Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-02-05T21:59:02.492Z Has data issue: false hasContentIssue false

ON THE DEPTH OF SYMBOLIC POWERS OF EDGE IDEALS OF GRAPHS

Published online by Cambridge University Press:  28 September 2020

S. A. S. FAKHARI*
Affiliation:
School of Mathematics, Statistics and Computer Science, College of Science University of TehranTehranIran
Rights & Permissions [Opens in a new window]

Abstract

Assume that G is a graph with edge ideal $I(G)$ and star packing number $\alpha _2(G)$ . We denote the sth symbolic power of $I(G)$ by $I(G)^{(s)}$ . It is shown that the inequality $ \operatorname {\mathrm {depth}} S/(I(G)^{(s)})\geq \alpha _2(G)-s+1$ is true for every chordal graph G and every integer $s\geq 1$ . Moreover, it is proved that for any graph G, we have $ \operatorname {\mathrm {depth}} S/(I(G)^{(2)})\geq \alpha _2(G)-1$ .

Type
Article
Copyright
© Foundation Nagoya Mathematical Journal, 2020

1 Introduction

Let $\mathbb {K}$ be a field and $S = \mathbb {K}[x_1,\ldots ,x_n]$ be the polynomial ring in n variables over $\mathbb {K}$ . Computing and finding bounds for the depth (or equivalently, projective dimension) of homogenous ideals of S and their powers have been studied by several authors (see, e.g., [Reference Burch3], [Reference Caviglia, Hà, Herzog, Kummini, Terai and Trung4], [Reference Dao and Schweig5], [Reference Fouli and Morey8], [Reference Hà, Trung and Trung9], [Reference Herzog and Hibi11], [Reference Hoa, Kimura, Terai and Trung12], [Reference Nguyen and Trung13]).

In [Reference Fouli, Hà and Morey7], Fouli et al. introduced the notion of initially regular sequence. Using this notion, they provided a method for estimating the depth of a homogenous ideal. To be more precise, let $I\subset S$ be a homogenous ideal and let $\{x_{i,j} \mid 1\leq i\leq q, 0\leq j\leq t_i\}$ be a subset of distinct variables of S. Suppose $\mathrm {in}_<(I)$ is the initial ideal of I with respect to a fixed monomial order $<$ and assume that $\{u_1, \ldots , u_m\}$ is the set of minimal monomial generators of $\mathrm {in}_<(I)$ . It is shown in [Reference Fouli, Hà and Morey7, Theorem 3.11] that $ \operatorname {\mathrm {depth}} S/I\geq q$ , provided that the following conditions hold.

  1. (i) The monomials $u_1, u_2, \ldots , u_m$ are not divisible by $x_{i,j}^2$ for $1\leq i\leq q$ and $1\leq j\leq t_i$ .

  2. (ii) For $i=1, 2, \ldots , q$ , if a monomial in $\{u_1, \ldots , u_m\}$ is divisible by $x_{i,0}$ , then it is also divisible by $x_{i,j}$ , for some integer $1\leq j\leq t_i$ .

In Section 2, we provide an alternative proof for this result (see Proposition 2.1). Our proof is based on a short exact sequence argument, while in [Reference Fouli, Hà and Morey7], the authors construct an initially regular sequence to prove their result.

Fouli et al. [Reference Fouli, Hà and Morey6] observed that the above result provides a combinatorial lower bound for the depth of edge ideals of graphs. Indeed, for every graph G with edge ideal $I(G)$ , we have

$$\begin{align*}\operatorname{\mathrm{depth}} S/I(G)\geq \alpha_2(G),\end{align*}$$

where $\alpha _2(G)$ denotes the so-called star packing number of G (see Section 2 for the definition of star packing number and see Corollary 2.2 for more details about the above inequality). It is proven in [Reference Fouli, Hà and Morey6, Theorem 3.7] that the above inequality can be extended to powers of $I(G)$ when G is a forest. More precisely, for every forest G and for every integer $s\geq 1$ , the inequality

(†) $$ \begin{align} \begin{array}{rl} \operatorname{\mathrm{depth}} S/I(G)^s \geq \alpha_2(G)-s+1 \end{array} \end{align} $$

holds. On the other hand, we know from [Reference Simis, Vasconcelos and Villarreal16, Theorem 5.9] that for every forest G, the sth ordinary and symbolic powers of $I(G)$ coincide. Hence, inequality () essentially says that for every forest G and any positive integer s,

(‡) $$ \begin{align} \begin{array}{rl} \operatorname{\mathrm{depth}} S/I(G)^{(s)} \geq \alpha_2(G)-s+1. \end{array} \end{align} $$

In Theorem 3.4, we generalize [Reference Fouli, Hà and Morey6, Theorem 3.7] by proving inequality () for any chordal graph. Moreover, we show that inequality () with $s=2$ is true for any graph G (see Theorem 4.2).

2 Preliminaries and known results

In this section, we provide the definitions and the known results which will be used in the next sections.

Let G be a simple graph with vertex set $V(G)=\big \{x_1, \ldots , x_n\big \}$ and edge set $E(G)$ . So, we identify the vertices of G with the variables of S. Also, by abusing the notation, every edge of G will be written by the product of the vertices. For a vertex $x_i$ , the neighbor set of $x_i$ is $N_G(x_i)=\{x_j\mid x_ix_j\in E(G)\}$ . We set $N_G[x_i]=N_G(x_i)\cup \{x_i\}$ and call it the closed neighborhood of $x_i$ . The cardinality of $N_G(x_i)$ is the degree of $x_i$ and will be denoted by $\mathrm {deg}_G(x_i)$ . For every subset $U\subset V(G)$ , the graph $G\setminus U$ has vertex set $V(G\setminus U)=V(G)\setminus U$ and edge set $E(G\setminus U)=\{e\in E(G)\mid e\cap U=\emptyset \}$ . A subgraph H of G is called induced provided that two vertices of H are adjacent if and only if they are adjacent in G. A graph G is called chordal if it has no induced cycle of length at least four. A subset W of $V(G)$ is a clique of G if every two distinct vertices of W are adjacent in G. A vertex x of G is a simplicial vertex if $N_G(x)$ is a clique. It is well-known that every chordal graph has a simplicial vertex. A subset C of $V(G)$ is a vertex cover of G if every edge of G is incident to at least one vertex of C. A vertex cover C is a minimal vertex cover if no proper subset of C is a vertex cover of G. The set of minimal vertex covers of G will be denoted by $\mathcal {C}(G)$ . A subset A of $V(G)$ is called an independent subset of G if there are no edges among the vertices of A. Obviously, A is independent if and only if $V(G)\setminus A$ is a vertex cover of G.

The edge ideal of a graph G is defined as

$$\begin{align*}I(G)=\big(x_ix_j \, |\, x_ix_j\in E(G)\big)\subset S.\end{align*}$$

For a subset C of $\big \{x_1, \ldots , x_n\big \}$ , we denote by $\mathfrak {p}_C$ , the monomial prime ideal which is generated by the variables belonging to C. It is well-known that for every graph G,

$$\begin{align*}I(G)=\bigcap_{C\in \mathcal{C}(G)}\mathfrak{p}_C.\end{align*}$$

Let I be an ideal of S and let $\mathrm {Min}(I)$ denote the set of minimal primes of I. For every integer $s\geq 1$ , the sth symbolic power of I, denoted by $I^{(s)}$ , is defined to be

$$\begin{align*}I^{(s)}=\bigcap_{\frak{p}\in \mathrm{Min}(I)} \mathrm{Ker}(S\rightarrow (S/I^s)_{\frak{p}}).\end{align*}$$

Let I be a squarefree monomial ideal in S and suppose that I has the irredundant primary decomposition

$$\begin{align*}I=\frak{p}_1\cap\cdots\cap\frak{p}_r,\end{align*}$$

where every $\frak {p}_i$ is an ideal generated by a subset of the variables of S. It follows from [Reference Herzog and Hibi10, Proposition 1.4.4] that for every integer $s\geq 1$ ,

$$\begin{align*}I^{(s)}=\frak{p}_1^s\cap\cdots\cap \frak{p}_r^s.\end{align*}$$

We set $I^{(s)}=S$ , for any integer $s\leq 0$ .

It is clear that for any graph G and every integer $s\geq 1$ ,

$$\begin{align*}I(G)^{(s)}=\bigcap_{C\in \mathcal{C}(G)}\mathfrak{p}_C^s.\end{align*}$$

As it was mentioned in introduction, Fouli et al. [Reference Fouli, Hà and Morey7] detected a method to bound the depth of a homogenous ideal. We provide an alternative proof for their result. Recall that for every monomial u and for every variable $x_i$ , the degree of u with respect to $x_i$ is denoted by $\mathrm {deg}_{x_i}(u)$ . Also, for every monomial ideal I, the set of its minimal monomial generators is denoted by $G(I)$ .

Proposition 2.1 ([Reference Fouli, Hà and Morey7], Theorem 3.11).

Let I be a proper homogenous ideal of S and let $<$ be a monomial order. Assume that $A=\{x_{i,j} \mid 1\leq i\leq q, 0\leq j\leq t_i\}$ is a subset of distinct variables of S, such that the following conditions are satisfied.

  1. (i) For every pair of integers $1\leq i\leq q$ , $1\leq j\leq t_i$ and for every $u\in G(\mathrm {in}_<(I))$ , we have $\mathrm {deg}_{x_{i,j}}(u)\leq 1$ .

  2. (ii) For $i=1, 2, \ldots , q$ , if a monomial $u\in G(\mathrm {in}_<(I))$ is divisible by $x_{i,0}$ , then it is also divisible by $x_{i,j}$ , for some integer $1\leq j\leq t_i$ .

Then $ \operatorname {\mathrm {depth}} S/I\geq q$ .

Proof. It is known that $ \operatorname {\mathrm {depth}} S/I\geq \operatorname {\mathrm {depth}} S/\mathrm {in}_<(I)$ (see, e.g., [Reference Herzog and Hibi10, Theorem 3.3.4]). Hence, replacing I by $\mathrm {in}_<(I)$ , we may suppose that I is a monomial ideal. We use induction on $|A|$ . There is nothing to prove for $|A|=0$ , as in this case $q=0$ . Therefore, assume that $|A|\geq 1$ . If $t_i=0$ , for every $i=1, 2, \ldots , q$ , then it follows from condition (ii) that $x_{1,0}, \ldots , x_{q,0}$ do not divide the minimal monomial generators of I. In particular, they form a regular sequences on $S/I$ and the assertion follows. Thus, suppose that $t_i\geq 1$ , for some i with $1\leq i\leq q$ . Without loss of generality, suppose $i=1$ . Consider the following short exact sequence:

$$ \begin{align*} 0\longrightarrow S/(I:x_{1,t_1})\longrightarrow S/I\longrightarrow S/(I,x_{1,t_1})\longrightarrow 0. \end{align*} $$

This yields that

(1) $$ \begin{align} \begin{array}{rl} \operatorname{\mathrm{depth}} S/I \geq \min \big\{\operatorname{\mathrm{depth}} S/(I:x_{1,t_1}), \operatorname{\mathrm{depth}} S/(I,x_{1,t_1})\big\}. \end{array} \end{align} $$

By condition (i), the variable $x_{1,t_1}$ does not appear in the minimal monomial generators of $(I:x_{1,t_1})$ . In particular, $x_{1,t_1}$ is a regular element on $S/(I:x_{1,t_1})$ . Let $S^{\prime }$ be the polynomial ring obtained from S by deleting the variable $x_{1,t_1}$ (in other words, $S^{\prime }\cong S/(x_{1,t_1})$ ). Set $I^{\prime }:=(I:x_{1,t_1})\cap S^{\prime }$ . It follows that

$$\begin{align*}\operatorname{\mathrm{depth}} S/(I:x_{1,t_1})=\operatorname{\mathrm{depth}} S/((I:x_{1,t_1}), x_{1,t_1})+1=\operatorname{\mathrm{depth}} S^{\prime}/I^{\prime}+1.\end{align*}$$

Clearly, $I^{\prime }$ satisfies the assumptions with respect to the set $\{x_{i,j} \mid 2\leq i\leq q, 0\leq j\leq t_i\}$ of variables. Thus, the induction hypothesis implies that $ \operatorname {\mathrm {depth}} S^{\prime }/I^{\prime }\geq q-1$ . Hence, we deduce from the above equalities that

$$\begin{align*}\operatorname{\mathrm{depth}} S/(I:x_{1,t_1})\geq q.\end{align*}$$

Using inequality (1), it suffices to prove that $ \operatorname {\mathrm {depth}} S/(I,x_{1,t_1})\geq q$ . Set $I^{\prime \prime }:=I\cap S^{\prime }$ . Then $S/(I,x_{1,t_1})\cong S^{\prime }/I^{\prime \prime }$ . Put $t_1^{\prime }:=t_1-1$ and $t_i^{\prime }:=t_i$ , for $i=2, \ldots , q$ . Obviously, $I^{\prime \prime }$ satisfies the assumptions with respect to the set $\{x_{i,j} \mid 1\leq i\leq q, 0\leq j\leq t_i^{\prime }\}$ of variables. Therefore, we conclude from the induction hypothesis that

$$\begin{align*}\operatorname{\mathrm{depth}} S/(I,x_{1,t_1})=\operatorname{\mathrm{depth}} S^{\prime}/I^{\prime\prime}\geq q.\end{align*}$$

Let G be a graph and x be a vertex of G. The subgraph $\mathrm {St}(x)$ of G with vertex set $N_G[x]$ and edge set $\{xy\, |\, y\in N_G(x)\}$ is called a star with center x. A star packing of G is a family $\mathcal {X}$ of stars in G which are pairwise disjoint, that is, $V(\mathrm {St}(x))\cap V(\mathrm {St}(x^{\prime }))=\emptyset $ , for $\mathrm {St}(x), \mathrm {St}(x^{\prime })\in \mathcal {X}$ with $x\neq x^{\prime }$ . The quantity

$$\begin{align*}\max\big\{|\mathcal{X}|\, |\, \mathcal{X} \ \text{is a star packing of } G\big\}\end{align*}$$

is called the star packing number of G. Following [Reference Fouli, Hà and Morey6], we denote the star packing number of G by $\alpha _2(G)$ .

The following corollary is an immediate consequence of Proposition 2.1, and it was indeed observed in [Reference Fouli, Hà and Morey6].

Corollary 2.2 ([Reference Fouli, Hà and Morey6]).

For every graph G, we have

$$\begin{align*}\operatorname{\mathrm{depth}} S/I(G)\geq \alpha_2(G).\end{align*}$$

Proof. Let $x_{1,0}, \ldots , x_{q,0}$ be the centers of stars in a largest star packing of G. Moreover, for $1\leq i\leq q$ , assume that $N_G(x_{i,0})=\{x_{i,1}, \ldots , x_{i,t_i}\}$ . Then the assumptions of Proposition 2.1 are satisfied and it follows that

$$\begin{align*}\operatorname{\mathrm{depth}} S/I(G)\geq q=\alpha_2(G).\end{align*}$$

3 Symbolic powers of edge ideals of chordal graphs

In this section, we prove the first main result of this paper, Theorem 3.4 which states that inequality () is true for every chordal graph G and for any integer $s\geq 1$ . In order to prove this result, we first need to estimate the star packing number of the graph obtained from G by deleting a certain subset of its vertices. This will be done in the following two lemmas.

Lemma 3.1. Let G be a graph and let W be a subset of $V(G)$ . Then for every $A\subseteq \bigcup _{x\in W}N_G[x]$ , we have

$$\begin{align*}\alpha_2(G\setminus A)\geq \alpha_2(G)-|W|.\end{align*}$$

Proof. Let $\mathcal {S}$ be the set of the centers of stars in a largest star packing of G. In particular, $|\mathcal {S}|=\alpha _2(G)$ . Since every vertex in A belongs to the closed neighborhood of a vertex in W, it follows from the definition of star packing that $|\mathcal {S}\cap A|\leq | W|$ . Then the stars in $G\setminus A$ centered at the vertices in $\mathcal {S}\setminus A$ form a star packing in $G\setminus A$ of size at least $\alpha _2(G)-| W|$ . Therefore, $\alpha _2(G\setminus A)\geq \alpha _2(G)-|W|$ .

Lemma 3.2. Assume that G is a graph and $W=\{x_1, \ldots , x_d\}$ is a clique of G. Let A be a subset of $V(G)$ such that

  1. (i) $A\subseteq \bigcup _{i=1}^dN_G(x_i)$ ,

  2. (ii) $N_G(x_1)\setminus \{x_2, \ldots , x_d\} \subseteq A$ , and

  3. (iii) $x_1\notin A$ .

Then $\alpha _2(G\setminus A)\geq \alpha _2(G)-d+1$ .

Proof. Let $\mathcal {S}$ be the set of the centers of stars in a largest star packing of G. Thanks to (i), similar to the proof of Lemma 3.1, we have $|\mathcal {S}\cap A|\leq d$ . If $|\mathcal {S}\cap A|\leq d-1$ , then the stars in $G\setminus A$ centered at the vertices in $\mathcal {S}\setminus A$ form a star packing in $G\setminus A$ of size at least $\alpha _2(G)-d+1$ . Thus, the assertion follows in this case. Therefore, suppose $|\mathcal {S}\cap A|=d$ . In this case, we have

$$\begin{align*}x_1, \ldots, x_d\in \bigcup_{x\in \mathcal{S}\cap A}N_G(x).\end{align*}$$

It again follows from the definition of star packing that

$$\begin{align*}x_1, \ldots, x_d\notin \bigcup_{x\in \mathcal{S}\setminus A}N_{G\setminus A}(x).\end{align*}$$

Therefore, we conclude from condition (ii) that

$$ \begin{align*} N_{G\setminus A}[x_1]\cap \big(\bigcup_{x\in \mathcal{S}\setminus A}N_{G\setminus A}(x)\big)\subseteq \{x_1, \ldots, x_d\}\cap \big(\bigcup_{x\in \mathcal{S}\setminus A}N_{G\setminus A}(x)\big)=\emptyset. \end{align*} $$

As a consequence, the stars in $G\setminus A$ centered at the vertices in $(\mathcal {S}\setminus A)\cup \{x_1\}$ form a star packing in $G\setminus A$ of size $\alpha _2(G)-d+1$ . This completes the proof of the lemma.

We are now ready to prove that inequality () holds for any chordal graph. Indeed, we are able to prove the following stronger result.

Proposition 3.3. Let G be a chordal graph. Suppose H and $H^{\prime }$ are subgraphs of G with

$$\begin{align*}E(H)\cap E(H^{\prime})=\emptyset \ \ \ and \ \ \ E(H)\cup E(H^{\prime})=E(G).\end{align*}$$

Assume further that H is a chordal graph. Then for every integer $s\geq 1$ ,

$$\begin{align*}\operatorname{\mathrm{depth}} S/(I(H)^{(s)}S+I(H^{\prime})S)\geq \alpha_2(G)-s+1.\end{align*}$$

Proof. As the isolated vertices have no effect on edge ideals, we assume that $V(H)=V(H^{\prime })=V(G)$ (i.e., we extend the vertex sets of H and $H^{\prime }$ to $V(G)$ ). We use induction on $s+|E(H)|$ . For $s=1$ , we have $I(H)^{(s)}+I(H^{\prime })=I(G)$ and the assertion follows from Corollary 2.2. Therefore, suppose $s\geq 2$ . If $E(H)=\emptyset $ , then $I(H^{\prime })=I(G)$ and again we have the required inequality by Corollary 2.2. Hence, we assume $|E(H)|\geq 1$ .

To simplify the notations, we set $I:=I(H)^{(s)}+I(H^{\prime })$ . Since H is a chordal graph, it has a simplicial vertex, say $x_1$ , with nonzero degree. Without loss of generality, suppose $N_H(x_1)=\big \{x_2, \ldots , x_d\big \}$ , for some integer $d\geq 2$ . Consider the following short exact sequence:

$$ \begin{align*} 0\longrightarrow \frac{S}{(I:x_1\cdots x_d)}\longrightarrow \frac{S}{I}\longrightarrow \frac{S}{(I,x_1\cdots x_d)}\longrightarrow 0. \end{align*} $$

Using depth lemma [Reference Bruns and Herzog2, Proposition 1.2.9], we have

(2) $$ \begin{align} \begin{array}{rl} \operatorname{\mathrm{depth}} S/I \geq \min \big\{\operatorname{\mathrm{depth}} S/(I:x_1\cdots x_d), \operatorname{\mathrm{depth}} S/(I,x_1\cdots x_d)\big\}. \end{array} \end{align} $$

By assumption, for every pair of integers $i\neq j$ , with $1\leq i,j\leq d$ we have $x_ix_j\in E(H)$ . Therefore, $x_ix_j$ is not an edge of $H^{\prime }$ . Set

$$\begin{align*}U:=\bigcup_{i=1}^dN_{H^{\prime}}[x_i]\end{align*}$$

and

$$\begin{align*}U^{\prime}:=\bigcup_{i=1}^dN_{H^{\prime}}(x_i).\end{align*}$$

Then using [Reference Seyed Fakhari14, Lemma 2], we have

$$ \begin{align*} (I:x_1\cdots x_d)&=\big((I(H)^{(s)}+I(H^{\prime})):x_1\cdots x_d\big)\\ & =I(H)^{(s-d+1)}+I(H^{\prime}\setminus U) +\big(\text{the ideal generated by}\ U^{\prime}\big)\\ & =I(H\setminus U^{\prime})^{(s-d+1)}+I(H^{\prime}\setminus U)+\big(\text{the ideal generated by }\ U^{\prime}\big). \end{align*} $$

This yields that

$$\begin{align*}\operatorname{\mathrm{depth}} S/(I:x_1\cdots x_d)=\operatorname{\mathrm{depth}} S^{\prime}/(I(H\setminus U^{\prime})^{(s-d+1)}+I(H^{\prime}\setminus U)),\end{align*}$$

where $S^{\prime }=\mathbb {K}[x_i: 1\leq i\leq n, i\notin U^{\prime }]$ . Let $G^{\prime }$ be the union of $H\setminus U^{\prime }$ and $H^{\prime }\setminus U$ . In fact, $G^{\prime }$ is the induced subgraph of G on $V(G)\setminus U^{\prime }$ . Clearly, $N_G(x_1)\setminus \{x_2, \ldots , x_d\}$ is contained in $U^{\prime }$ . Then the above equality together with Lemma 3.2 and the induction hypothesis implies that

(3) $$ \begin{align} \begin{array}{rl} \operatorname{\mathrm{depth}} S/(I:x_1\cdots x_d)\geq \alpha_2(G\setminus U^{\prime})-(s-d+1)+1\geq \alpha_2(G)-s+1. \end{array} \end{align} $$

Using inequalities (2) and (3), it is enough to prove that

$$\begin{align*}\operatorname{\mathrm{depth}} S/(I,x_1\cdots x_d)\geq \alpha_2(G)-s+1.\end{align*}$$

For every integer k with $1\leq k\leq d-1$ , let $J_k$ be the ideal generated by all the squarefree monomials of degree k on variables $x_2, \ldots , x_d$ . We continue in the following steps.

Step 1. Let $1\leq k\leq d-2$ be a fixed integer and assume that $\{u_1, \ldots , u_t\}$ is the set of minimal monomial generators of $x_1J_k$ . In particular, every $u_j$ is divisible by $x_1$ and $\mathrm {deg}(u_j)=k+1$ . For every integer j with $1\leq j\leq t$ , we prove that

$$ \begin{align*} & \operatorname{\mathrm{depth}} S/(I+x_1J_{k+1}+(u_1, \ldots, u_{j-1}))\\ & \geq\min\big\{\operatorname{\mathrm{depth}} S/(I+x_1J_{k+1}+(u_1, \ldots, u_j)), \alpha_2(G)-s+1\big\}. \end{align*} $$

(Note that for $j=1$ , we have $I+x_1J_{k+1}+(u_1, \ldots , u_{j-1})=I+x_1J_{k+1}$ .)

Consider the following short exact sequence.

$$ \begin{align*} 0 & \longrightarrow \frac{S}{(I+x_1J_{k+1}+(u_1, \ldots, u_{j-1})):u_j}\longrightarrow \frac{S}{I+x_1J_{k+1}+(u_1, \ldots, u_{j-1})}\\ & \longrightarrow \frac{S}{I+x_1J_{k+1}+(u_1, \ldots, u_j)}\longrightarrow 0. \end{align*} $$

As a consequence,

$$ \begin{align*} & \operatorname{\mathrm{depth}} S/(I+x_1J_{k+1}+(u_1, \ldots, u_{j-1}))\geq\\& \min\big\{\operatorname{\mathrm{depth}} S/((I+x_1J_{k+1}+(u_1, \ldots, u_{j-1})):u_j), \operatorname{\mathrm{depth}} S/(I+x_1J_{k+1}+(u_1, \ldots, u_j))\big\}. \end{align*} $$

Therefore, to complete this step, it is sufficient to show that

$$\begin{align*}\operatorname{\mathrm{depth}} S/((I+x_1J_{k+1}+(u_1, \ldots, u_{j-1})):u_j)\geq \alpha_2(G)-s+1.\end{align*}$$

Set

$$\begin{align*}U_j:=\{x_i\mid 1\leq i \leq d \ \mathrm{and} \ x_i\ \text{does not divide }u_j\}.\end{align*}$$

For any $x_i\in U_j$ , the monomial $x_iu_j$ is a squarefree monomial of degree $k+2$ . Hence, $x_iu_j$ belongs to $x_1J_{k+1}$ . This shows that

$$\begin{align*}(\text{the ideal generated by }\ U_j)\subseteq \big((x_1J_{k+1}+(u_1, \ldots, u_{j-1})):u_j\big).\end{align*}$$

We show the reverse inclusion holds too.

Since $x_1J_{k+1}+(u_1, \ldots , u_{j-1})$ is a squarefree monomial ideal, it follows that

$$\begin{align*}\big((x_1J_{k+1}+(u_1, \ldots, u_{j-1})):u_j\big)\end{align*}$$

is also a squarefree monomial ideal. On the other hand, every monomial generator of $x_1J_{k+1}+(u_1, \ldots , u_{j-1})$ is a monomial over $x_1, \ldots , x_d$ . This implies that every monomial generator of $\big ((x_1J_{k+1}+(u_1, \ldots , u_{j-1})):u_j\big )$ is also a squarefree monomial over the variables $x_1, \ldots , x_d$ . Assume that v is a minimal generator of $\big ((x_1J_{k+1}+(u_1, \ldots , u_{j-1})):u_j\big )$ . If v is not equal to any of the variables belonging to $U_j$ , then by definition of $U_j$ , every variable dividing v, also divides $u_j$ . As v is a squarefree monomial, we have $v\mid u_j$ . Since

$$\begin{align*}u_jv\in x_1J_{k+1}+(u_1, \ldots, u_{j-1}),\end{align*}$$

we deduce that

$$\begin{align*}u_j^2\in x_1J_{k+1}+(u_1, \ldots, u_{j-1}),\end{align*}$$

which implies that

$$\begin{align*}u_j\in x_1J_{k+1}+(u_1, \ldots, u_{j-1}),\end{align*}$$

because $x_1J_{k+1}+(u_1, \ldots , u_{j-1})$ is a squarefree monomial ideal. This is contradiction, as the degree of $u_j$ is strictly less than the degree of any monomial in $x_1J_{k+1}$ and $u_j\notin (u_1, \ldots , u_{j-1})$ . Hence,

(4) $$ \begin{align} \begin{array}{rl} \big((x_1J_{k+1}+(u_1, \ldots, u_{j-1})):u_j\big)=(\text{the ideal generated by} U_j). \end{array} \end{align} $$

Let $W_j$ be the set of variables dividing $u_j$ . In other words, $W_j=\{x_1, \ldots , x_d\}\setminus U_j$ . We remind that for any pair of integers $1\leq i, j\leq d$ , the vertices $x_i$ and $x_j$ are not adjacent in $H^{\prime }$ . Set

$$\begin{align*}U_j^{\prime}:=\bigcup_{x_i\in W_j}N_{H^{\prime}}[x_i]\end{align*}$$

and

$$\begin{align*}U_j^{\prime\prime}:=\bigcup_{x_i\in W_j}N_{H^{\prime}}(x_i).\end{align*}$$

Using equality (4), we conclude that

$$ \begin{align*} & \big((I+x_1J_{k+1}+(u_1, \ldots, u_{j-1})):u_j\big)\\ & =\big((I(H)^{(s)}+I(H^{\prime})+x_1J_{k+1}+(u_1, \ldots, u_{j-1})):u_j\big)\\ & =(I(H)^{(s)}:u_j)+I(H^{\prime}\setminus U_j^{\prime})+(\text{the ideal generated by }\ U_j\cup U_j^{\prime\prime})\\ & =\big(I\big(H\setminus (U_j\cup U_j^{\prime\prime})\big)^{(s)}:u_j\big)+I\big(H^{\prime}\setminus (U_j\cup U_j^{\prime})\big)\\ & +(\text{the ideal generated by } U_j\cup U_j^{\prime\prime}). \end{align*} $$

Set $H_j:=H\setminus (U_j\cup U_j^{\prime \prime })$ and $H_j^{\prime }:=H^{\prime }\setminus (U_j\cup U_j^{\prime })$ . Then $H_j$ is a chordal graph, and $x_1$ is a simplicial vertex of $H_j$ . It is also clear that $N_{H_j}[x_1]$ is the set of variables divining $u_j$ . It thus follows from [Reference Seyed Fakhari14, Lemma 2] and the above equalities that

$$ \begin{align*} & \big((I+x_1J_{k+1}+(u_1, \ldots, u_{j-1})):u_j\big)=I(H_j)^{(s-k)}+I(H_j^{\prime})\\ & +(\text{the ideal generated by }\ U_j\cup U_j^{\prime\prime}). \end{align*} $$

This yields that

$$\begin{align*}\operatorname{\mathrm{depth}} S/((I+x_1J_{k+1}+(u_1, \ldots, u_{j-1})):u_j)=\operatorname{\mathrm{depth}} S_j/(I(H_j)^{(s-k)}+I(H_j^{\prime})),\end{align*}$$

where $S_j=\mathbb {K}[x_i: 1\leq i\leq n, i\notin U_j\cup U_j^{\prime \prime }]$ . Let $G_j$ be the union of $H_j$ and $H_j^{\prime }$ . Then $G_j$ is the induced subgraph of G on $V(G)\setminus (U_j\cup U_j^{\prime \prime })$ . We conclude from Lemma 3.2 (by considering the clique $W_j$ ) that

$$\begin{align*}\alpha_2(G_j)\geq \alpha_2(G)-| W_j| +1=\alpha_2(G)-k,\end{align*}$$

where the last equality follows from the fact that $\mathrm {deg}(u_j)=k+1$ . Hence, the induction hypothesis implies that

$$ \begin{align*} & \operatorname{\mathrm{depth}} S/((I+x_1J_{k+1}+(u_1, \ldots, u_{j-1})):u_j)=\operatorname{\mathrm{depth}} S_j/(I(H_j)^{(s-k)}+I(H_j^{\prime}))\\ & \geq \alpha_2(G_j)-(s-k)+1\geq \alpha_2(G)-s+1, \end{align*} $$

and this step is complete.

Step 2. Let $1\leq k\leq d-2$ be a fixed integer. By a repeated use of Step 1, we have

$$ \begin{align*} & \operatorname{\mathrm{depth}} S/(I+x_1J_{k+1}) \geq\min\big\{\operatorname{\mathrm{depth}} S/(I+x_1J_{k+1}+(u_1, \ldots, u_t)), \alpha_2(G)-s+1\big\}\\ & =\min\big\{\operatorname{\mathrm{depth}} S/(I+x_1J_k), \alpha_2(G)-s+1\big\}. \end{align*} $$

Step 3. It follows from Step 2 that

$$ \begin{align*} & \operatorname{\mathrm{depth}} S/(I,x_1\cdots x_d)=\operatorname{\mathrm{depth}} S/(I+x_1J_{d-1})\\ & \geq\min\big\{\operatorname{\mathrm{depth}} S/(I+x_1J_{d-2}), \alpha_2(G)-s+1\big\}\\ & \geq\min\big\{\operatorname{\mathrm{depth}} S/(I+x_1J_{d-3}), \alpha_2(G)-s+1\big\}\\ & \geq \cdots \geq\min\big\{\operatorname{\mathrm{depth}} S/(I+x_1J_1), \alpha_2(G)-s+1\big\}. \end{align*} $$

In particular,

(5) $$ \begin{align} \begin{array}{rl} \operatorname{\mathrm{depth}} S/(I,x_1\cdots x_d)\geq\min\big\{\operatorname{\mathrm{depth}} S/\big(I+(x_1x_2, x_1x_3, \ldots, x_1x_d)\big), \alpha_2(G)-s+1\big\}. \end{array} \end{align} $$

Step 4. Let L be the graph obtained from H, by deleting the edges $x_1x_2, \ldots , x_1x_d$ . Then L is the disjoint union of $H\setminus x_1$ and the isolated vertex $x_1$ . In particular, L is a chordal graph. Also, let $L^{\prime }$ be the graph obtained from $H^{\prime }$ , by adding the edges $x_1x_2, \ldots , x_1x_d$ . Then

$$\begin{align*}E(L)\cap E(L^{\prime})=\emptyset \ \ \ and \ \ \ E(L)\cup E(L^{\prime})=E(G).\end{align*}$$

It follows from [Reference Seyed Fakhari15, Lemma 3.2] and the induction hypothesis that

$$ \begin{align*} & \operatorname{\mathrm{depth}} S/(I+(x_1x_2, x_1x_3, \ldots, x_1x_d))\\ & =\operatorname{\mathrm{depth}} S/(I(H)^{(s)}+I(H^{\prime})+(x_1x_2, x_1x_3, \ldots, x_1x_d)\big)\\ & =\operatorname{\mathrm{depth}} S/((I(L)^{(s)}+I(L^{\prime})))\geq \alpha_2(G)-s+1. \end{align*} $$

Finally, inequality (5) implies that

(6) $$ \begin{align} \begin{array}{rl} \operatorname{\mathrm{depth}} S/(I,x_1\cdots x_d)\geq \alpha_2(G)-s+1. \end{array} \end{align} $$

Now, inequalities (2), (3), and (6) complete the proof of the proposition.

The following theorem is the main result of this section and follows easily from Proposition 3.3.

Theorem 3.4. Let G be a chordal graph. Then for every integer $s\geq 1$ , we have

$$\begin{align*}\operatorname{\mathrm{depth}} S/(I(G)^{(s)})\geq\alpha_2(G)-s+1.\end{align*}$$

Proof. The assertion follows from Proposition 3.3 by substituting $H=G$ and $H^{\prime }=\emptyset $ .

4 Second symbolic power of edge ideals

The aim of this section is to show that inequality () is true for $s=2$ (Theorem 4.2). To prove this result, we need to bound the depth of ideals of the form $\big (I(G)^{(k)}:xy\big )$ , where $xy$ is an edge of G. To achieve this goal, we will use the following lemma in the case of $k=2$ .

Lemma 4.1. Let G be a graph and $xy$ be an edge of G. Then for any integer $k\geq 2$ , we have

$$\begin{align*}\big(I(G)^{(k)}:xy\big)=\big(I(G)^{(k-1)}:x\big)\cap \big(I(G)^{(k-1)}:y\big).\end{align*}$$

Proof. Let u be a monomial in $\big (I(G)^{(k)}:xy\big )$ . Then $uxy\in I(G)^{(k)}$ . Clearly, this implies that $ux\in I(G)^{(k-1)}$ . Therefore, $u\in \big (I(G)^{(k-1)}:x\big )$ . Similarly, u belongs to $\big (I(G)^{(k-1)}:y\big )$ . Hence,

$$\begin{align*}\big(I(G)^{(k)}:xy\big)\subseteq\big(I(G)^{(k-1)}:x\big)\cap \big(I(G)^{(k-1)}:y\big).\end{align*}$$

To prove the reverse inclusion, let v be a monomial in

$$\begin{align*}\big(I(G)^{(k-1)}:x\big)\cap \big(I(G)^{(k-1)}:y\big).\end{align*}$$

We must show that $vxy\in I(G)^{(k)}$ . It is enough to prove that for any minimal vertex cover C of G, we have $vxy\in \mathfrak {p}_C^k$ . So, let C be a minimal vertex cover of G. It follows from $xy\in E(G)$ that C contains at least one of the vertices x and y. Without loss of generality, suppose $x\in C$ . Since $v\in \big (I(G)^{(k-1)}:y\big )$ , we have $vy\in I(G)^{(k-1)}\subseteq \mathfrak {p}_C^{k-1}$ . This together with $x\in \mathfrak {p}_C$ implies that $vxy\in \mathfrak {p}_C^k$ .

The following theorem is the second main result of this paper.

Theorem 4.2. For any graph G, we have

$$\begin{align*}\operatorname{\mathrm{depth}} S/I(G)^{(2)}\geq \alpha_2(G)-1.\end{align*}$$

Proof. Set $I:=I(G)$ and let $G(I)=\{u_1, \ldots , u_m\}$ be the set of minimal monomial generators of I. For every integer i with $1\leq i\leq m$ consider the short exact sequence

$$ \begin{align*} 0 & \longrightarrow \frac{S}{(I^{(2)}+(u_1, \ldots, u_{i-1})):u_i}\longrightarrow \frac{S}{I^{(2)}+(u_1, \ldots, u_{i-1})}\\ & \longrightarrow \frac{S}{I^{(2)}+(u_1, \ldots, u_i)}\longrightarrow 0, \end{align*} $$

where for $i=1$ , the ideal $(u_1, \ldots , u_{i-1})$ is the zero ideal. It follows from depth Lemma [Reference Bruns and Herzog2, Proposition 1.2.9] that

$$ \begin{align*} & \operatorname{\mathrm{depth}} S/(I^{(2)}+(u_1, \ldots, u_{i-1}))\\ & \geq \min\big\{\operatorname{\mathrm{depth}} S/((I^{(2)}+(u_1, \ldots, u_{i-1})):u_i), \operatorname{\mathrm{depth}} S/(I^{(2)}+(u_1, \ldots, u_i))\big\}. \end{align*} $$

Using the above inequalities inductively, we have

$$ \begin{align*} & \operatorname{\mathrm{depth}} S/I^{(2)}\\ & \geq\min\bigg\{\operatorname{\mathrm{depth}} S/(I^{(2)}+I), \min\big\{\operatorname{\mathrm{depth}} S/((I^{(2)}+(u_1, \ldots, u_{i-1})):u_i)\mid 1\leq i\leq m\big\}\bigg\}\\ & =\min\big\{\operatorname{\mathrm{depth}} S/I, \operatorname{\mathrm{depth}} S/((I^{(2)}+(u_1, \ldots, u_{i-1})):u_i)\mid 1\leq i\leq m\big\}\\ & \geq\min\big\{\alpha_2(G), \operatorname{\mathrm{depth}} S/((I^{(2)}+(u_1, \ldots, u_{i-1})):u_i)\mid 1\leq i\leq m\big\}, \end{align*} $$

where the last inequality follows from Corollary 2.2. Hence, it is enough to show that

$$\begin{align*}\operatorname{\mathrm{depth}} S/((I^{(2)}+(u_1, \ldots, u_{i-1})):u_i)\geq \alpha_2(G)-1,\end{align*}$$

for every integer i with $1\leq i\leq m$ .

Fix an integer i with $1\leq i\leq m$ and assume that $u_i=xy$ . By [Reference Banerjee1, Theorem 4.12], for every pair of integers $1\leq j< i\leq m$ , one of the following conditions holds.

  1. (i) $(u_j:u_i) \subseteq (I^2:u_i)\subseteq (I^{(2)}:u_i)$ ; or

  2. (ii) there exists an integer $k\leq i-1$ such that $(u_k:u_i)$ is generated by a variable, and $(u_j:u_i)\subseteq (u_k:u_i)$ .

We know from (i) and (ii) above that

(7) $$ \begin{align} \begin{array}{rl} \big((I^{(2)}+ (u_1, \ldots, u_{i-1})):u_i\big)=(I^{(2)}:u_i)+(\text{some variables}). \end{array} \end{align} $$

Let A be the set of variables belonging to $\big ((I^{(2)}+ (u_1, \ldots , u_{i-1})):u_i\big )$ . Assume that $x\in A$ . This means that $x^2y$ belongs to the ideal $I^{(2)}+(u_1, \ldots , u_{i-1})$ . Since $u_1, \ldots , u_{i-1}$ do not divide $x^2y$ , we deduce that $x^2y\in I(G)^{(2)}$ . But this is a contradiction, as $C:=V(G)\setminus \{x\}$ is a vertex cover of G with $x^2y\notin \mathfrak {p}_C^2$ . Therefore, $x\notin A$ . Similarly, $y\notin A$ . It follows from $x,y\notin A$ and equality (7) that

$$ \begin{align*} & \big((I^{(2)}+ (u_1, \ldots, u_{i-1})):u_i\big)=\big(I^{(2)}:u_i\big)+(\text{the ideal generated by } A)\\ & =\big(I^{(2)}+ (\text{the ideal generated by } A)):u_i\big)\\ & =\big(I(G\setminus A)^{(2)}+(\text{the ideal generated by } A)):u_i\big)\\ & =\big(I(G\setminus A)^{(2)}:u_i\big)+(\text{the ideal generated by } A). \end{align*} $$

Therefore,

(8) $$ \begin{align} \begin{array}{rl} \operatorname{\mathrm{depth}} S/((I^{(2)}+ (u_1, \ldots, u_{i-1})):u_i)=\operatorname{\mathrm{depth}} S_A/(I(G\setminus A)^{(2)}:u_i), \end{array} \end{align} $$

where $S_A=\mathbb {K}[x_i: 1\leq i\leq n, x_i\notin A]$ . It follows from Lemma 4.1 that

$$\begin{align*}(I(G\setminus A)^{(2)}:u_i)=(I(G\setminus A):x)\cap(I(G\setminus A):y).\end{align*}$$

Consider the following short exact sequence.

$$ \begin{align*} 0 & \longrightarrow \frac{S_A}{(I(G\setminus A)^{(2)}:u_i)}\longrightarrow \frac{S_A}{(I(G\setminus A):x)}\oplus\frac{S_A}{(I(G\setminus A):y)}\\ & \longrightarrow \frac{S_A}{(I(G\setminus A):x)+(I(G\setminus A):y)}\longrightarrow 0. \end{align*} $$

Applying depth lemma [Reference Bruns and Herzog2, Proposition 1.2.9] on the above exact sequence, it suffices to prove that

  1. (a) $ \operatorname {\mathrm {depth}} S_A/(I(G\setminus A):x) \geq \alpha _2(G)-1$ ,

  2. (b) $ \operatorname {\mathrm {depth}} S_A/(I(G\setminus A):y) \geq \alpha _2(G)-1$ , and

  3. (c) $ \operatorname {\mathrm {depth}} S_A/((I(G\setminus A):x)+(I(G\setminus A):y))\geq \alpha _2(G)-2$ .

To prove (a), note that

$$ \begin{align*} (I(G\setminus A):x)&=I(G\setminus(A\cup N_{G\setminus A}[x]))+(\text{the ideal generated by }\ N_{G\setminus A}(x))\\ & =I(G\setminus(A\cup N_G[x]))+(\text{the ideal generated by }\ N_{G\setminus A}(x)). \end{align*} $$

Hence,

(9) $$ \begin{align} \begin{array}{rl} \operatorname{\mathrm{depth}} S_A/(I(G\setminus A):x)=\operatorname{\mathrm{depth}} S^{\prime}/I(G\setminus(A\cup N_G[x])), \end{array} \end{align} $$

where $S^{\prime }=\mathbb {K}[x_i: 1\leq i\leq n, x_i\notin A\cup N_G(x)]$ . Obviously, x is a regular element of $S^{\prime }/I(G\setminus (A\cup N_G[x]))$ . Therefore, Corollary 2.2 implies that

(10) $$ \begin{align} \begin{array}{rl} \operatorname{\mathrm{depth}} S^{\prime}/I(G\setminus(A\cup N_G[x]))\geq \alpha_2(G\setminus(A\cup N_G[x]))+1. \end{array} \end{align} $$

Assume that $A\subseteq N_G(x)\cup N_G(y)$ . It then follows from Lemma 3.1 that

$$\begin{align*}\alpha_2(G\setminus(A\cup N_G[x]))\geq \alpha_2(G)-2.\end{align*}$$

Hence, we conclude from equality (9) and inequality (10) that

$$\begin{align*}\operatorname{\mathrm{depth}} S_A/(I(G\setminus A):x)\geq \alpha_2(G)-1.\end{align*}$$

Thus, to complete the proof of (a), we only need to show that $A\subseteq N_G(x)\cup N_G(y)$ .

Let z be an arbitrary variable in A and suppose $z\notin N_G(x)\cup N_G(y)$ . Then the only edge dividing $zu_i=zxy$ is $u_i$ . In particular,

(11) $$ \begin{align} \begin{array}{rl} z\notin \big((u_1, \ldots, u_{i-1}):u_i). \end{array} \end{align} $$

Moreover, since $\{z,x\}$ is an independent subset of G, we conclude that $C^{\prime }=V(G)\setminus \{z,x\}$ is a vertex cover of G with $zu_i=zxy\notin \mathfrak {p}_{C^{\prime }}^2$ . Thus, $zu_i\notin I^{(2)}$ . This means that $z\notin (I^{(2)}:u_i)$ . This, together with (11) implies that

$$\begin{align*}z\notin\big((I^{(2)}, u_1, \ldots, u_{i-1}):u_i\big),\end{align*}$$

which is a contradiction. Therefore, $z\in N_G(x)\cup N_G(y)$ . Hence, $A\subseteq N_G(x)\cup N_G(y)$ and this completes the proof of (a). The proof of (b) is similar to the proof of (a). We now prove (c).

Note that

$$ \begin{align*} & (I(G\setminus A):x)+(I(G\setminus A):y)\\ & =I(G\setminus(A\cup N_{G\setminus A}[x]\cup N_{G\setminus A}[y]))+(\text{the ideal generated by } N_{G\setminus A}[x]\cup N_{G\setminus A}[y])\\ & =I(G\setminus(A\cup N_G[x]\cup N_G[y]))+(\text{the ideal generated by }\ N_{G\setminus A}[x]\cup N_{G\setminus A}[y])\\ & =I(G\setminus(N_G[x]\cup N_G[y]))+(\text{the ideal generated by }\ N_{G\setminus A}[x]\cup N_{G\setminus A}[y]), \end{align*} $$

where the last equality follows from $A\subseteq N_G(x)\cup N_G(y)$ . We conclude that

(12) $$ \begin{align} \begin{array}{rl} \operatorname{\mathrm{depth}} S_A/((I(G\setminus A):x)+(I(G\setminus A):y))=\operatorname{\mathrm{depth}} S^{\prime\prime}/I(G\setminus(N_G[x]\cup N_G[y])), \end{array} \end{align} $$

where $S^{\prime \prime }=\mathbb {K}\big [x_i: 1\leq i\leq n, x_i\notin N_G[x]\cup N_G[y]\big ]$ . Using Corollary 2.2 and Lemma 3.1, we deuce that

$$\begin{align*}\operatorname{\mathrm{depth}} S^{\prime\prime}/I(G\setminus(N_G[x]\cup N_G[y]))\geq \alpha_2(G\setminus(N_G[x]\cup N_G[y]))\geq \alpha_2(G)-2.\end{align*}$$

Finally, the assertion of (c) follows from equality (12) and the above inequality. This completes the proof of the theorem.

Acknowledgment

The author would like to thank the referee for a careful reading of the paper and for valuable comments.

References

Banerjee, A., The regularity of powers of edge ideals , J. Algebraic Combin. 41 (2015), 303321.CrossRefGoogle Scholar
Bruns, W. and Herzog, J., Cohen–Macaulay Rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, MA, 1993.Google Scholar
Burch, L., Codimension and analytic spread , Proc. Cambridge Philos. Soc. 72 (1972), 369373.CrossRefGoogle Scholar
Caviglia, G., , H. T., Herzog, J., Kummini, M., Terai, N., and Trung, N. V., Depth and regularity modulo a principal ideal , J. Algebraic Combin. 49 (2019), 120.CrossRefGoogle Scholar
Dao, H. and Schweig, J., Bounding the projective dimension of a squarefree monomial ideal via domination in clutters , Proc. Am. Math. Soc. 143 (2015), 555565.CrossRefGoogle Scholar
Fouli, L., , H. T., and Morey, S., Initially regular sequences and depths of ideals , J. Algebra 559 (2020), 3357.CrossRefGoogle Scholar
Fouli, L., , H. T., and Morey, S., Depth of powers of squarefree monomial ideals, Bahar (ed.) et al., Advances in mathematical sciences. AWM research symposium, Houston, TX, USA, April 6–7, 2019. Association for Women in Mathematics Series 21, 161–171 (2020).CrossRefGoogle Scholar
Fouli, L. and Morey, S., A lower bound for depths of powers of edge ideals , J. Algebraic Combin. 42 (2015), 829848.CrossRefGoogle Scholar
, H. T., Trung, N. V., and Trung, T. N., Depth and regularity of powers of sums of ideals , Math. Z. 282 (2016), 819838.CrossRefGoogle Scholar
Herzog, J. and Hibi, T., The depth of powers of an ideal , J. Algebra 291 (2005), no. 2, 534550.CrossRefGoogle Scholar
Herzog, J. and Hibi, T., Monomial Ideals, Springer, New York, NY, 2011.CrossRefGoogle Scholar
Hoa, L. T., Kimura, K., Terai, N., and Trung, T. N., Stability of depths of symbolic powers of Stanley-Reisner ideals , J. Algebra 473 (2017), 307323.CrossRefGoogle Scholar
Nguyen, H. D. and Trung, N. V., Depth functions of symbolic powers of homogeneous ideals , Invent. Math 218 (2019), 779827.CrossRefGoogle Scholar
Seyed Fakhari, S. A., An upper bound for the regularity of symbolic powers of edge ideals of Chordal graphs , Electron. J. Combin. 26 (2019), Research Paper P2.10.CrossRefGoogle Scholar
Seyed Fakhari, S. A., Regularity of symbolic powers of edge ideals of unicyclic graphs , J. Algebra, 541 (2020), 345358.CrossRefGoogle Scholar
Simis, A., Vasconcelos, W., and Villarreal, R. H., On the ideal theory of graphs , J. Algebra 167 (1994), 389416.CrossRefGoogle Scholar