No CrossRef data available.
Article contents
Generalized Casimir operators for loop Lie superalgebras
Published online by Cambridge University Press: 27 January 2025
Abstract
Let $\mathfrak{g}$ be the queer superalgebra
$\operatorname {\mathfrak{q}}(n)$ over the field of complex numbers
$\mathbb C$. For any associative, commutative, and finitely generated
$\mathbb C$-algebra A with unity, we consider the loop Lie superalgebra
$\mathfrak{g} \otimes A$. We define a class of central operators for
$\mathfrak{g} \otimes A$, which generalizes the classical Gelfand invariants. We show that they generate the algebra
$U(\mathfrak{g} \otimes A)^{\mathfrak{g}}$. We also show that there are no non-trivial
$\mathfrak{g}$-invariants of
$U(\mathfrak{g} \otimes A)$ where
$\mathfrak{g}=\mathfrak{p}(n)$, the periplectic Lie superalgebra.
MSC classification
- Type
- Article
- Information
- Copyright
- © The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250208021906558-0014:S0008439525000050:S0008439525000050_inline9001.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250208021906558-0014:S0008439525000050:S0008439525000050_inline9002.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250208021906558-0014:S0008439525000050:S0008439525000050_inline9003.png?pub-status=live)