For
$A\subseteq \mathbb {Z}_m$
and
$n\in \mathbb {Z}_m$
, let
$\sigma _A(n)$
be the number of solutions to the equation
$n=x+y$
with
$x,y\in A$
. Let
$\mathcal {H}_m$
be the set of subsets
$A\subseteq \mathbb {Z}_m$
such that
$\sigma _A(n)\geq 1$
for all
$n\in \mathbb {Z}_m$
. Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250209123121449-0327:S0004972724001369:S0004972724001369_eqnu1.png?pub-status=live)
A result of Ding and Zhao [Reference Ding and Zhao1, Lemma 2.4] on Ruzsa’s numbers implies that
$\limsup _{m\rightarrow \infty }\ell _m\le 192$
. In [Reference Liang, Zhang and Zuo2], the authors improved this to
$\limsup _{m\rightarrow \infty }\ell _m\leq 144$
.
In the proof of [Reference Liang, Zhang and Zuo2],
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250209123121449-0327:S0004972724001369:S0004972724001369_eqn1.png?pub-status=live)
As pointed by Mr. Honghu Liu, (1) implies
$|A_1|\le |B|$
rather than
$|A_1|\le 2|B|$
as stated in our article. Since
$\ell _m \le |B|^2/m$
from [Reference Liang, Zhang and Zuo2], adjusting the numbers accordingly leads to the following much stronger bound.
Theorem 1. We have
$\limsup _{m\rightarrow \infty }\ell _m\leq 36$
.