Y, ξ) = g((∇XA)ξ, Y ) = (Xα)η(Y ) + αg(φAX, Y ) − g(AφAX, Y )

= (ξα)η(X)η(Y ) + αg(φAX, Y ) − g(AφAX, Y ),

g(φνφAX, ξ) = g(φφνξ,AX) = g(φ2ξν , AX) = −g(ξν , AX) + αη(ξν)η(X)

and

g(φνφX, ξ) = g(φ2ξν ,X) = −ην(X) + ην(ξ)η(X)

for any tangent vector fields X and Y on M .
On the other hand, from the assumption ξ = ξ1 ∈ Q⊥ we get φ2ξ = φ2ξ1 = −ξ3

and φ3ξ = φ3ξ1 = ξ2. By using these formulas into the preceding equation, we get

− g(φAX, Y ) + g(AφX, Y ) + (ξα)g(AX,Y ) − α(ξα)η(X)η(Y )

+ 2α2g(φAX, Y ) − αg(AφAX, Y ) + 3αg(φX, Y ) + α2g(AφX, Y )

− g(φ1AX,Y ) − 2η3(AX)η2(Y ) + 2η2(AX)η3(Y )

+ g(Aφ1X,Y ) − 2η2(X)g(Aξ3, Y ) + 2η3(X)g(Aξ2, Y )

+ 6αη3(X)η2(Y ) − 6αη2(X)η3(Y ) + 3αg(φ1X,Y ) = 0.

(5.4)

Deleting Y from (5.4), we get

− φAX + AφX + (ξα)AX − α(ξα)η(X)ξ + 2α2φAX − αAφAX + α2AφX

− φ1AX − 2η3(AX)ξ2 + 2η2(AX)ξ3 + Aφ1X − 2η2(X)Aξ3 + 2η3(X)Aξ2

+ 3α
{
2η3(X)ξ2 − 2η2(X)ξ3 + φX + φ1X

}
= 0

(5.5)

for any tangent vector field X on M .
On the other hand, when ξ = ξ1 ∈ Q, (3.11) gives us

φX + φ1X − 2η2(X)ξ3 + 2η3(X)ξ2 = AφAX − α

2
AφX − α

2
φAX (5.6)

for any tangent vector field X on M . Substituting (5.6) into (5.5), it follows that

− φAX + AφX + (ξα)AX − α(ξα)η(X)ξ + 2α2φAX − αAφAX + α2AφX

− φ1AX − 2η3(AX)ξ2 + 2η2(AX)ξ3 + Aφ1X − 2η2(X)Aξ3 + 2η3(X)Aξ2

+ 3α
{
AφAX − α

2
AφX − α

2
φAX

}
= 0,

which implies

(−2 + 7α2)φAX + (2 − α2)AφX + 2(ξα)AX − 2α(ξα)η(X)ξ

+ 4αAφAX − 2
{
φ1AX + 2η3(AX)ξ2 − 2η2(AX)ξ3

}

+ 2
{
Aφ1X − 2η2(X)Aξ3 + 2η3(X)Aξ2

}
= 0

(5.7)
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for any X ∈ TM . Bearing in mind of (5.2) and (5.3), the above equation reduces
to

(−4 + 7α2)φAX + (4 − α2)AφX + 2(ξα)AX

− 2α(ξα)η(X)ξ + 4αAφAX = 0.
(5.8)

From (5.2) and (5.3), we get

2η3(AX)ξ2 − 2η2(AX) = φAX − φ1AX (5.9)

and

2η3(X)Aξ2 − 2η2(X)Aξ3 = AφX − Aφ1X, (5.10)

respectively. Substituting (5.9) and (5.10) into (5.7), it becomes

(−2 + 7α2)φAX + (2 − α2)AφX + 2(ξα)AX − 2α(ξα)η(X)ξ + 4αAφAX

− 2
{
φ1AX + φAX − φ1AX

}
+ 2

{
Aφ1X − AφX + Aφ1X

}
= 0,

which yields

(−4 + 7α2)φAX − α2AφX + 2(ξα)AX − 2α(ξα)η(X)ξ

+ 4αAφAX + 4Aφ1X = 0.
(5.11)

Subtracting (5.11) from (5.8), we have AφX = Aφ1X, which means that φAX =
φ1AX for any tangent vector field X on M . From this, (5.2) becomes

g(Aξ2,X)ξ2 − g(Aξ2,X)ξ3 = 0 (5.12)

for any tangent vector field X on M . Taking the inner product of (5.12) with ξ2

(resp. ξ3), we get the following for any tangent vector field X on M

g(Aξ2,X) = g(AX, ξ2) = 0 (resp. g(Aξ3,X) = g(AX, ξ3) = 0), (5.13)

which means that g(AQ,Q⊥) = 0. It gives a complete proof of lemma 5.2. �

By theorem A and proposition A, lemma 5.2 assures that if a Hopf real hypersur-
face satisfies all of geometric conditions mentioned in lemma 5.2, then M is locally
congruent to an open part of the model spaces of type (TA).

From now on, we will check whether a real hypersurface of type (TA) satisfies
our hypothesis given in lemma 5.2. By proposition A mentioned in §2, we see that
such real hypersurface is Hopf and its normal vector field satisfies JN ∈ JN .

In the remaining part of this section, we want to check if the structure Jacobi
operator Rξ for a model space of type (TA) satisfies the cyclic parallelism. In order
to do this, we want to find some necessary and sufficient conditions for structure
Jacobi operator Rξ of a real hypersurface (TA) to be cyclic parallel according to
each eigenspace including the vector Y .

From such a view point, first, we consider the following case.
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Case A. Y ∈ Tλ

In other words, from (4.4) and (4.5), together with (2.2), the structure Jacobi
operator Rξ of a real hypersurface of type (TA) satisfies the following for any tangent
vector field X ∈ T (TA)

3α(λ2 − αλ − 2)g(φY,X)ξ − 2(2α − β − λ)g(φ2Y,X)ξ2

− 2(2α − β − λ)g(φ3Y,X)ξ3 − 2(2α − β − λ)η2(X)φ2Y

− 2(2α − β − λ)η3(X)φ3Y = 0,

(5.14)

where T (TA) denotes a tangent space of type (TA) and we have used φφ2Y =
φ2φY = −φ3Y ∈ Tμ and φφ3Y = φ3φY = φ2Y ∈ Tμ for any Y ∈ Tλ.

From now on, we want to check a solution of the equation (5.14) to be satisfied
for type (TA). In fact, the left side of (5.14) depends on the eigenspaces of (TA) and
is given as

Left side of (5.14) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for X ∈ Tα,
−2(2α − β − λ)φ2Y for X = ξ2 ∈ Tβ ,
−2(2α − β − λ)φ3Y for X = ξ3 ∈ Tβ ,
3α(λ2 − αλ − 2)g(φY,X)ξ for X ∈ Tλ,
−2(2α − β − λ)g(φ2Y,X)(ξ2 + ξ3) for X ∈ Tμ

for Y ∈ Tλ. By using α = 2
√

2 cot(2
√

2r) =
√

2(cot(
√

2r) − tan(
√

2r)) and λ =
−
√

2 tan(
√

2r) with r ∈ (0, (π/2
√

2)), we get λ2 − αλ − 2 = 0. From this, the
previous formula follows

Left side of (5.14)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for X ∈ Tα,
−2(2α − β − λ)φ2Y for X = ξ2 ∈ Tβ ,
−2(2α − β − λ)φ3Y for X = ξ3 ∈ Tβ ,
0 for X ∈ Tλ,
−2(2α − β − λ)g(φ2Y,X)(ξ2 + ξ3) for X ∈ Tμ

(5.15)

for Y ∈ Tλ.
Bearing in mind of proposition A, if r = (π/4

√
2), then 2α − β − λ = 0. Hence,

when Y ∈ Tλ, the structure Jacobi operator Rξ is cyclic parallel if and only if the
radius r of the tube (TA) is (π/4

√
2).

Under these situations, we consider our problem for the other cases Y ∈ Tα ⊕
Tβ ⊕ Tμ as follows.

Case B. Y ∈ Tα ⊕ Tβ ⊕ Tμ where α = μ = 0, β =
√

2, and λ = −
√

2
By the affect of case A in (TA), we have seen that in order to be cyclic parallel

for the structure Jacobi operator Rξ of (TA), the radius r of (TA) should satisfy
r = (π/4

√
2). From this fact, we obtain α = μ = 0, β =

√
2, and λ = −

√
2. Then,
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the left side of (4.4) becomes

Left side of (4.4)

= −g(φAX, Y )ξ − η(Y )φAX − g(φAY,X)ξ

− η(X)φAY + η(Y )AφX + η(X)AφY

−
3∑

ν=1

[
g(φνAX,Y )ξν + 2η(Y )g(φνξ,AX)ξν + ην(Y )φνAX

+ 3g(φνAX,φY )φνξ + 3η(Y )ην(AX)φνξ

− 3g(φνξ, Y )φνφAX − 2g(φνξ,AX)φνφY + ην(X)φνAY

− 2g(φνξ,AY )φνφX + g(φνAY,X)ξν + 2η(X)g(φνξ,AY )ξν

+ 3g(φνAY, φX)φνξ + 3η(X)ην(AY )φνξ − 3g(φνξ,X)φνφAY

− ην(Y )AφνX + 2η(X)ην(Y )Aφνξ − ην(X)AφνY

− 3g(φνξ, Y )AφνφX + 3η(X)g(φνξ, Y )Aξν

− 3g(φνξ,X)AφφνY − 2g(φνφX, Y )Aφνξ
]

(5.16)

for any X ∈ T (TA) and Y ∈ Tα ⊕ Tβ ⊕ Tμ.
Subcase B-1. Y = ξ ∈ Tα where α = 0
From this assumption, we get AY = Aξ = αξ = 0. Then, (5.16) becomes

− φAX + AφX −
3∑

ν=1

{
g(Aφνξ,X)ξν + ην(ξ)φνAX + 3g(Aξν ,X)φνξ

}

+
3∑

ν=1

{
ην(X)Aφνξ − 3g(φνξ,X)Aξν + ην(ξ)AφνX

}

= −φAX + AφX − φ1AX + Aφ1X,

(5.17)

where we have used φ2ξ = −ξ3, φ3ξ = ξ2, and φφνξ = φ2ξν = −ξν + η(ξν)ξ.
According to the composition of the eigenspaces for (TA), we see that each
eigenspace Tσ of (TA) is φ-(or φ1-)invariant, that is, φTσ = φ1Tσ = Tσ. From this,
(5.17) vanishes on all eigenspaces of (TA). So, this means that the structure Jacobi
operator Rξ is cyclic parallel when Y ∈ Tα.

Subcase B-2. Y ∈ Tβ where β =
√

2
Since Tβ = span{ξ2, ξ3}, we have the following two subcases.

• Y = ξ2 ∈ Tβ

Using α = 0, (5.16) can be rearranged as

6βη3(X)ξ + βη(X)ξ3 − φ2AX + 3φ3φAX

+ 2βφ3φX + Aφ2X + 3Aφ3φX
(5.18)
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for any eigenvector X on (TA). It is well-known that for X ∈ Tλ (resp. X ∈ Tμ),
by the straightforward calculation with (3.2), we obtain

φ2φX =
X∈Tλ

φ2φ1X =
3.2

−φ3X ∈ Tμ

(resp. φ2φX =
X∈Tμ

−φ2φ1X = φ3X ∈ Tλ),

φ3φX =
X∈Tλ

φ3φ1X =
3.2

φ2X ∈ Tμ

(resp. φ3φX =
X∈Tμ

−φ3φ1X = −φ2X ∈ Tλ),

and

φX = φ1X ∈ Tλ (resp. φX = φ1X ∈ Tμ).

Bearing in mind such properties, together with β =
√

2 and λ = −
√

2, (5.18)
is identically vanishing for any tangent vector field X on (TA).

• Y = ξ3 ∈ Tβ

Similarly, from (5.16) we obtain

− 6βη2(X)ξ − βη(X)ξ2 − φ3AX − 3φ2φAX

− 2βφ2φX + Aφ3X − 3Aφ2φX
(5.19)

for any eigenvector X on (TA). More specifically, according to each eigenspace
Tα, Tβ , Tλ and Tμ, it follows that

(5.19) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−βξ2 + Aφ3ξ = −βξ2 + Aξ2 = 0 for X ∈ Tα,
−6βξ − φ3Aξ2 − 3φ2φAξ2 − 2βφ2φξ2 = 0 for X = ξ2 ∈ Tβ ,
−3φ2φAξ3 − 2βφ2φξ3 − 3Aφ2φξ3 = 0 for X = ξ3 ∈ Tβ ,
−λφ3X − 3λφ2φX − 2βφ2φX = 2(λ + β)φ3X = 0 for X ∈ Tλ,
−2βφ2φX + λφ3X − 3Aφ3X = −2β(β + λ)φ3X = 0 for X ∈ Tμ,

where we have used φ2φξ2 = −φ2ξ3 = −ξ, φ2φξ2 = φ2ξ2 = 0, β =
√

2 and λ =
−
√

2.

Subcase B-3. Y ∈ Tμ where μ = 0
Since a real hypersurface of type (TA) has isometric Reeb flow, we obtain

φY ∈ Tμ=0, that is, AφY = φAY = μφY = 0 for any Y ∈ Tμ=0. From this and the
construction of Tμ = {Y ∈ Q |φY = −φ1Y }, we also obtain Aφ1Y = −AφY = 0 for
Y ∈ Tμ=0. From these properties, (5.16) becomes

−
3∑

ν=1

{
g(φνAX,Y )ξν + 3g(φνAX,φY )φνξ − 2g(φνξ,AX)φνφY

− ην(X)AφνY − 3g(φνξ,X)AφφνY − 2g(φνφX, Y )Aφνξ
}

= −2(β + λ)
{
g(φ2X,Y )ξ2 + g(φ3X,Y )ξ3 + η2(X)φ2Y + η3(X)φ3Y

}
,

(5.20)

where we have used φ2φY = φ3Y ∈ Tλ and φ3φY = −φ2Y ∈ Tλ for any Y ∈ Tμ=0.
Since β =

√
2 and λ = −

√
2, (5.20) is identically vanishing for any tangent vector

field X on (TA).
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Summing up these discussions, we assert that the structure Jacobi operator Rξ

of a real hypersurface of type (TA) is cyclic parallel if and only if the radius r of
the tube around of type (TA) is (π/4

√
2).

6. Cyclic parallel structure Jacobi operator for JN⊥J N

Let M be a Hopf real hypersurface with cyclic parallel structure Jacobi operator
Rξ in complex two-plane Grassmannians G2(Cm+2), m � 3. Assume that the unit
normal vector field N of M satisfies JN⊥JN (i.e. ξ ∈ Q). Related to the Reeb
vector field ξ of M in G2(Cm+2), Lee and Suh gave:

Theorem B ([17]). Let M be a connected orientable Hopf real hypersurface in
complex two-plane Grassmannians of compact type G2(Cm+2), m � 3. Then the
Reeb vector ξ belongs to the distribution Q if and only if M is locally congruent to
an open part of (TB): a tube around a totally geodesic HPn in G2(Cm+2), where
m = 2n.

By virtue of theorem 1 and theorem B, we assert that a Hopf real hypersurface M
in complex two-plane Grassmannians G2(Cm+2), m � 3, satisfying the hypothesis
in our theorem 2 is locally congruent to an open part of the model space mentioned
in theorem B. Hereafter, conversely, let us check whether the structure Jacobi oper-
ator Rξ of the model space of type (TB) satisfies our assumption of cyclic parallel
structure Jacobi operator.

In order to do this, we introduce a proposition given in [30] as follows:

Proposition B. Let M be a connected real hypersurface in complex two-plane
Grassmannians G2(Cm+2). Suppose that AQ ⊂ Q, Aξ = αξ, and ξ is tangent to
Q. Then the quaternionic dimension m of G2(Cm+2) is even, say m = 2n, and M
has five distinct constant principal curvatures

α = −2 tan(2r), β = 2 cot(2r), γ = 0, λ = cot(r), μ = − tan(r)

with some r ∈ (0, π
4 ). The corresponding multiplicities are

m(α) = 1, m(β) = 3 = m(γ), m(λ) = 4n − 4 = m(μ)

and the corresponding eigenspaces are

Tα = Rξ = C⊥ = span{ξ},
Tβ = J Jξ = span{ξ1, ξ2, ξ3},
Tγ = J ξ = span{φξ1, φξ2, φξ3},
Tλ, Tμ,

where

Tλ ⊕ Tμ = TM 
 (Rξ ⊕ J Jξ), J Tλ = Tλ, J Tμ = Tμ, JTλ = Tμ.
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In order to check the converse part, we assume that the structure Jacobi operator
Rξ of our model space of type (TB) satisfies the property of cyclic parallelism.
Accordingly, by Aφξν = 0 for ν = 1, 2, 3, the property (1.4) can be rearranged as

g(X,AφY )ξ − η(Y )φAX − g(X,φAY )ξ − η(X)φAY + η(Y )AφX

+ η(X)AφY + α2η(Y )AφX + α2η(X)AφY + 3α(∇XA)Y

+ αg(φX, Y )ξ + 3αη(Y )φX + α2g(X,AφY )ξ − α2g(φAY,X)ξ

− 2αg(φY,X)ξ − α2η(Y )φAX − α2η(X)φAY

+
3∑

ν=1

[
−g(φνAX,Y )ξν − ην(Y )φνAX − 3g(φνAX,φY )φνξ

− 3η(Y )ην(AX)φνξ + 3g(φνξ, Y )φνφAX

− 3αη(X)g(φνξ, Y )ξν + 2g(φνξ,AX)φνφY

− g(φνAY,X)ξν − 2η(X)g(φνξ,AY )ξν − ην(X)φνAY

− 3g(φνAY, φX)φνξ − 3η(X)ην(AY )φνξ + 3g(φνξ,X)φνφAY

− 3αη(Y )g(φνξ,X)ξν + 2g(φνξ,AY )φνφX + ην(Y )AφνX

+ ην(X)AφνY + 3g(φνξ, Y )AφνφX − 3η(X)g(φνξ, Y )Aξν

+ 3g(φνξ,X)AφφνY − 3αg(φνξ,X)ην(Y )ξ + αg(φνX,Y )ξν

+ 2αην(Y )φνX − αg(φνφX, Y )φνξ + αg(φνξ,X)φφνY

+ αην(φX)ην(Y )ξ + αη(X)ην(Y )φνξ + αην(Y )φνX

− 2αg(φνY,X)ξν + αην(φY )φνφX − αην(φX)φνφY

+ αη(Y )ην(φX)ξν − αη(X)ην(φY )ξν

]
= 0

(6.1)

for any tangent vector field X on type (TB).
Bearing in mind of our assumption, the structure Jacobi operator Rξ for the tube

of type (TB) is cyclic parallel, taking Y ∈ Tα in (6.1) yields

− φAX + AφX + α2AφX + 2α2φAX − 3αAφAX + 3αφX

− 3
3∑

ν=1

[
βην(X)φνξ + 3αg(φνξ,X)ξν + αην(X)φνξ + βg(φνξ,X)ξν

]
= 0,

(6.2)

where we have used (∇XA)ξ = αφAX − AφAX and φφνξ = φ2ξν = −ξν . Further-
more, taking X = ξμ ∈ Tβ in (6.2) follows

0 = −φAξμ + Aφξμ + α2Aφξμ + 2α2φAξμ − 3αAφAξμ + 3αφξμ

− 3
3∑

ν=1

[
βην(ξμ)φνξ + 3αg(φνξ, ξμ)ξν + αην(ξμ)φνξ + βg(φνξ, ξμ)ξν

]

= 2β(α2 − 2)φμξ,
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which implies β(α2 − 2) = 0. Since β = 2 cot(2r) for r ∈ (0, (π/4)), we obtain
α2 = 2.

On the other hand, taking X ∈ Tλ in (6.2), together with φTλ = Tμ, provides

0 = −λφX + μφX + α2μφX + 2α2λφX − 3αλμφX + 3αφX

= 3(β + 2α)φX,

where we have used α2 = 2, λμ = (cot r) · (− tan r) = −1, and λ + μ = 2 cot
(2t) = β.

Applying a method to (6.2) that is done above, the left side of (6.2) according to
each eigenspace of type (Tβ) is given as

Left side of (6.2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for X ∈ Tα,
2β(α2 − 2)φμξ for X = ξμ ∈ Tβ ,
−6(β + 2α)ξμ for X = φμξ ∈ Tγ ,
3(β + 2α)φX for X ∈ Tλ,
3(β + 2α)φX for X ∈ Tμ.

Now, as the other case we consider the case Y ∈ Tλ. Then, by using JTλ = Tμ

and J Tλ = Tλ, equation (6.1) is rearranged as

g(X,AφY )ξ − g(X,φAY )ξ − η(X)φAY + η(X)AφY + α2η(X)AφY

+ 3α(∇XA)Y + αg(φX, Y )ξ + α2g(X,AφY )ξ

− α2g(φAY,X)ξ − 2αg(φY,X)ξ − α2η(X)φAY

+
3∑

ν=1

[
−g(φνAX,Y )ξν − 3g(φνAX,φY )φνξ − g(φνAY,X)ξν

− ην(X)φνAY − 3g(φνAY, φX)φνξ + 3g(φνξ,X)φνφAY

+ ην(X)AφνY + αg(φνX,Y )ξν + 3g(φνξ,X)AφφνY

− αg(φνφX, Y )φνξ + αg(φνξ,X)φφνY

− 2αg(φνY,X)ξν + αg(φνξ,X)φνφY
]

= (μ − λ − 3α + α2μ − α2λ)g(X,φY )ξ + (λ + μ + α2μ − α2λ)η(X)φY

+ 3α(∇XA)Y +
3∑

ν=1

[
− 3αg(φνY,X)ξν + (3μ + 3λ − α)g(φφνY,X)φνξ

]

+
3∑

ν=1

(3λ + 3μ + 2α)g(φνξ,X)φφνY = 0

(6.3)

for any tangent vector field X on type (TB). Restricting X ∈ Tα in (6.3) provides

(λ + μ + α2μ − α2λ)φY + 3α(∇ξA)Y = 0 (6.4)
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for any Y ∈ Tλ. By the equation of Codazzi (3.8), we get

(∇ξA)Y = (∇Y A)ξ + φY +
3∑

ν=1

{
− ην(Y )φνξ − 3g(φνξ, Y )ξν

}

= αφAY − AφAY + φY = (αλ − λμ + 1)φY

for any Y ∈ Tλ. From this, (6.4) becomes

(λ + μ + α2μ − α2λ + 3α2λ − 3αλμ + 3α)φY = 0.

Since α2 = 2, β + 2α = 0, λ + μ = β and λμ = −1, the previous equation gives

β + 2μ + 4λ + 6α = −2(β − μ − 2λ) = 0, (6.5)

which gives us a contradiction. In fact, by proposition B we see that β = 2 cot(2r),
λ = cot(r) and μ = − tan(r) where r ∈ (0, π

4 ). From this, we get

β − μ − 2λ = − 1
tan r

,

which means that the function β − μ − 2λ is non-vanishing for any r ∈ (0, (π/4)).
Summing up those documents in this section, we can assert that there does not

exist a Hopf real hypersurface in complex two-plane Grassmannians G2(Cm+2),
m � 3, with cyclic parallel structure Jacobi operator when the normal vector field
of M is of type JN⊥JN .
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