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ON THE DEPTH OF SYMBOLIC POWERS OF EDGE
IDEALS OF GRAPHS

S. A. S. FAKHARI

Abstract. Assume that G is a graph with edge ideal I(G) and star packing

number α2(G). We denote the sth symbolic power of I(G) by I(G)(s). It is

shown that the inequality depthS/(I(G)(s)) ≥ α2(G)− s+1 is true for every

chordal graph G and every integer s ≥ 1. Moreover, it is proved that for any

graph G, we have depthS/(I(G)(2))≥ α2(G)−1.

§1. Introduction

Let K be a field and S = K[x1, . . . ,xn] be the polynomial ring in n variables over K.

Computing and finding bounds for the depth (or equivalently, projective dimension) of

homogenous ideals of S and their powers have been studied by several authors (see, e.g.,

[3], [4], [5], [8], [9], [11], [12], [13]).

In [7], Fouli et al. introduced the notion of initially regular sequence. Using this notion,

they provided a method for estimating the depth of a homogenous ideal. To be more precise,

let I ⊂ S be a homogenous ideal and let {xi,j | 1≤ i≤ q,0≤ j ≤ ti} be a subset of distinct

variables of S. Suppose in<(I) is the initial ideal of I with respect to a fixed monomial

order < and assume that {u1, . . . ,um} is the set of minimal monomial generators of in<(I).

It is shown in [7, Theorem 3.11] that depthS/I ≥ q, provided that the following conditions

hold.

(i) The monomials u1,u2, . . . ,um are not divisible by x2
i,j for 1≤ i≤ q and 1≤ j ≤ ti.

(ii) For i = 1,2, . . . , q, if a monomial in {u1, . . . ,um} is divisible by xi,0, then it is also

divisible by xi,j , for some integer 1≤ j ≤ ti.

In Section 2, we provide an alternative proof for this result (see Proposition 2.1). Our

proof is based on a short exact sequence argument, while in [7], the authors construct an

initially regular sequence to prove their result.

Fouli et al. [6] observed that the above result provides a combinatorial lower bound for

the depth of edge ideals of graphs. Indeed, for every graph G with edge ideal I(G), we have

depthS/I(G)≥ α2(G),

where α2(G) denotes the so-called star packing number of G (see Section 2 for the definition

of star packing number and see Corollary 2.2 for more details about the above inequality).

It is proven in [6, Theorem 3.7] that the above inequality can be extended to powers of

I(G) when G is a forest. More precisely, for every forest G and for every integer s≥ 1, the

inequality

depthS/I(G)s ≥ α2(G)−s+1 (†)
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holds. On the other hand, we know from [16, Theorem 5.9] that for every forest G, the sth

ordinary and symbolic powers of I(G) coincide. Hence, inequality (†) essentially says that

for every forest G and any positive integer s,

depthS/I(G)(s) ≥ α2(G)−s+1. (‡)

In Theorem 3.4, we generalize [6, Theorem 3.7] by proving inequality (‡) for any chordal

graph. Moreover, we show that inequality (‡) with s = 2 is true for any graph G (see

Theorem 4.2).

§2. Preliminaries and known results

In this section, we provide the definitions and the known results which will be used in

the next sections.

Let G be a simple graph with vertex set V (G) =
{
x1, . . . ,xn

}
and edge set E(G). So,

we identify the vertices of G with the variables of S. Also, by abusing the notation, every

edge of G will be written by the product of the vertices. For a vertex xi, the neighbor set

of xi is NG(xi) = {xj | xixj ∈ E(G)}. We set NG[xi] =NG(xi)∪{xi} and call it the closed

neighborhood of xi. The cardinality of NG(xi) is the degree of xi and will be denoted by

degG(xi). For every subset U ⊂ V (G), the graph G\U has vertex set V (G\U) = V (G)\U
and edge set E(G \U) = {e ∈ E(G) | e∩U = ∅}. A subgraph H of G is called induced

provided that two vertices of H are adjacent if and only if they are adjacent in G. A graph

G is called chordal if it has no induced cycle of length at least four. A subset W of V (G)

is a clique of G if every two distinct vertices of W are adjacent in G. A vertex x of G is

a simplicial vertex if NG(x) is a clique. It is well-known that every chordal graph has a

simplicial vertex. A subset C of V (G) is a vertex cover of G if every edge of G is incident

to at least one vertex of C. A vertex cover C is a minimal vertex cover if no proper subset

of C is a vertex cover of G. The set of minimal vertex covers of G will be denoted by C(G).

A subset A of V (G) is called an independent subset of G if there are no edges among the

vertices of A. Obviously, A is independent if and only if V (G)\A is a vertex cover of G.

The edge ideal of a graph G is defined as

I(G) =
(
xixj |xixj ∈ E(G)

)
⊂ S.

For a subset C of
{
x1, . . . ,xn

}
, we denote by pC , the monomial prime ideal which is

generated by the variables belonging to C. It is well-known that for every graph G,

I(G) =
⋂

C∈C(G)

pC .

Let I be an ideal of S and let Min(I) denote the set of minimal primes of I. For every

integer s≥ 1, the sth symbolic power of I, denoted by I(s), is defined to be

I(s) =
⋂

p∈Min(I)

Ker(S → (S/Is)p).

Let I be a squarefree monomial ideal in S and suppose that I has the irredundant primary

decomposition

I = p1∩· · ·∩pr,
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where every pi is an ideal generated by a subset of the variables of S. It follows from [10,

Proposition 1.4.4] that for every integer s≥ 1,

I(s) = ps1∩· · ·∩psr.

We set I(s) = S, for any integer s≤ 0.

It is clear that for any graph G and every integer s≥ 1,

I(G)(s) =
⋂

C∈C(G)

psC .

As it was mentioned in introduction, Fouli et al. [7] detected a method to bound the

depth of a homogenous ideal. We provide an alternative proof for their result. Recall that

for every monomial u and for every variable xi, the degree of u with respect to xi is denoted

by degxi
(u). Also, for every monomial ideal I, the set of its minimal monomial generators

is denoted by G(I).

Proposition 2.1 ([7], Theorem 3.11). Let I be a proper homogenous ideal of S and let

< be a monomial order. Assume that A= {xi,j | 1≤ i≤ q,0≤ j ≤ ti} is a subset of distinct

variables of S, such that the following conditions are satisfied.

(i) For every pair of integers 1 ≤ i ≤ q, 1 ≤ j ≤ ti and for every u ∈ G(in<(I)), we have

degxi,j
(u)≤ 1.

(ii) For i=1,2, . . . , q, if a monomial u∈G(in<(I)) is divisible by xi,0, then it is also divisible

by xi,j, for some integer 1≤ j ≤ ti.

Then depthS/I ≥ q.

Proof. It is known that depthS/I ≥ depthS/in<(I) (see, e.g., [10, Theorem 3.3.4]).

Hence, replacing I by in<(I), we may suppose that I is a monomial ideal. We use induction

on |A|. There is nothing to prove for |A|= 0, as in this case q = 0. Therefore, assume that

|A| ≥ 1. If ti = 0, for every i= 1,2, . . . , q, then it follows from condition (ii) that x1,0, . . . ,xq,0

do not divide the minimal monomial generators of I. In particular, they form a regular

sequences on S/I and the assertion follows. Thus, suppose that ti ≥ 1, for some i with

1 ≤ i ≤ q. Without loss of generality, suppose i = 1. Consider the following short exact

sequence:

0−→ S/(I : x1,t1)−→ S/I −→ S/(I,x1,t1)−→ 0.

This yields that

depthS/I ≥min
{
depthS/(I : x1,t1),depthS/(I,x1,t1)

}
. (1)

By condition (i), the variable x1,t1 does not appear in the minimal monomial generators of

(I : x1,t1). In particular, x1,t1 is a regular element on S/(I : x1,t1). Let S
′ be the polynomial

ring obtained from S by deleting the variable x1,t1 (in other words, S′ ∼= S/(x1,t1)). Set

I ′ := (I : x1,t1)∩S′. It follows that

depthS/(I : x1,t1) = depthS/((I : x1,t1),x1,t1)+1 = depthS′/I ′+1.
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Clearly, I ′ satisfies the assumptions with respect to the set {xi,j | 2≤ i≤ q,0≤ j ≤ ti} of

variables. Thus, the induction hypothesis implies that depthS′/I ′ ≥ q−1. Hence, we deduce

from the above equalities that

depthS/(I : x1,t1)≥ q.

Using inequality (1), it suffices to prove that depthS/(I,x1,t1)≥ q. Set I ′′ := I∩S′. Then

S/(I,x1,t1)
∼= S′/I ′′. Put t′1 := t1−1 and t′i := ti, for i= 2, . . . , q. Obviously, I ′′ satisfies the

assumptions with respect to the set {xi,j | 1≤ i≤ q,0≤ j ≤ t′i} of variables. Therefore, we

conclude from the induction hypothesis that

depthS/(I,x1,t1) = depthS′/I ′′ ≥ q.

Let G be a graph and x be a vertex of G. The subgraph St(x) of G with vertex set

NG[x] and edge set {xy |y ∈ NG(x)} is called a star with center x. A star packing of G is

a family X of stars in G which are pairwise disjoint, that is, V (St(x))∩V (St(x′)) = ∅, for
St(x),St(x′) ∈ X with x �= x′. The quantity

max
{
|X | |X is a star packing of G

}
is called the star packing number of G. Following [6], we denote the star packing number

of G by α2(G).

The following corollary is an immediate consequence of Proposition 2.1, and it was indeed

observed in [6].

Corollary 2.2 ([6]). For every graph G, we have

depthS/I(G)≥ α2(G).

Proof. Let x1,0, . . . ,xq,0 be the centers of stars in a largest star packing of G. Moreover,

for 1≤ i≤ q, assume that NG(xi,0) = {xi,1, . . . ,xi,ti}. Then the assumptions of Proposition

2.1 are satisfied and it follows that

depthS/I(G)≥ q = α2(G).

§3. Symbolic powers of edge ideals of chordal graphs

In this section, we prove the first main result of this paper, Theorem 3.4 which states

that inequality (‡) is true for every chordal graph G and for any integer s≥ 1. In order to

prove this result, we first need to estimate the star packing number of the graph obtained

from G by deleting a certain subset of its vertices. This will be done in the following two

lemmas.

Lemma 3.1. Let G be a graph and let W be a subset of V (G). Then for every A ⊆⋃
x∈W NG[x], we have

α2(G\A)≥ α2(G)−|W |.

Proof. Let S be the set of the centers of stars in a largest star packing of G. In particular,

|S|= α2(G). Since every vertex in A belongs to the closed neighborhood of a vertex in W,

it follows from the definition of star packing that |S ∩A| ≤ |W |. Then the stars in G \A
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centered at the vertices in S \A form a star packing in G\A of size at least α2(G)−|W |.
Therefore, α2(G\A)≥ α2(G)−|W |.

Lemma 3.2. Assume that G is a graph and W = {x1, . . . ,xd} is a clique of G. Let A be

a subset of V (G) such that

(i) A⊆
⋃d

i=1NG(xi),

(ii) NG(x1)\{x2, . . . ,xd} ⊆A, and

(iii) x1 /∈A.

Then α2(G\A)≥ α2(G)−d+1.

Proof. Let S be the set of the centers of stars in a largest star packing of G. Thanks

to (i), similar to the proof of Lemma 3.1, we have |S ∩A| ≤ d. If |S ∩A| ≤ d− 1, then the

stars in G\A centered at the vertices in S \A form a star packing in G\A of size at least

α2(G)− d+1. Thus, the assertion follows in this case. Therefore, suppose |S ∩A| = d. In

this case, we have

x1, . . . ,xd ∈
⋃

x∈S∩A

NG(x).

It again follows from the definition of star packing that

x1, . . . ,xd /∈
⋃

x∈S\A
NG\A(x).

Therefore, we conclude from condition (ii) that

NG\A[x1]∩
( ⋃
x∈S\A

NG\A(x)
)
⊆ {x1, . . . ,xd}∩

( ⋃
x∈S\A

NG\A(x)
)
= ∅.

As a consequence, the stars in G\A centered at the vertices in (S \A)∪{x1} form a star

packing in G\A of size α2(G)−d+1. This completes the proof of the lemma.

We are now ready to prove that inequality (‡) holds for any chordal graph. Indeed, we

are able to prove the following stronger result.

Proposition 3.3. Let G be a chordal graph. Suppose H and H ′ are subgraphs of G with

E(H)∩E(H ′) = ∅ and E(H)∪E(H ′) = E(G).

Assume further that H is a chordal graph. Then for every integer s≥ 1,

depthS/(I(H)(s)S+ I(H ′)S)≥ α2(G)−s+1.

Proof. As the isolated vertices have no effect on edge ideals, we assume that V (H) =

V (H ′) = V (G) (i.e., we extend the vertex sets of H and H ′ to V (G)). We use induction

on s+ |E(H)|. For s = 1, we have I(H)(s)+ I(H ′) = I(G) and the assertion follows from

Corollary 2.2. Therefore, suppose s≥ 2. If E(H) = ∅, then I(H ′) = I(G) and again we have

the required inequality by Corollary 2.2. Hence, we assume |E(H)| ≥ 1.

To simplify the notations, we set I := I(H)(s) + I(H ′). Since H is a chordal graph,

it has a simplicial vertex, say x1, with nonzero degree. Without loss of generality,
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suppose NH(x1) =
{
x2, . . . ,xd

}
, for some integer d≥ 2. Consider the following short exact

sequence:

0−→ S

(I : x1 · · ·xd)
−→ S

I
−→ S

(I,x1 · · ·xd)
−→ 0.

Using depth lemma [2, Proposition 1.2.9], we have

depthS/I ≥min
{
depthS/(I : x1 · · ·xd),depthS/(I,x1 · · ·xd)

}
. (2)

By assumption, for every pair of integers i �= j, with 1 ≤ i, j ≤ d we have xixj ∈ E(H).

Therefore, xixj is not an edge of H ′. Set

U :=
d⋃

i=1

NH′ [xi]

and

U ′ :=
d⋃

i=1

NH′(xi).

Then using [14, Lemma 2], we have

(I : x1 · · ·xd) =
(
(I(H)(s)+ I(H ′)) : x1 · · ·xd

)
= I(H)(s−d+1)+ I(H ′ \U)+

(
the ideal generated by U ′)

= I(H \U ′)(s−d+1)+ I(H ′ \U)+
(
the ideal generated by U ′).

This yields that

depthS/(I : x1 · · ·xd) = depthS′/(I(H \U ′)(s−d+1)+ I(H ′ \U)),

where S′ =K[xi : 1≤ i≤ n,i /∈ U ′]. Let G′ be the union of H \U ′ and H ′ \U . In fact, G′ is

the induced subgraph of G on V (G)\U ′. Clearly, NG(x1)\{x2, . . . ,xd} is contained in U ′.

Then the above equality together with Lemma 3.2 and the induction hypothesis implies

that

depthS/(I : x1 · · ·xd)≥ α2(G\U ′)− (s−d+1)+1≥ α2(G)−s+1. (3)

Using inequalities (2) and (3), it is enough to prove that

depthS/(I,x1 · · ·xd)≥ α2(G)−s+1.

For every integer k with 1 ≤ k ≤ d− 1, let Jk be the ideal generated by all the squarefree

monomials of degree k on variables x2, . . . ,xd. We continue in the following steps.

Step 1. Let 1 ≤ k ≤ d− 2 be a fixed integer and assume that {u1, . . . ,ut} is the set

of minimal monomial generators of x1Jk. In particular, every uj is divisible by x1 and

deg(uj) = k+1. For every integer j with 1≤ j ≤ t, we prove that

depthS/(I+x1Jk+1+(u1, . . . ,uj−1))

≥min
{
depthS/(I+x1Jk+1+(u1, . . . ,uj)),α2(G)−s+1

}
.

(Note that for j = 1, we have I+x1Jk+1+(u1, . . . ,uj−1) = I+x1Jk+1.)
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Consider the following short exact sequence.

0−→ S

(I+x1Jk+1+(u1, . . . ,uj−1)) : uj
−→ S

I+x1Jk+1+(u1, . . . ,uj−1)

−→ S

I+x1Jk+1+(u1, . . . ,uj)
−→ 0.

As a consequence,

depthS/(I+x1Jk+1+(u1, . . . ,uj−1))≥
min

{
depthS/((I+x1Jk+1+(u1, . . . ,uj−1)) : uj),depthS/(I+x1Jk+1+(u1, . . . ,uj))

}
.

Therefore, to complete this step, it is sufficient to show that

depthS/((I+x1Jk+1+(u1, . . . ,uj−1)) : uj)≥ α2(G)−s+1.

Set

Uj := {xi | 1≤ i≤ d and xi does not divide uj}.

For any xi ∈ Uj , the monomial xiuj is a squarefree monomial of degree k+2. Hence, xiuj

belongs to x1Jk+1. This shows that

(the ideal generated by Uj)⊆
(
(x1Jk+1+(u1, . . . ,uj−1)) : uj

)
.

We show the reverse inclusion holds too.

Since x1Jk+1+(u1, . . . ,uj−1) is a squarefree monomial ideal, it follows that(
(x1Jk+1+(u1, . . . ,uj−1)) : uj

)
is also a squarefree monomial ideal. On the other hand, every monomial generator of

x1Jk+1 + (u1, . . . ,uj−1) is a monomial over x1, . . . ,xd. This implies that every monomial

generator of
(
(x1Jk+1+(u1, . . . ,uj−1)) : uj

)
is also a squarefree monomial over the variables

x1, . . . ,xd. Assume that v is a minimal generator of
(
(x1Jk+1+(u1, . . . ,uj−1)) : uj

)
. If v is

not equal to any of the variables belonging to Uj , then by definition of Uj , every variable

dividing v, also divides uj . As v is a squarefree monomial, we have v | uj . Since

ujv ∈ x1Jk+1+(u1, . . . ,uj−1),

we deduce that

u2
j ∈ x1Jk+1+(u1, . . . ,uj−1),

which implies that

uj ∈ x1Jk+1+(u1, . . . ,uj−1),

because x1Jk+1 + (u1, . . . ,uj−1) is a squarefree monomial ideal. This is contradiction, as

the degree of uj is strictly less than the degree of any monomial in x1Jk+1 and uj /∈
(u1, . . . ,uj−1). Hence,(

(x1Jk+1+(u1, . . . ,uj−1)) : uj

)
= (the ideal generated byUj). (4)

Let Wj be the set of variables dividing uj . In other words, Wj = {x1, . . . ,xd} \Uj . We

remind that for any pair of integers 1≤ i, j ≤ d, the vertices xi and xj are not adjacent in

H ′. Set
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U ′
j :=

⋃
xi∈Wj

NH′ [xi]

and

U ′′
j :=

⋃
xi∈Wj

NH′(xi).

Using equality (4), we conclude that(
(I+x1Jk+1+(u1, . . . ,uj−1)) : uj

)
=

(
(I(H)(s)+ I(H ′)+x1Jk+1+(u1, . . . ,uj−1)) : uj

)
= (I(H)(s) : uj)+ I(H ′ \U ′

j)+(the ideal generated by Uj ∪U ′′
j )

=
(
I
(
H \ (Uj ∪U ′′

j )
)(s)

: uj

)
+ I

(
H ′ \ (Uj ∪U ′

j)
)

+(the ideal generated by Uj ∪U ′′
j ).

Set Hj :=H \ (Uj ∪U ′′
j ) and H ′

j :=H ′ \ (Uj ∪U ′
j). Then Hj is a chordal graph, and x1 is

a simplicial vertex of Hj . It is also clear that NHj [x1] is the set of variables divining uj . It

thus follows from [14, Lemma 2] and the above equalities that(
(I+x1Jk+1+(u1, . . . ,uj−1)) : uj

)
= I(Hj)

(s−k)+ I(H ′
j)

+(the ideal generated by Uj ∪U ′′
j ).

This yields that

depthS/((I+x1Jk+1+(u1, . . . ,uj−1)) : uj) = depthSj/(I(Hj)
(s−k)+ I(H ′

j)),

where Sj =K[xi : 1≤ i≤ n,i /∈ Uj ∪U ′′
j ]. Let Gj be the union of Hj and H ′

j . Then Gj is the

induced subgraph of G on V (G)\ (Uj ∪U ′′
j ). We conclude from Lemma 3.2 (by considering

the clique Wj) that

α2(Gj)≥ α2(G)−|Wj |+1 = α2(G)−k,

where the last equality follows from the fact that deg(uj) = k+1. Hence, the induction

hypothesis implies that

depthS/((I+x1Jk+1+(u1, . . . ,uj−1)) : uj) = depthSj/(I(Hj)
(s−k)+ I(H ′

j))

≥ α2(Gj)− (s−k)+1≥ α2(G)−s+1,

and this step is complete.

Step 2. Let 1≤ k ≤ d−2 be a fixed integer. By a repeated use of Step 1, we have

depthS/(I+x1Jk+1)≥min
{
depthS/(I+x1Jk+1+(u1, . . . ,ut)),α2(G)−s+1

}
=min

{
depthS/(I+x1Jk),α2(G)−s+1

}
.

Step 3. It follows from Step 2 that

depthS/(I,x1 · · ·xd) = depthS/(I+x1Jd−1)

≥min
{
depthS/(I+x1Jd−2),α2(G)−s+1

}
≥min

{
depthS/(I+x1Jd−3),α2(G)−s+1

}
≥ ·· · ≥min

{
depthS/(I+x1J1),α2(G)−s+1

}
.
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In particular,

depthS/(I,x1 · · ·xd)≥min
{
depthS/

(
I+(x1x2,x1x3, . . . ,x1xd)

)
,α2(G)−s+1

}
. (5)

Step 4. Let L be the graph obtained from H, by deleting the edges x1x2, . . . ,x1xd. Then

L is the disjoint union of H \x1 and the isolated vertex x1. In particular, L is a chordal

graph. Also, let L′ be the graph obtained from H ′, by adding the edges x1x2, . . . ,x1xd. Then

E(L)∩E(L′) = ∅ and E(L)∪E(L′) = E(G).

It follows from [15, Lemma 3.2] and the induction hypothesis that

depthS/(I+(x1x2,x1x3, . . . ,x1xd))

= depthS/(I(H)(s)+ I(H ′)+(x1x2,x1x3, . . . ,x1xd)
)

= depthS/((I(L)(s)+ I(L′)))≥ α2(G)−s+1.

Finally, inequality (5) implies that

depthS/(I,x1 · · ·xd)≥ α2(G)−s+1. (6)

Now, inequalities (2), (3), and (6) complete the proof of the proposition.

The following theorem is the main result of this section and follows easily from

Proposition 3.3.

Theorem 3.4. Let G be a chordal graph. Then for every integer s≥ 1, we have

depthS/(I(G)(s))≥ α2(G)−s+1.

Proof. The assertion follows from Proposition 3.3 by substituting H =G and H ′ = ∅.

§4. Second symbolic power of edge ideals

The aim of this section is to show that inequality (‡) is true for s= 2 (Theorem 4.2). To

prove this result, we need to bound the depth of ideals of the form
(
I(G)(k) : xy

)
, where xy

is an edge of G. To achieve this goal, we will use the following lemma in the case of k = 2.

Lemma 4.1. Let G be a graph and xy be an edge of G. Then for any integer k ≥ 2, we

have (
I(G)(k) : xy

)
=

(
I(G)(k−1) : x

)
∩

(
I(G)(k−1) : y

)
.

Proof. Let u be a monomial in
(
I(G)(k) : xy

)
. Then uxy ∈ I(G)(k). Clearly, this implies

that ux ∈ I(G)(k−1). Therefore, u ∈
(
I(G)(k−1) : x

)
. Similarly, u belongs to

(
I(G)(k−1) : y

)
.

Hence, (
I(G)(k) : xy

)
⊆

(
I(G)(k−1) : x

)
∩

(
I(G)(k−1) : y

)
.

To prove the reverse inclusion, let v be a monomial in(
I(G)(k−1) : x

)
∩

(
I(G)(k−1) : y

)
.

We must show that vxy ∈ I(G)(k). It is enough to prove that for any minimal vertex cover C

of G, we have vxy ∈ pkC . So, let C be a minimal vertex cover of G. It follows from xy ∈E(G)

that C contains at least one of the vertices x and y. Without loss of generality, suppose
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x ∈ C. Since v ∈
(
I(G)(k−1) : y

)
, we have vy ∈ I(G)(k−1) ⊆ p

k−1
C . This together with x ∈ pC

implies that vxy ∈ pkC .

The following theorem is the second main result of this paper.

Theorem 4.2. For any graph G, we have

depthS/I(G)(2) ≥ α2(G)−1.

Proof. Set I := I(G) and let G(I) = {u1, . . . ,um} be the set of minimal monomial

generators of I. For every integer i with 1≤ i≤m consider the short exact sequence

0−→ S

(I(2)+(u1, . . . ,ui−1)) : ui
−→ S

I(2)+(u1, . . . ,ui−1)

−→ S

I(2)+(u1, . . . ,ui)
−→ 0,

where for i = 1, the ideal (u1, . . . ,ui−1) is the zero ideal. It follows from depth Lemma [2,

Proposition 1.2.9] that

depthS/(I(2)+(u1, . . . ,ui−1))

≥min
{
depthS/((I(2)+(u1, . . . ,ui−1)) : ui),depthS/(I

(2)+(u1, . . . ,ui))
}
.

Using the above inequalities inductively, we have

depthS/I(2)

≥min

{
depthS/(I(2)+ I),min

{
depthS/((I(2)+(u1, . . . ,ui−1)) : ui) | 1≤ i≤m

}}

=min
{
depthS/I,depthS/((I(2)+(u1, . . . ,ui−1)) : ui) | 1≤ i≤m

}
≥min

{
α2(G),depthS/((I(2)+(u1, . . . ,ui−1)) : ui) | 1≤ i≤m

}
,

where the last inequality follows from Corollary 2.2. Hence, it is enough to show that

depthS/((I(2)+(u1, . . . ,ui−1)) : ui)≥ α2(G)−1,

for every integer i with 1≤ i≤m.

Fix an integer i with 1≤ i≤m and assume that ui = xy. By [1, Theorem 4.12], for every

pair of integers 1≤ j < i≤m, one of the following conditions holds.

(i) (uj : ui)⊆ (I2 : ui)⊆ (I(2) : ui); or

(ii) there exists an integer k ≤ i− 1 such that (uk : ui) is generated by a variable, and

(uj : ui)⊆ (uk : ui).

We know from (i) and (ii) above that
(
(I(2)+(u1, . . . ,ui−1)) : ui

)
= (I(2) : ui)+(some variables). (7)

Let A be the set of variables belonging to
(
(I(2)+(u1, . . . ,ui−1)) : ui

)
. Assume that x ∈ A.

This means that x2y belongs to the ideal I(2) + (u1, . . . ,ui−1). Since u1, . . . ,ui−1 do not

divide x2y, we deduce that x2y ∈ I(G)(2). But this is a contradiction, as C := V (G) \ {x}
is a vertex cover of G with x2y /∈ p2C . Therefore, x /∈ A. Similarly, y /∈ A. It follows from

x,y /∈A and equality (7) that
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(
(I(2)+(u1, . . . ,ui−1)) : ui

)
=

(
I(2) : ui

)
+(the ideal generated by A)

=
(
I(2)+(the ideal generated by A)) : ui

)
=

(
I(G\A)(2)+(the ideal generated by A)) : ui

)
=

(
I(G\A)(2) : ui

)
+(the ideal generated by A).

Therefore,

depthS/((I(2)+(u1, . . . ,ui−1)) : ui) = depthSA/(I(G\A)(2) : ui), (8)

where SA =K[xi : 1≤ i≤ n,xi /∈A]. It follows from Lemma 4.1 that

(I(G\A)(2) : ui) = (I(G\A) : x)∩ (I(G\A) : y).

Consider the following short exact sequence.

0−→ SA

(I(G\A)(2) : ui)
−→ SA

(I(G\A) : x) ⊕
SA

(I(G\A) : y)

−→ SA

(I(G\A) : x)+(I(G\A) : y) −→ 0.

Applying depth lemma [2, Proposition 1.2.9] on the above exact sequence, it suffices to

prove that

(a) depthSA/(I(G\A) : x)≥ α2(G)−1,

(b) depthSA/(I(G\A) : y)≥ α2(G)−1, and

(c) depthSA/((I(G\A) : x)+(I(G\A) : y))≥ α2(G)−2.

To prove (a), note that

(I(G\A) : x) = I(G\ (A∪NG\A[x]))+(the ideal generated by NG\A(x))

= I(G\ (A∪NG[x]))+(the ideal generated by NG\A(x)).

Hence,

depthSA/(I(G\A) : x) = depthS′/I(G\ (A∪NG[x])), (9)

where S′ = K[xi : 1 ≤ i ≤ n,xi /∈ A∪NG(x)]. Obviously, x is a regular element of S′/I(G\
(A∪NG[x])). Therefore, Corollary 2.2 implies that

depthS′/I(G\ (A∪NG[x]))≥ α2(G\ (A∪NG[x]))+1. (10)

Assume that A⊆NG(x)∪NG(y). It then follows from Lemma 3.1 that

α2(G\ (A∪NG[x]))≥ α2(G)−2.

Hence, we conclude from equality (9) and inequality (10) that

depthSA/(I(G\A) : x)≥ α2(G)−1.

Thus, to complete the proof of (a), we only need to show that A⊆NG(x)∪NG(y).

Let z be an arbitrary variable in A and suppose z /∈NG(x)∪NG(y). Then the only edge

dividing zui = zxy is ui. In particular,

z /∈
(
(u1, . . . ,ui−1) : ui). (11)
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Moreover, since {z,x} is an independent subset of G, we conclude that C ′ = V (G)\{z,x} is

a vertex cover of G with zui = zxy /∈ p2C′ . Thus, zui /∈ I(2). This means that z /∈ (I(2) : ui).

This, together with (11) implies that

z /∈
(
(I(2),u1, . . . ,ui−1) : ui

)
,

which is a contradiction. Therefore, z ∈NG(x)∪NG(y). Hence, A⊆NG(x)∪NG(y) and this

completes the proof of (a). The proof of (b) is similar to the proof of (a). We now prove (c).

Note that

(I(G\A) : x)+(I(G\A) : y)
= I(G\ (A∪NG\A[x]∪NG\A[y]))+(the ideal generated by NG\A[x]∪NG\A[y])

= I(G\ (A∪NG[x]∪NG[y]))+(the ideal generated by NG\A[x]∪NG\A[y])

= I(G\ (NG[x]∪NG[y]))+(the ideal generated by NG\A[x]∪NG\A[y]),

where the last equality follows from A⊆NG(x)∪NG(y). We conclude that

depthSA/((I(G\A) : x)+(I(G\A) : y)) = depthS′′/I(G\ (NG[x]∪NG[y])), (12)

where S′′ = K
[
xi : 1 ≤ i ≤ n,xi /∈ NG[x]∪NG[y]

]
. Using Corollary 2.2 and Lemma 3.1, we

deuce that

depthS′′/I(G\ (NG[x]∪NG[y]))≥ α2(G\ (NG[x]∪NG[y]))≥ α2(G)−2.

Finally, the assertion of (c) follows from equality (12) and the above inequality. This

completes the proof of the theorem.
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