1. Introduction
For a topological space $X$, we say $X$
has torsion if its integral homology does. Let $G$
be a compact connected Lie group. The cohomology of the connected Lie group $G$
, its loop space $\Omega G$
and its classifying space $BG$
has been studied by many mathematicians after the pioneering works of Hopf, Bott and Borel. The loop space $\Omega G$
has no torsion. The classifying space $BG$
has torsion if and only if $G$
does.
Let $P\to X$ be a principal $G$
-bundle over a paracompact space $X$
. Then, there is a classifying map $f\colon X\to BG$
. The group of bundle automorphisms covering the identity on X is called the gauge group $\mathcal {G}(P)$
. The classifying space $B\mathcal {G}(P)$
is homotopy equivalent to the path-component of the mapping space $\mathrm {Map}(X,\, BG)$
containing the classifying map $f$
as in [Reference Atiyah and Bott1, Reference Gottlieb2]. If $X=S^1$
, since $\pi _1(BG)=\{0\}$
, the mapping space $\mathrm {Map}(S^1,\, BG)$
is path-connected and it has torsion if and only if $G$
does. If $X=S^2$
, since $\pi _2(BG)$
might not be zero, the mapping space $\mathrm {Map}(S^2,\, BG)$
may not be path-connected. The path-component that contains the trivial map is homotopy equivalent to the classifying space of the gauge group of the trivial $G$
-bundle over $S^2$
, and it has torsion if and only if $G$
does. However, the situation is different for other path-components that are homotopy equivalent to classifying spaces of gauge groups of non-trivial $G$
-bundles.
Let $SO(n)$ be the special orthogonal groups. Classification of $SO(n)$
-bundles over $S^2$
is determined by the Stiefel–Whitney class $w_2\in \mathbb {Z}/2=\{0,\,1\}=\pi _2(BSO(n))$
. The path-component of the mapping space corresponding to the non-trivial Stiefel–Whitney class is homotopy equivalent to the classifying space of the gauge group of the non-trivial $SO(n)$
-bundle over $S^2$
. Tsukuda [Reference Tsukuda5] showed that it has no torsion for $n=3$
. Minowa [Reference Minowa3] proved that it has no torsion for $n=3,\,4$
and torsion for $n\geq 5$
.
The special orthogonal group $SO(3)$ could be regarded as the projective unitary group $PU(2)=U(2)/S^1$
. In this paper, we generalize Tsukuda's result for projective unitary groups $PU(n)$
, $n\geq 2$
and determine when the classifying space of a $PU(n)$
-gauge group over the sphere $S^2$
has torsion.
Throughout the rest of this paper, let $n$ be an integer greater than or equal to 2. The second homotopy group $\pi _2(BPU(n))$
is isomorphic to the cyclic group $\mathbb {Z}/n$
. We identify the cyclic group $\mathbb {Z}/n$
with its complete set of representatives $\{ 0,\,1,\, \ldots,\, n-1\}$
. Let $k$
be an element in
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU1.png?pub-status=live)
Let us denote by $\mathrm {Map}_k(S^2,\, BPU(n))$ the path-component of the mapping space $\mathrm {Map}(S^2,\, BPU(n))$
containing maps in the homotopy class $k$
. Let $p$
be a prime number. Unless explicitly stated, $H^{*}(X)$
is the mod $p$
cohomology of the topological space $X$
. The following is the $p$
-local form of our result.
Theorem 1.1 The following holds for $\mathrm {Map}_k (S^2,\, BPU(n))$.
(1) If $n\not \equiv 0 \mod (p)$
, it has no $p$
-torsion.
(2) If $n\equiv 0 \mod (p)$
and $k\not \equiv 0\mod (p)$
, it has no $p$
-torsion.
(3) If $n\equiv 0 \mod (p)$
and $k\equiv 0\mod (p)$
, it has $p$
-torsion.
As an immediate consequence of theorem 1.1, we obtain the following global form of our result.
Corollary 1.2 The topological space $\mathrm {Map}_k(S^2,\, BPU(n))$ has no torsion if and only if $k$
is relatively prime to $n$
.
In particular, for $n\geq 2$, the topological space $\mathrm {Map}_1(S^2,\, BPU(n))$
has no torsion even though the underlying Lie group $PU(n)$
has torsion.
This paper is organized as follows. In § 2, we show the existence of $p$-torsion in $\mathrm {Map}_k(S^2,\, BPU(n))$
is equivalent to the triviality of certain induced homomorphism in the mod $p$
cohomology. Section 3 recalls the free double suspension in Takeda [Reference Takeda4] and its elementary properties. Section 4 collects some elementary facts on the mod $p$
cohomology of $BU(n)$
. In § 5, we prove theorem 1.1 assuming lemma 5.6 on an $n\times n$
matrix $B$
. In § 6, we prove lemma 5.6.
The author would like to thank Yuki Minowa for his talk on [Reference Minowa3] at the Homotopy Theory Symposium at the Osaka Metropolitan University on 5 November 2023. This work was inspired by his talk.
2. Torsion
In this section, we show that the existence of $p$-torsion of a path-component is equivalent to the triviality of certain induced homomorphism.
Let us fix a fibre bundle $BU(n)\to BPU(n)$ induced by the obvious projection map $U(n)\to PU(n)$
. We denote the inclusion map of its fibre by $\phi \colon BS^1 \to BU(n)$
. It is a map induced by the obvious inclusion map $S^1 \to U(n)$
where $S^1$
consists of the scalar matrices in the unitary group $U(n)$
. Consider the commutative diagram induced by the fibre bundle $BU(n)\to BPU(n)$
.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU2.png?pub-status=live)
Both vertical maps in the bottom-right square are evaluation maps at the base point of $S^2$, and all maps in the bottom-right square are fibrations. Moreover, all horizontal and vertical sequences are fibre sequences. In particular, $\Omega _k^2 BU(n)$
and $\Omega _k^2 BPU(n)$
are fibres of evaluation maps. Since
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU3.png?pub-status=live)
is a homotopy equivalence, the fibre $F_0$ is contractible, and the map $F\to BS^1$
is also a homotopy equivalence.
The goal of this section is to prove the following proposition.
Proposition 2.1 The following are equivalent.
(1) The topological space $\mathrm {Map}_k(S^2,\, BPU(n))$
has $p$
-torsion.
(2) The mod $p$
cohomology of $\mathrm {Map}_k(S^2,\, BPU(n))$
has a non-zero odd degree element.
(3) The induced homomorphism $\varphi ^{*}\colon H^2(\mathrm {Map}_k(S^2,\, BU(n)))\to H^2(F)$
is zero.
To establish the equivalence of (1) and (2) in proposition 2.1, we use the following lemma.
Lemma 2.2 Let $X$ be a topological space. Suppose that the integral homology groups $H_i(X;\mathbb {Z})$
are finitely generated abelian groups for all $i$
, and the rational cohomology of $X$
has no non-zero odd degree element. Then, the mod $p$
cohomology $H^{*}(X;\mathbb {Z}/p)$
has a non-zero odd degree element if and only if $X$
has $p$
-torsion.
Proof. First, we prove that the assumptions of lemma 2.2 imply that $H_{2j+1}(X;\mathbb {Z})$ is a finite abelian group for all $j$
. By the universal coefficient theorem, we have an isomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU4.png?pub-status=live)
By the assumption that the rational cohomology of $X$ has no non-zero odd degree element, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU5.png?pub-status=live)
By the assumption that the integral homology groups $H_{i}(X;\mathbb {Z})$ are finitely generated, $H_{2j+1}(X;\mathbb {Z})$
is a finite abelian group.
Next, we show that if $X$ has $p$
-torsion, then $H^{2j+1}(X;\mathbb {Z}/p)$
is non-trivial for some $j$
. By the universal coefficient theorem, we have an isomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU6.png?pub-status=live)
If $X$ has $p$
-torsion, $H_{2j+1}(X;\mathbb {Z})$
or $H_{2j}(X;\mathbb {Z})$
has $p$
-torsion for some $j$
. Therefore, $H^{2j+1}(X;\mathbb {Z}/p)$
is non-trivial.
Finally, we show that if $H^{2j+1}(X;\mathbb {Z}/p)$ is non-trivial for some $j$
, $X$
has $p$
-torsion. By the universal coefficient theorem, we have an isomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU7.png?pub-status=live)
Suppose that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU8.png?pub-status=live)
is non-trivial. Then, since $H_{2j+1}(X;\mathbb {Z})$ is a finite abelian group, $H_{2j+1}(X;\mathbb {Z})$
has $p$
-torsion. Suppose that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU9.png?pub-status=live)
is non-trivial. Then, since $H_{2j}(X;\mathbb {Z})$ is a finitely generated abelian group, $H_{2j}(X;\mathbb {Z})$
has $p$
-torsion. Hence, in either case, $X$
has $p$
-torsion.
Proof Proof of proposition 2.1, (1) $\Leftrightarrow$ (2)
Let us consider the right vertical fibre sequence
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU10.png?pub-status=live)
and Leray–Serre spectral sequences associated with this fibre sequence. The $E_2$-page of the Leray–Serre spectral sequence for the integral homology consists of finitely generated abelian groups, and so are the integral homology groups of $\mathrm {Map}_k(S^2,\, BPU(n))$
. The $E_2$
-page of the Leray–Serre spectral sequence for the rational cohomology has no non-zero odd degree element. So the rational cohomology of $\mathrm {Map}_k(S^2,\, BPU(n))$
also has no non-zero odd degree element. Thus, by lemma 2.2, $\mathrm {Map}_k(S^2,\, BPU(n))$
has $p$
-torsion if and only if its mod $p$
cohomology has a non-zero odd degree element.
Let $c_i\in H^{2i}(BU(n))$ be the mod $p$
reduction of the $i^{\mathrm {th}}$
Chern class. The following proposition is what we need on the mod $p$
cohomology of $\mathrm {Map}_k(S^2,\, BU(n))$
in this section. Section 5 gives a more detailed description of the generator $x$
in terms of $c_2$
and the free double suspension we will define in § 3.
Proposition 2.3 The following hold.
(1) $H^{*}(\mathrm {Map}_k(S^2,\, BU(n)))$
has no non-zero odd degree element.
(2) As an abelian group, $H^{2}(\mathrm {Map}_k(S^2,\, BU(n)))$
is generated by two elements $\pi ^*(c_1)$
and $x$
such that $\iota _k^*(x)\not =0$
.
Proof. Consider the Leray–Serre spectral sequence associated with the middle vertical fibre sequence
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU11.png?pub-status=live)
converging to the mod $p$ cohomology of $\mathrm {Map}_k(S^2,\, BU(n))$
. Then, the $E_2$
-page has no non-zero odd degree element. Hence, the spectral sequence collapses at the $E_2$
-page, and we obtain (1). Furthermore, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU12.png?pub-status=live)
Hence, we have (2).
Proof Proof of proposition 2.1, (2) $\Leftrightarrow$ (3)
We consider the Leray–Serre spectral sequence associated with the middle horizontal fibre sequence
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU13.png?pub-status=live)
converging to the mod $p$ cohomology of $\mathrm {Map}_k ( S^2,\, BU(n))$
. The mod $p$
cohomology ring of $F\simeq BS^1$
is a polynomial ring generated by a single element $u$
of degree $2$
. The $E_2$
-page is given by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU14.png?pub-status=live)
If the induced homomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU15.png?pub-status=live)
is non-zero, the induced homomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU16.png?pub-status=live)
is surjective. Then, by the Leray–Hirsh theorem, the induced homomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU17.png?pub-status=live)
is injective and, by proposition 2.3 (1), the mod $p$ cohomology of $\mathrm {Map}_{k}(S^2,\, BPU(n))$
also has no non-zero odd degree element.
If the induced homomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU18.png?pub-status=live)
is zero, $u$ does not survive to the $E_\infty$
-page. Hence, $d_2(u)\not =0$
or $d_3(u)\not =0$
must hold. Relevant subgroups of $E_2$
-page are as follows.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU19.png?pub-status=live)
Since $d_2(u)\in E_2^{2,1}=\{0\}$, we have $d_2(u)=0$
. Therefore, $d_3(u)\not =0$
. Since $E_2^{1,1}=\{0\}$
, the differential $d_2\colon E_2^{1,1}\to E_2^{3,0}$
is zero and we have $E_3^{3,0}=E_2^{3,0}$
. Since
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU20.png?pub-status=live)
is non-zero, the mod $p$ cohomology of $\mathrm {Map}_{k}(S^2,\, BPU(n))$
has the non-zero odd degree element $d_3(u)$
.
3. Free double suspension
To describe the generator $x$ of $H^2(\mathrm {Map}_k(S^2,\, BU(n)))$
in proposition 2.3 in more detail, we use the free double suspension
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU21.png?pub-status=live)
defined by Takeda in [Reference Takeda4]. One may define the free double suspension over any coefficient groups. We focus on the mod $p$ cohomology. Our definition of $\sigma$
differs slightly from Takeda's $\hat {\sigma }_f^2$
in [Reference Takeda4] but is the same homomorphism.
In this section, let $X$ be a simply connected topological space. We denote by $*$
the base points of both $S^2$
and $X$
. Let $k$
be a homotopy class in $\pi _2(X)$
and $0$
is the homotopy class in $\pi _2(X)$
containing the trivial map. Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU22.png?pub-status=live)
be the obvious projection map. We use the evaluation maps
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU23.png?pub-status=live)
and its restriction to $\mathrm {Map}_k(S^2,\, X)=\{*\} \times \mathrm {Map}_k(S^2,\, X)$,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU24.png?pub-status=live)
to define a homomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU25.png?pub-status=live)
Let us fix a generator of $H^2(S^2)\simeq \mathbb {Z}/p$ and we denote it by $u_2$
. We define $\sigma$
by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU26.png?pub-status=live)
Let $\Omega _k^2 X=\pi ^{-1}(*)$ and denote the inclusion map by $\iota _k\colon \Omega _k^2 X\to \mathrm {Map}_k(S^2,\, X)$
. We define
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU27.png?pub-status=live)
by $\iota _k^* \circ \sigma$. Proposition 3.1 (1) below is nothing but a particular form of proposition 2.1 in [Reference Takeda4].
Proposition 3.1 The homomorphism $\sigma$ satisfies the following.
(1) $\sigma (x \cdot y) =\sigma (x) \cdot \pi ^{*}(y)+\pi ^{*}(x) \cdot \sigma (y)$
,
(2) for a cohomology operation $\mathcal {O}$
of positive degree, $\sigma (\mathcal {O} x)=\mathcal {O}\sigma (x)$
.
Proof.
(1) Since
\begin{align*} \mathrm{ev}^{*}(x) \cdot \mathrm{ev}^{*}(y)& =(u_2 \otimes \sigma(x) +1\otimes \pi^{*}(x))\cdot (u_2 \otimes \sigma(y) +1\otimes \pi^{*}(y)) \\ & = u_2 \otimes \sigma(x) \cdot 1\otimes \pi^{*}(y)\\ & \quad + 1\otimes \pi^{*}(x) \cdot u_2 \otimes \sigma(y)+1\otimes \pi^{*}(x)\cdot 1\otimes \pi^{*}(y) \\ & =u_2 \otimes (\sigma(x)\cdot \pi^{*}(y)+\pi^{*}(x) \cdot \sigma(y))+1 \otimes (\pi^{*}(x)\cdot \pi^{*}(y)), \end{align*}Hence, we have\[ \mathrm{ev}^{*}(x\cdot y)-(\pi\circ \mathrm{pr}_2)^*(x\cdot y)=u_2 \otimes (\sigma(x)\cdot \pi^{*}(y)+\pi^{*}(x) \cdot \sigma(y)). \](2) is also clear from the naturality of cohomology operation.
\begin{align*} \mathcal{O} (\mathrm{ev}^{*}(x)-(\pi\circ \mathrm{pr}_2)^{*}(x))& =\mathrm{ev}^{*}(\mathcal{O}x)-(\pi\circ \mathrm{pr}_2)^{*}(\mathcal{O}x) \\ & =u_2 \otimes \sigma(\mathcal{O}x),\\ \mathcal{O}(u_2\otimes \sigma(x))& =u_2 \otimes \mathcal{O}\sigma(x), \end{align*}since $\mathcal {O} u_2=0$. Hence, we have
\[ \sigma(\mathcal{O}x)=\mathcal{O}\sigma(x). \]□
Next, we describe the relation between $\Omega _k^2 X$ and $\Omega _0^2 X$
. Let $X_1\vee X_2$
be the subspace of $X_1 \times X_2$
defined by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU32.png?pub-status=live)
Let $\nu \colon S^2 \to S^2 \vee S^2$ be the pinch map collapsing the sphere's equator. We use it to define the addition on $\pi _2(X)$
. Let $f\colon S^2\to X$
be a map representing $k\in \pi _2(X)$
and $\mathrm {c}_f\colon \Omega _0^2 X\to \{ f\}$
the obvious constant map. Using $f$
, we define
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU33.png?pub-status=live)
by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU34.png?pub-status=live)
The following lemma is a weak form of lemma 2.2 in [Reference Takeda4]. We use it to prove proposition 5.1.
Lemma 3.2 Let $x$ be an element in $H^{i}(X)$
. If $i\not =2$
, then we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU35.png?pub-status=live)
Proof. We have the following commutative diagram by the definition of $\mu _f$.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU36.png?pub-status=live)
where we choose $f$ as the base point of both $\{ f\}$
and $\Omega _k^2 X$
, and the constant map $S^2\to \{*\}$
as the base point of $\Omega _0^2X$
. Since the reduced mod $p$
cohomology $\widetilde {H}^{i}(S^2\times \{f\})\simeq \widetilde {H}^{i}(S^2)$
is trivial for $i\not =2$
, we have isomorphisms
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU37.png?pub-status=live)
and desired identity
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU38.png?pub-status=live)
for $x\in H^i(X)$, $i\not =2$
.
4. Cohomology of $BU(n)$![]()
In this section, we collect some elementary properties of the mod $p$ cohomology ring of $BU(n)$
and the induced homomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU39.png?pub-status=live)
Let us fix a generator $u$ of $H^2(BU(1))=H^2(BS^1)\simeq \mathbb {Z}/p$
. Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU40.png?pub-status=live)
be the map induced by the inclusion map of the maximal torus $U(1)^n$ consisting of diagonal matrices. Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU41.png?pub-status=live)
be the map induced by the projection of $U(1)^n$ to its $i^{\mathrm {th}}$
factor $U(1)$
, defined by $(x_1,\, \dots,\, x_n)\mapsto x_i$
. We denote $B\mathrm {pr}_i^{*}(u)\in H^2(BU(1)^n)$
by $t_i$
. The mod $p$
cohomology of $BU(1)^n$
is a polynomial ring generated by $t_1,\, \ldots,\, t_n$
and the induced homomorphism
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU42.png?pub-status=live)
is injective, and its image is the set of symmetric polynomials in $t_1,\, \ldots,\, t_n$. In particular, $c_i$
is defined as the element such that $\iota ^{*}(c_i)$
is the $i^{\mathrm {th}}$
elementary symmetric polynomial in $t_1,\, \ldots,\, t_n$
. Let us define $s_i$
by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU43.png?pub-status=live)
The map $\phi \colon BS^1 \to BU(n)$ factors through
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU44.png?pub-status=live)
where $\delta$ is the map induced by the diagonal map $x\mapsto (x,\,\ldots,\, x)$
. Since $\delta ^{*}(t_i)=u$
for $i=1,\, \ldots,\, n$
, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU45.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU46.png?pub-status=live)
We use the following lemma 4.1 to prove proposition 5.5. The corresponding identity in symmetric polynomials is known as Newton's identity.
Lemma 4.1 In the mod $p$ cohomology of $BU(n)$
, for $i\geq 0$
, we have relations
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU47.png?pub-status=live)
Proof. Let us define symmetric polynomials $h_{i+2,n-1},\, \ldots,\, h_{n+i,1}$. For $\ell =i+2,\,\ldots,\, n+i$
, let $h_{\ell, n+i+1-\ell }$
be the sum of monomials in the polynomial ring $\mathbb {Z}/p[t_1,\, \ldots,\, t_n]$
obtained from $t_1^{\ell } t_2 \cdots t_{n+i+2-\ell }$
by permuting $1,\, \ldots,\, n+j+2-\ell$
in $1,\, \ldots,\, n$
. Then, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU48.png?pub-status=live)
Therefore, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU49.png?pub-status=live)
Since $\iota ^*$ is injective, it completes the proof.
If $p$ is an odd prime, let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU50.png?pub-status=live)
be the $i^{\mathrm {th}}$ Steenrod reduced power. If $p=2$
, let $\wp ^1=\mathrm {Sq}^2$
and $\wp ^{2^{\ell -1}}= \mathrm {Sq}^{2^\ell }$
for $\ell \geq 2$
, where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU51.png?pub-status=live)
is the $i^{\mathrm {th}}$ Steenrod square. We define cohomology operations $\mathcal {Q}_\ell$
inductively by $\mathcal {Q}_1=\wp ^1$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU52.png?pub-status=live)
for $\ell \geq 2$. Cohomology operations $\mathcal {Q}_\ell$
have the following properties
(1) $\mathcal {Q}_{\ell }(x\cdot y)=\mathcal {Q}_{\ell }(x)\cdot y+x\cdot \mathcal {Q}_{\ell }( y)$
for $x,\, y\in H^{*}(BU(1)^n)$
,
(2) $\mathcal {Q}_{\ell } t_i=t_i^{p^\ell }$
for $t_1,\, \ldots,\, t_n$
in $H^2(BU(1)^n)$
.
With these properties, we have the following lemma 4.2. We will use it to prove proposition 5.2.
Lemma 4.2 In the mod $p$ cohomology of $BU(n)$
, for $\ell \geq 1$
, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU53.png?pub-status=live)
Proof. On the one hand, since
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU54.png?pub-status=live)
by direct calculation, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU55.png?pub-status=live)
On the other hand, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU56.png?pub-status=live)
Hence, we obtain the desired identity.
5. Proof of theorem 1.1
In this section, we consider the commutative diagram
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU57.png?pub-status=live)
We begin with the following refinement of proposition 2.3 (2).
Proposition 5.1 As an abelian group, $H^{2}(\mathrm {Map}_k(S^2,\, BU(n)))$ is generated by $\pi ^*(c_1)$
and $\sigma (c_2)$
.
Proof. Let $\lambda \colon BSU(n)\to BU(n)$ and $\lambda '\colon \Omega ^2 BSU(n) \to \Omega ^2_0 BU(n)$
be maps induced by the inclusion map $SU(n)\to U(n)$
. We have the following commutative diagram by lemma 2.2 and the naturality of cohomology suspension.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU58.png?pub-status=live)
The top horizontal homomorphism $\tilde {\sigma }$ is the composition of cohomology suspensions
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU59.png?pub-status=live)
and it is an isomorphism. Since $H^4(BSU(n))\simeq \mathbb {Z}/p$ is generated by $\lambda ^{*}(c_2)$
, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU60.png?pub-status=live)
Therefore, we obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU61.png?pub-status=live)
By proposition 2.3 (2), $\pi ^{*}(c_1)$ and $\sigma (c_2)$
generate $H^{2}(\mathrm {Map}_k(S^2,\, BU(n)))$
.
Let $u\in H^2(F)=H^2(BS^1)\simeq \mathbb {Z}/p$ be the generator fixed in § 4. Let us define $\alpha _i,\, \beta \in \mathbb {Z}/p$
by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU62.png?pub-status=live)
Proposition 5.2 If $n\equiv 0 \mod (p)$, we have $\beta =-\alpha _{p^{\ell }}$
for $\ell \geq 1$
.
Proof. On the one hand, by the definition of $\beta$, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU63.png?pub-status=live)
Applying $\mathcal {Q}_\ell$, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU64.png?pub-status=live)
On the other hand, by lemma 4.2, in the mod $p$ cohomology of $BU(n)$
, we have the relation
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU65.png?pub-status=live)
Applying $\varphi ^{*}\circ \sigma$, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU66.png?pub-status=live)
Hence, we have $\beta =-\alpha _{p^{\ell }}.$
Summing up propositions 5.1 and 5.2, we have the following proposition 5.3. It reduces the proof of theorem 1.1 to the computation of $\alpha _p$.
Proposition 5.3 The following are equivalent.
(1) $\varphi ^{*}\colon H^{2}(\mathrm {Map}_k(S^2,\, BU(n)))\to H^{2}(F)$
is zero,
(2) $\phi ^{*}(c_1)=0$
and $\beta =0$
,
(3) $\phi ^{*}(c_1)=0$
and $\alpha _p=0$
.
Proof. Since $H^{2}(\mathrm {Map}_k(S^2,\, BU(n)))$ is generated by $\pi ^{*}(c_1)$
and $\sigma (c_2)$
, (1) and (2) are equivalent. Under the assumption that $\phi ^*(c_1)=0$
, we have $n\equiv 0 \mod (p)$
. Then, by proposition 5.2, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU67.png?pub-status=live)
Hence, (2) and (3) are equivalent.
By computing $\alpha _p$, we complete the proof of theorem 1.1.
Proposition 5.4 We have $\alpha _0=k$.
Proof. Let $f\colon S^2\to BU(n) \in \mathrm {Map}_k(S^2,\, BU(n))$. By definition, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU68.png?pub-status=live)
Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU69.png?pub-status=live)
be a map defined by $t\mapsto (t,\,f)$. Then, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU70.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU71.png?pub-status=live)
is a constant map $S^2\to \{ f(*) \}$. It implies that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU72.png?pub-status=live)
When we restrict $\mathrm {i}_f^*$ to $H^{2}((S^2,\, *) \times \mathrm {Map}_k(S^2,\, BU(n)))$
, it is injective. So, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU73.png?pub-status=live)
Hence, by the definition of $\sigma$, we have $\sigma (c_1)=k$
.
Proposition 5.5 If $n\equiv 0 \mod (p)$, we have $\alpha _{p}=k$
.
We use the following lemma 5.6 to prove proposition 5.5. We will prove it in the next section. Let $B$ be an $n\times n$
matrix whose $(i,\,j)$
-entry is given by integers
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU74.png?pub-status=live)
for $1\leq j\leq n$ and $b_{i,j}=1$
if $i=j+1$
, $b_{i,j}=0$
if $i\not =j+1$
for $2\leq i \leq n$
, $1\leq j \leq n$
.
Lemma 5.6 When we regard the matrix $B$ as an element in $SL_n(\mathbb {Z}/p)$
, the order of $B$
is a power of $p$
.
Proof Proof of proposition 5.5
By lemma 4.1, in $H^{*}(BU(n))$, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU75.png?pub-status=live)
for $i\geq 0$. Applying $\varphi ^{*}\circ \sigma$
, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU76.png?pub-status=live)
Since $\phi ^{*}(s_{n+i-j+1})=0$, we obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU77.png?pub-status=live)
Furthermore, since $\displaystyle \phi ^*(c_j)=\binom{n}{j} u^j$, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU78.png?pub-status=live)
Thus, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU79.png?pub-status=live)
Therefore, put these identities together in matrix form, using the $n\times n$ matrix $B$
that we just defined, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU80.png?pub-status=live)
for $i\geq 0$. By lemma 5.6, the order of $B$
as an element of $SL_n(\mathbb {Z}/p)$
is a power of $p$
. Hence, for some positive integer $\ell$
, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU81.png?pub-status=live)
By proposition 5.2, we have $\alpha _{p^\ell }=-\beta =\alpha _p$. Therefore, we obtain $\alpha _p=k$
.
Proposition 5.7 below is immediate from proposition 5.5 and it completes the proof of theorem 1.1.
Proposition 5.7 The following holds.
(1) If $n\not \equiv 0 \mod (p)$
, then $\phi ^{*}(c_1)\not =0$
,
(2) If $n\equiv 0 \mod (p)$
and $k\not \equiv 0 \mod (p)$
, then $\alpha _p \not =0$
,
(3) If $n\equiv 0 \mod (p)$
and $k\equiv 0 \mod (p)$
, then $\phi ^{*}(c_1)=0$
and $\alpha _p=0$
.
6. Proof of lemma 5.6
In this section, we deal with unimodular $n\times n$ matrices. Unless otherwise clear from the context, matrix entries are integers. What we do in what follows is to find the transpose of the Jordan matrix similar to the matrix $B$
in § 5.
Proposition 6.1 There is a unimodular $n\times n$ matrix $A$
such that $A^{-1}BA=D$
where $(i,\,j)$
-entry $d_{i,j}$
of $D$
is $d_{i,j}=1$
if $i=j$
or $i=j+1$
and $d_{i,j}=0$
if otherwise.
We prove this proposition by giving such a matrix $A$ explicitly. Before we do it, we complete the proof of lemma 5.6.
Proof Proof of lemma 5.6
By proposition 6.1, we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU82.png?pub-status=live)
The matrix $D$ belongs to the subgroup $U_n$
of $SL_n(\mathbb {Z}/p)$
consisting of lower triangular matrices whose diagonal entries are $1$
. The subgroup $U_n$
is a $p$
-group. Therefore, the order of $D$
is a power of $p$
. Hence, the order of $B$
is also the power of $p$
.
Now, we prove proposition 6.1 by defining $A$ explicitly.
Proof Proof of proposition 6.1
Let $A$ be the $n\times n$
unimodular upper triangular matrix whose $(i,\,j)$
-entry is given by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU83.png?pub-status=live)
We show that $(i,\,j)$-entries of $BA$
and $AD$
are equal to $\binom{n-i+1}{n-j}$
for $1\leq i\leq n,\, 1\leq j\leq n$
.
Recall that $B$ is the $n\times n$
unimodular matrix whose $(i,\,j)$
-entry is given as follows: For $i=1$
, $1\leq j \leq n$
, the $(1,\,j)$
-entry of $B$
is given by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU84.png?pub-status=live)
and, for $2\leq i \leq n$, $1\leq j \leq n$
, the $(i,\,j)$
-entry of $B$
is given by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240502221537895-0030:S0308210524000337:S0308210524000337_eqnU85.png?pub-status=live)
(1) For $1\leq j\leq n$
, the $(1,\,j)$
-entry of $BA$
is given by
\begin{align*} \sum_{\ell=1}^n b_{1,\ell} a_{\ell,j} & =\sum_{\ell=1}^j b_{1,\ell} a_{\ell,j} \\ & =\sum_{\ell=1}^j ({-}1)^{\ell+1} \binom{n}{\ell} \cdot \binom{n-\ell}{n-j} \\ & =\sum_{\ell=1}^j ({-}1)^{\ell+1} \dfrac{n!}{(n-\ell)! \ell!} \cdot \dfrac{(n-\ell)!}{(n-j)!(j-\ell)!} \\ & =\sum_{\ell=1}^j ({-}1)^{\ell+1} \dfrac{n!}{(n-j)! j!} \cdot \dfrac{j!}{(j-\ell)!\ell!} \\ & =\sum_{\ell=1}^j ({-}1)^{\ell+1} \binom{n}{n-j} \binom{j}{\ell} \\ & = \binom{n}{n-j} \left( \sum_{\ell=1}^j ({-}1)^{\ell+1} \binom{j}{\ell}\right) \\ & =\binom{n}{n-j} \\ & =\binom{n-1+1}{n-j} \end{align*}For $2\leq i \leq n$, $1\leq j\leq n$
, the $(i,\,j)$
-entry of $BA$
is given by
\begin{align*} \sum_{\ell=1}^n b_{i,\ell}a_{\ell,j}& =b_{i,i-1} a_{i-1,j} \\ & =a_{i-1,j} \\ & =\binom{n-i+1}{n-j}. \end{align*}(2) For $1\leq i \leq n$
, $1\leq j \leq n$
, the $(i,\,j)$
-entry of $AD$
is given by
\begin{align*} \sum_{\ell=1}^n a_{i,\ell}d_{\ell,j} & = a_{i,j}d_{j,j}+a_{i,j+1}d_{j+1,j} \\ & =a_{i, j}+a_{i,j+1} \\ & =\binom{n-i}{n-j}+\binom{n-i}{n-j-1} \\ & =\binom{n-i+1}{n-j}. \end{align*}It completes the proof of proposition 6.1
Acknowledgements
This work was supported by JSPS KAKENHI grant number JP17K05263.