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Generalized Casimir operators for loop Lie
superalgebras
Abhishek Das and Santosha Pattanayak

Abstract. Let g be the queer superalgebra q(n) over the field of complex numbers C. For any
associative, commutative, and finitely generated C-algebra A with unity, we consider the loop Lie
superalgebra g⊗ A. We define a class of central operators for g⊗ A, which generalizes the classical
Gelfand invariants. We show that they generate the algebra U(g⊗ A)g. We also show that there are
no non-trivial g-invariants of U(g⊗ A) where g = p(n), the periplectic Lie superalgebra.

1 Introduction

The theory of Lie superalgebras primarily arose from an attempt to understand the
mathematical foundation of supersymmetry in theoretical physics. The literature has
been developed substantially since then. Representation theory of Lie superalgebras
plays a crucial role in quantum optics and many other areas of theoretical physics,
notably in string theory. A comprehensive description of the mathematical theory of
Lie superalgebras is given in [8], containing the complete classification of all finite-
dimensional simple Lie superalgebras over an algebraically closed field of character-
istic zero. For generalities of the theory of Lie superalgebras and supergeometry we
refer to [11] and [5], respectively.

Loop (super)algebras are of great importance in the literature. Affine Kac Moody
Lie (super)algebras can be realized by means of an affinization technique on Loop
superalgebras. In superstring theory a particular type of Loop superalgebras, namely
the superconformal algebras are invaluable tool. By definition, they are tensor product
of finite dimensional simple Lie superalgebras with the algebra of Laurent polynomi-
als. For a survey on finite dimensional representation theory of loop algebras we refer
to [17].

In this article we deal with Loop superalgebras associated with the superalgebras
belong to the strange series in Kac’s classification, namely the queer and periplectic Lie
superalgebras. By definition, a loop superalgebra is of the form g⊗A, where g is a Lie
superalgebra and A is an associative commutative finitely generated C-algebra with
identity. When g is a basic classical superalgebra and A = C[t±1

1 , . . . , t±1
d ], the Laurent

polynomial algebra in d commuting variables, a complete classification of irreducible
finite dimensional modules for g⊗ A is given in [17] and [12]. They turn out to be
evaluation modules at finitely many points except in types A(m, n) and C(n). In [16],
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2 A. Das and S. Pattanayak

Savage classified irreducible finite-dimensional representations of equivariant map
superalgebras in the case where g is a basic classical Lie superalgebra. As a special
case, his results give the classification of the irreducible finite-dimensional modules
for the twisted loop superalgebras, and in particular generalize the classification
results obtained in [15] and [12]. In [2], the authors classified finite-dimensional
irreducible representations of equivariant map queer Lie superalgebras. While in the
basic classical setting those irreducible modules were isomorphic to tensor products
of generalized evaluation modules, in the queer case they are irreducible products
of evaluation modules. In [1], the authors completed the classification of finite-
dimensional irreducible modules of equivariant map superalgebras by describing
these modules for the periplectic superalgebra.

In [14], Rao defined a set of operators for the Loop superalgebra g⊗A, where g is a
contragredient Lie superalgebra, and called them the generalized Casimir operators,
generalizing his work in [13] for Lie algebras. In particular, specializing to the case
where g = gl(m∣n), he defined a set of central operators Tk(a1 , . . . , ak) for a i ∈ A,
in the universal enveloping algebra U(g⊗A) of g⊗A, using the construction of the
Gelfand invariants in the center of U(g) and conjectured that these central operators
generate the algebra of g-invariants of U(g⊗A). In [10], the authors gave a proof of
this conjecture and gave a spanning set for the space of invariants U(osp(m∣2n) ⊗
A)OSp(m∣2n) where osp(m∣2n) is the orthosymplectic superalgebra and OSp(m∣2n)
is the corresponding supergroup.

In the current article, we study U(g⊗A)g corresponding to the strange series of
superalgebras, i.e., g is either q(n) and p(n). Using the Schur–Weyl–Sergeev duality,
we first derive the tensor version of the first fundamental theorem (FFT) of invariant
theory for q(n) which gives a spanning set for (V⊗k ⊗ (V∗)⊗k)q(n), k ≥ 1, where
V = C

n ⊕C
n is the defining representation of q(n). Using this version of FFT, we

give a spanning set for U(q(n) ⊗ A)q(n). We define a set of central operator for
U(q(n) ⊗ A) which are similar to the central operators defined by Rao in [14] in the
case of gl(m∣n). We show that these central operators generate U(q(n) ⊗ A)q(n) as
an algebra. Specializing to A = C, these central operators give an algebra generating
set for the center of the universal enveloping algebra of q(n). We mention that a set
of algebra generators of the center of q(n) is given in [18] without a proof. These
operators are helpful to understand the tensor product decompositions of g-modules.
In fact these central operators when applied to a certain tensor product of q(n)-
modules move one highest weight vector to another highest weight vector.

The periplectic Lie superalgebra p(n) is a superanalog of the orthogonal or sym-
plectic Lie algebra preserving an odd non-degenerate symmetric or skew-symmetric
bilinear form. In [9], Moon proved a Schur–Weyl duality statement for p(n) by
introducing an algebra called the periplectic Brauer algebra which plays the role
of Brauer algebra as in the case of orthogonal and symplectic Lie algebra or in
the case of the encompassing orthosymplectic Lie superalgebra. In [4], Deligne
et al., proved the tensor version of the FFT for the periplectic Lie supergroup, hence
thereby giving a spanning set for (V⊗2k)Pe(V), where V = C

n ⊕C
n and Pe(V)

is the periplectic supergroup which is by definition the subgroup of GL(V) pre-
serving a non-degenerate odd symmetric form on V. Using these results, for an
associative, commutative and finitely generated C-algebra A, we show that the only
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Generalized Casimir operators for loop Lie superalgebras 3

p(n)-invariants of U(p(n) ⊗ A) are the elements of C. We note that from the work
of M. Gorelik it can also be derived that the centre of p(n) is trivial (see [7]).

We briefly describe the contents of each sections. In Section 2, we give prelim-
inaries of queer Lie superalgebra and recall the Schur–Weyl–Sergeev duality for
q(n). In Section 3, we define loop superalgebras and describe a spanning (resp.
algebra generating) set for U(g⊗ A)g starting with a homogeneous basis (resp. a
set of homogeneous algebra generators) of [T(g)]g. In Section 4, we prove the
tensor FFT for the the queer superalgebra. In Section 5, we give a spanning set for
U(q(n) ⊗ A)q(n), define a set of central operators in U(q(n) ⊗ A) and show that
these central operators generate the algebra U(q(n) ⊗ A)q(n). In Section 6, after
recalling the definition of the periplectic Lie superalgebra p(n), we show that the only
p(n)-invariants of U(p(n) ⊗ A) are the constants.

Notation: Throughout this article, we work over the field of complex numbers C.
All modules and algebras are defined over C and in addition all the modules are of
finite dimension. We write Z2 = {0, 1} and use its standard field structure. We put
(−1)0 = 1 and (−1)1 = −1.

2 Preliminaries

2.1 Queer superalgebra

For a positive integer n, we set In∣n ∶= {−1, . . . ,−n, 1, 2, . . . , n}, on which we define the
parity of i ∈ In∣n to be ∣i∣ = 0 if i > 0 and ∣i∣ = 1 if i < 0.

Let V ∶= C
n ⊕C

n be the superspace with standard basis v i of parity i for i ∈ In∣n .
Its endomorphism ring EndC(V) is an associative superalgebra with standard basis
E i j of parity ∣i∣ + ∣ j∣ for i , j ∈ In∣n . It is also a Lie superalgebra under the standard
supercommutator

[x , y] = x y − (−1)∣x ∣∣y∣yx ,

for all homogeneous x , y ∈ EndC(V). It is denoted by gl(n∣n).
The queer superalgebra q(n) can be defined in two ways. The map E i j ↦ E−i ,− j

is an involutive automorphism of gl(n∣n) and we define q(n) to be the fixed point
sub-superalgebra of this automorphism.

Alternatively, we define P ∶ V → V by Pv i = (−1)∣v i ∣v−i and q(n) ∶= { f ∈
EndC(V) ∶ [ f , P] = 0}. It is closed under the superbracket and we call it the queer
superalgebra.

With respect to the ordered basis B ∶= B1 ∪ B0 = {e−1 , . . . e−n , e1 , . . . , en}, the oper-
ator P can be written in matrix form as

P = ( 0 I
−I 0)

and q(n) can be expressed in the matrix form as

q(n) = {(A B
B A) ∶ A, B are arbitrary n × n matrices} .
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4 A. Das and S. Pattanayak

In terms of basis elements of gl(n∣n)we have P = E−n ,n + E−(n−1),n−1 +⋯+ E−1,1 −
E1,−1 −⋯− En ,−n . Note that q(n) as the Lie sub-superalgebra of gl(n∣n) is spanned
by Fi j ∶= E i j + E−i ,− j for i > 0. Note that we have Fi j = F−i ,− j = F− j,−i for all i , j.

The superalgebra gl(n∣n) and hence q(n) acts on V by matrix multiplication and
on the k-fold tensor product V⊗k by

x ⋅ (v1 ⊗ v2 ⊗⋯⊗ vk) =
k
∑
j=1
(−1)(∣v1 ∣+⋯+∣v j−1 ∣)∣v∣v1 ⊗ v2 ⊗⋯⊗ xv j ⊗ v j+1 ⊗⋯⊗ vk ,

(2.1)

where the elements x ∈ q(n) and v i ∈ V are all homogeneous. We then extend to all
of q(n) acting on all of V⊗k by linearity.

2.2 The Sergeev superalgebras

Let Sk be the symmetric group on k letters. It is generated by the transpositions
s1 , . . . , sk−1, where s i = (i , i + 1) for all i.

The Sergeev superalgebra Serk is the associative superalgebra generated by
s1 , . . . , sk−1 and c1 , . . . , ck−1 , ck with the following defining relations:
• s2

i = 1, s i s i+1s i = s i+1s i s i+1 , s i s j = s js i (∣i − j∣ > 1),
• c2

i = −1, c i c j = −c jc i , (i ≠ j)
• s i c i s i = c i+1 , s i c j = c js i , j ≠ i , i + 1.
The generators s1 , . . . , sk−1 are regarded as even and the subalgebra generated by them
is isomorphic to the group algebra C[Sk] of Sk ; the generators c1 , . . . , ck−1 , ck are
called odd and the C-subalgebra generated by them is isomorphic to the Clifford
superalgebra Clk .

The Sergeev superalgebra Serk is isomorphic to the superalgebra C[Sk] ⋉Clk ,
which is C[Sk] ⊗Clk as a superspace with the multiplication given by

(σ ⊗ c i1 . . . c i l )(τ ⊗ c j1 . . . c jm) = σ τ ⊗ cτ−1(i1) . . . cτ−1(i l )c j1 . . . c jm ,

where 1 ≤ is , jt ≤ k.
The superalgebra Serk has as basis the elements which can be written in the form

σ ⊗ cε1
1 . . . cεk

k where σ ∈ Sk and ε i ∈ Z2 for all i.

2.3 Action of the Sergeev algebra and Schur–Weyl–Sergeev duality

The symmetric group Sk acts on the k-fold tensor product V⊗k by

s i ⋅ (v1 ⊗ v2 ⊗⋯⊗ v i ⊗ v i+1 ⊗⋯⊗ vk)= (−1)∣v i ∣∣v i+1 ∣v1 ⊗ v2 ⊗⋯⊗ v i+1 ⊗ v i ⊗⋯⊗ vk ,
(2.2)

where v i ’s are Z2-homogeneous. We then extend the action to V⊗k by linearity.
More generally the action of Sk on V⊗k is defined as follows: for σ ∈ Sk and

homogeneous vvv = v1 ⊗ v2 ⊗⋯⊗ vk , the action of σ on vvv is given by:

σ ⋅ (v1 ⊗ ⋅ ⋅ ⋅ ⊗ vk) = (−1)γ(vvv ,σ−1)(vσ−1(1) ⊗ ⋅ ⋅ ⋅ ⊗ vσ−1(k)),
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where γ(vvv , σ−1) = ∏(i , j)∈Inv(σ) ∣v i ∣∣v j ∣, with Inv(σ) = {(i , j)∶ i < j and σ(i) > σ( j)}.
It can be easily verified that γ(vvv , σ τ) = γ(σ−1vvv , τ) + γ(vvv , σ) for two permutations σ
and τ.

The generators c j acts on V⊗k by

c j ⋅ (v1 ⊗⋯⊗ vk) = (−1)∣v1 ∣+⋯+∣v j−1 ∣v1 ⊗⋯⊗ v j−1 ⊗ P(v j) ⊗ v j+1 ⊗ v j+2 ⊗⋯⊗ vk ,

where v1 , . . . , vk ∈ V are homogeneous elements and we then extend the action to
V⊗k by linearity.

More generally, for ε i ∈ Z2, i = 1, . . . , k, we have

cε1
1 . . . cεk

k ⋅ (v1 ⊗⋯⊗ vk) = (−1)∑i> j ε i ∣v j ∣Pε1 v1 ⊗⋯⊗ Pεk vk .

The actions of Sk and Clk give rise to a left action of the Sergeev superalgebra Serk
on V⊗k . So we get an algebra homomorphism

Ψk ∶ Serk → EndC(V⊗k).

We record that for a basis element σ−1 ⊗ cε1
1 . . . cεk

k ∈ Serk , we have

(σ−1 ⊗ cε1
1 . . . cεk

k ) ⋅ (v1 ⊗ ⋅ ⋅ ⋅ ⊗ vk) = (−1)γ(vvv ,σ)+∑i> j ε i ∣v j ∣Pεσ(1)vσ(1) ⊗ ⋅ ⋅ ⋅ ⊗ Pεσ(k)vσ(k).

Let Endq(n)(V⊗k) be the centralizer algebra of the q(n)-action on V⊗k . That is

Endq(n)(V⊗k) ∶= { f ∈ EndC(V⊗k)∶ x f = f x , for all x ∈ q(n)}.

Let ρ ∶ q(n) → EndC(V⊗k) be the superalgebra homomorphism induced from
the action of q(n) on V⊗k . In [16], Sergeev proved the following double centralizer
theorem along the lines of the Schur–Weyl duality for the queer superalgebra.

Theorem 2.1 Let ρ ∶ q(n) → EndC(V⊗k) and Ψk ∶ Serk → EndC(V⊗k) be the maps
defined as above. Let A be the image of Ψk and let B be the subalgebra of EndC(V⊗k)
spanned by the image of ρ. Then A and B are centralizers of each other.

Remark 2.2 It may be noted that in the statement of the above theorem we consider
the left action of the Sergeev algebra whereas Sergeev considers the action from the
right and uses Sero p

k instead.

3 Loop superalgebras

3.1

Let g be either a simple Lie superalgebra or gl(m∣n), or any Lie superalgebra among
q(n) or p(n). Let A be an associative, commutative and finitely generated C-algebra
with unity. Then g⊗ A has a natural structure of Lie superalgebra:

[x ⊗ a, y ⊗ b] = [x y] ⊗ ab, for x , y ∈ g, a, b ∈ A.

With this the even part of g⊗ A is (g)0 ⊗ A and the odd part is (g)1 ⊗ A. Let
g = n− ⊕ h⊕ n+ be the standard triangular decomposition of g. Then g⊗ A = (n− ⊗
A) ⊕ (h⊗ A) ⊕ (n− ⊗ A) is a triangular decomposition of g⊗ A.

Downloaded from https://www.cambridge.org/core. 11 Feb 2025 at 16:33:13, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


6 A. Das and S. Pattanayak

3.2

Let T(g⊗ A) = ⊕∞k=0 T k(g⊗ A), where T k(g⊗ A) = (g⊗ A)⊗k , be the tensor alge-
bra of g⊗ A and let U(g⊗ A) be the enveloping algebra of g⊗ A. The universal
enveloping algebra of g⊗ A is a quotient of the tensor algebra T(g⊗ A) modulo
the two-sided ideal I generated in T(g⊗ A) by all elements of the form x ⊗ y −
(−1)∣x ∣∣y∣y ⊗ x − [x , y], where x , y ∈ g⊗ A. Note that T(g⊗ A) has a Z2-grading
extending that on g⊗ A. Since the ideal I is homogeneous, U(g⊗ A) is Z2-graded.

We have a natural surjective algebra homomorphism:

π ∶ T(g⊗ A) → U(g⊗ A).

Let

U(g⊗ A)g = {yyy ∈ U(g⊗A)∶ [x , yyy] = 0, for all x ∈ g}
be the subalgebra of g-invariants. Note that it is naturally Z2-graded.

If we take A = C, then U(g⊗ A)g reduces to U(g)g. Using a PBW basis, we see
that if an element of U(g) supercommutes with all elements of g, it supercommutes
with all elements of the PBW basis. So U(g)g is the center of U(g), which we denote
by Z(g).

Let h = h0 + h1 be a Cartan subalgebra of g and g = n− ⊕ h⊕ n+ be a tri-
angular decomposition of g. We note that for basic Lie superalgebras h = h0,
whereas for g = q(n) and p(n), h1 ≠ 0. Let {x1 , x2 , . . . , xm}, {h1 , h2 , . . . , hn},
and {y1 , y2 , . . . , yp} be homogeneous bases for n−, h and n+ respectively. Then
the monomials x r1

1 . . . x rm
m hs1

1 . . . hsn
n yt1

1 . . . yt p
p , where the exponents of the even

elements runs through the set of all positive integers, and the exponents of odd
elements ranges over {0, 1}, form a PBW basis of U(g). The monomials where
r1 = ⋅ ⋅ ⋅ = rm = t1 = ⋅ ⋅ ⋅ = tp = 0 form a basis of U(h), while the set of all remaining
monomials is a basis of (n−U(g) +U(g)n+). This yields a decomposition of U(g) as
U(g) = U(h) ⊕ (n−U(g) +U(g)n+). The Harish Chandra homomorphism HC is
the restriction to the center Z(g) of the projection map π∶U(g) → U(h) with kernel
(n−U(g) +U(g)n+). With the identification of U(h) to the symmetric algebra
S(h), it is well known that for all basic Lie superalgebras and q(n), the image
of the Harish Chandra homomorphism is contained in the commutative algebra
S(h0) (see [3, Sections 2.2 and 2.3]). Since the Harish Chandra homomorphism is
injective, it follows that the center Z(g) = U(g)g comprises only even elements,
hence U(g⊗ A)g also contains only even elements. For an alternative proof of this
fact, we refer to [20, 3.2, Proposition]. It is known that the center of U(p(n)) = C (see
[7]). We give an alternate proof of this fact in Section 6. Therefore, it now follows that
the center of U(g⊗A) contains only even elements for all basic Lie superalgebras,
q(n) and p(n).

3.3

For any θ ∈ [g⊗k]g, θ = ∑i x i
1 ⊗ x i

2 ⊗⋯⊗ x i
k and for any a1 , a2 , . . . , ak ∈ A, we define

θ(a1 , a2 , . . . , ak) = ∑
i
(x i

1 ⊗ a1)(x i
2 ⊗ a2) . . . (x i

k ⊗ ak) ∈ U(g⊗ A).
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The element θ̂(a1 , a2 , . . . , ak) ∶= ∑i(x i
1 ⊗ a1) ⊗ (x i

2 ⊗ a2) ⊗⋯⊗ (x i
k ⊗ ak) ∈

T(g⊗ A) maps to θ(a1 , a2 , . . . , ak) under the surjective map π and since
[x , θ̂(a1 , a2 , . . . , ak)] = 0 for all x ∈ g, we get that [x , θ(a1 , a2 , . . . , ak)] = 0 for all
x ∈ g. Hence, we have

θ(a1 , a2 , . . . , ak) ∈ U(g⊗ A)g .

We then have the following proposition.

Proposition 3.1 Let g be a simple Lie superalgebra or gl(m∣n), or any Lie superalgebra
among q(n) or p(n). Then the subalgebra U(g⊗A)g is spanned by θ(a1 , a2 , . . . , ak),
k ≥ 0 and a i ∈ A for i = 1, 2, . . . , k where θ runs over a homogeneous basis of T(g)g.

Further, the subalgebra U(g⊗A)g is generated as an algebra by θ(a1 , a2 , . . . , ak),
k ≥ 0 and a1 , a2 , . . . , ak ∈ A, where θ runs over a set of homogeneous algebra generators
of T(g)g.

Proof The map

π ∶ T(g⊗A) → U(g⊗A).

is surjective. By using the PBW basis for U(g⊗A), we see that π splits. So we have a
surjective degree preserving algebra homomorphism

T(g⊗A)g → U(g⊗A)g .

Note that T(g⊗A)g is a graded algebra and the grading comes from the grading of
T(g)g. Since g⊗Ca1 ≅ g as g-modules, (g⊗Ca1) ⊗ (g⊗Ca2) ⊗⋯⊗ (g⊗Cak) as a
g-module is isomorphic to g⊗g⊗⋯⊗ g. Then the spanning (resp. algebra generat-
ing) set of T(g)g maps to a spanning (resp. algebra generating) set of U(g⊗A)g. ∎

4 Tensor FFT for Queer Lie superalgebra

In this section after listing out some isomorphisms that we require in this note,
we prove the tensor version of the first fundamental theorem of the queer Lie
superalgebra.

4.1 Isomorphisms

Let V be a super vector space over C.
1. We have V ⊗ V∗ ≅ EndC(V) defined by (v , ϕ) ↦ T(v ,ϕ) where T(v ,ϕ)(w) =

ϕ(w)v for v , w ∈ V .
This implies that EndC(V)⊗k ≅ (V ⊗ V∗)⊗k for k ≥ 1.
2. For two super vector spaces V and W, we have an isomorphism V ⊗W → W ⊗

V defined by v ⊗w ↦ (−1)∣v∣∣w∣w ⊗ v, where v and w are homogeneous elements of V
and W, respectively.

3. Let V and W be two super vector spaces. For simple homogeneous tensors
vvv = v1 ⊗ v2 ⊗ ⋅ ⋅ ⋅ ⊗ vk ∈ V⊗k and www = w1 ⊗w2 ⊗ ⋅ ⋅ ⋅ ⊗wk ∈ W⊗k , we define p(vvv , www) ∶=
∑k−1

j=1 d j(vvv , www) where d j(vvv , www) ∶= ∣w j ∣(∣v j+1∣ + ⋅ ⋅ ⋅ + ∣vk ∣), for 1 ≤ j ≤ k − 1. We extend
this definition by linearity to arbitrary tensors.
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8 A. Das and S. Pattanayak

We have an evaluation map (V∗)⊗k × V⊗k → C defined by:

( f1 ⊗ f2 ⊗⋯⊗ fk , v1 ⊗ v2 ⊗⋯⊗ vk) ↦ (−1)p( fff ,vvv) f1(v1) . . . fk(vk),

where fff = f1 ⊗ f2 ⊗⋯⊗ fk , and vvv = v1 ⊗ v2 ⊗⋯⊗ vk for homogeneous elements f i ∈
V∗ and v i ∈ V . This evaluation map extends to a non-degenerate bilinear form and
hence we get an isomorphism between (V∗)⊗k and (V⊗k)∗.

4. Let τ be the permutation which takes (1, 2, . . . , k, k + 1, . . . , 2k) to (τ(1),
τ(2), . . . , τ(k), τ(k + 1), . . . , τ(2k)) = (1, 3, 5, . . . , 2k − 1, 2, 4, 6, . . . , 2k). By apply-
ing the permutation τ to (V ⊗ V∗)⊗k = (V ⊗ V∗) ⊗ (V ⊗ V∗) ⊗⋯⊗ (V ⊗ V∗) we
get a EndC(V)-module isomorphism between (V ⊗ V∗)⊗k and V⊗k ⊗ (V∗)⊗k . We
then have

EndC(V)⊗k ≅ (V ⊗ V∗)⊗k ≅ V⊗k ⊗ V∗⊗k .

Let vvv = v1 ⊗ v2 ⊗⋯⊗ vk and fff = f1 ⊗ f2 ⊗⋯⊗ fk . Then the map in the reverse
direction is defined by vvv ⊗ fff ↦ (−1)p(vvv , fff )(v1 ⊗ f1) ⊗ (v2 ⊗ f2) ⊗⋯⊗ (vk ⊗ fk).

Remark: All the isomorphisms mentioned above are in particular q(n)-
equivariant.

4.2 Tensor FFT

The tensor version of the first fundamental theorem (FFT) of invariant theory (see
[6]) for q(n) describes a spanning set for (V⊗k ⊗ V∗⊗k)q(n) which can be derived
from the Shur–Weyl–Sergeev duality described above.

For n ≥ 1, let V = C
n ⊕C

n . Then EndC(V) = gl(n∣n). We take the standard basis
of V as {e−1 , . . . , e−n , e1 , . . . , en} and we denote the index set for this basis by B. Put
∣i∣ = 0 if i > 0 and 1 otherwise. The Z2-gradation of V is defined by setting ∣e i ∣ = ∣i∣.
The standard basis of EndC(V) consists of the matrix units E i j where E i j ek = δ jk e i .
Note that EndC(V) is also Z2-graded by ∣E i j ∣ = ∣i∣ + ∣ j∣.

To every basis element of the Sergeev algebra Serk , we wish to associate an
element of V⊗k ⊗ V∗⊗k . In order to avoid cumbersome notations, we let ccc denote
the element cε1

1 . . . cεk
k . Let {i1 , . . . , ik} be a multi-subset of B of cardinality k. The

basis element of V⊗k which corresponds to I is eIeIeI ∶= e i1 ⊗ ⋅ ⋅ ⋅ ⊗ e ik . We simply write
γ(I, σ) for γ(eIeIeI , σ). For any two length-k multi-subsets of indices I = {i1 , . . . , ik} and
J = { j1 , . . . , jk} of B, we define p(I, J) ∶= p(eIeIeI , eJeJeJ).

Now we assign the element σ−1 ⊗ ccc ∈ Serk to the following element:

ξ(k)
σ−1 ,ccc = ∑

I
ς(ccc, I, σ)(Pεσ(1) e iσ(1) ⊗ ⋅ ⋅ ⋅ ⊗ Pεσ(k) eσ(ik)) ⊗ (e∗i1

⊗ ⋅ ⋅ ⋅ ⊗ e∗ik
),(4.1)

where I = {i1 , . . . , ik} runs over all multi-subsets of B of cardinality k and

ς(ccc, I, σ) = (−1)γ(I ,σ)+∑s>t εs ∣e i t ∣+p(I ,I) .

With the notations just introduced, the first fundamental theorem for q(n) is stated
below.
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Theorem 4.1 For all σ ∈ Sk , ccc ∈ Clk , we have that ξ(k)
σ−1 ,ccc ∈ (V⊗k ⊗ V∗⊗k)q(n), and

the space (V⊗k ⊗ V∗⊗k)q(n) is spanned by the set {ξ(k)
σ−1 ,ccc ∶ ccc ∈ Clk , σ ∈ Sk}.

Proof By the isomorphisms (1) and (3) in the previous subsection, we have an
isomorphism Θ∶V⊗k ⊗ V∗⊗k → EndC(V⊗k).

Since the tensor product action of q(n) on V ⊗ V∗ corresponds to the adjoint
action on q(n), Θ induces an isomorphism Θ̃ to the subspace q(n)-invariants:

Θ̃∶ (V⊗k ⊗ V∗⊗k)q(n) → EndC(V⊗k)q(n) = Endq(n)(V⊗k).(4.2)

By Schur–Weyl–Sergeev duality (Theorem 2.1), we have Ψk(Serk) = Endq(n)(V⊗k).
We claim that Θ maps ξ(k)

σ−1 ,ccc to Ψk(σ−1 ⊗ ccc). To show this, we take J = { j1 , j2 , . . . , jk}
and then we have

Θ(ξ(k)
σ−1 ,ccc)(e j1 ⊗ ⋅ ⋅ ⋅ ⊗ e jk) = ∑

I
ς(ccc, I, σ)(Pεσ(1) e iσ(1) ⊗ ⋅ ⋅ ⋅ ⊗ Pεσ(k) e iσ(k))

⊗(e∗i1
⊗ ⋅ ⋅ ⋅ ⊗ e∗ik

)(e j1 ⊗ ⋅ ⋅ ⋅ ⊗ e jk)
= ∑

I
(−1)p(I , J)ς(ccc, I, σ)[e∗i1

(e j1) . . . e∗ik
(e jk)]

= (−1)γ(J ,σ)+∑s>t εs ∣e j t ∣(Pεσ(1) e jσ(1) ⊗ ⋅ ⋅ ⋅ ⊗ Pεσ(k) e jσ(k))
= Ψk(σ−1 ⊗ ccc).

Since the isomorphism Θ is q(n)-equivariant, for all x ∈ q(n), it follows that

Θ(x ⋅ ξ(k)
σ−1 ,ccc) = x ⋅Θ(ξ(k)

σ−1 ,ccc) = [x , Ψk(σ−1 ⊗ ccc)] = 0.

The last equality is valid as Ψk(σ−1 ⊗ ccc) ∈ Endq(n)(V⊗k). Since Θ is injective, we
conclude that ξ(k)

σ−1 ,ccc ∈ (V⊗k ⊗ V∗⊗k)q(n), for all σ ∈ Sk , ccc ∈ Clk . Since Θ̃ is an isomor-
phism and the elements σ−1 ⊗ ccc span the Sergeev superalgebra Serk , it follows that the
set {ξ(k)

σ−1 ,ccc ∶ ccc ∈ Clk , σ ∈ Sk} spans (V⊗k ⊗ V∗⊗k)q(n). ∎

5 The q(n) invariants of the universal enveloping algebra

Let V be the vector superspace Cn ⊕C
n . Then EndC(V) = gl(n∣n). We have a q(n)-

equivariant epimorphism ϕ∶gl(n∣n) → q(n) given by E i , j ↦ Fi , j . As EndC(V) ≅ V ⊗
V∗ (E i , j identifies to e i ⊗ e∗j ), ϕ induces a surjective map (also denoted by ϕ) (V ⊗
V∗)⊗k → q(n)⊗k .

Let A be an associative, commutative, and finitely generated C-algebra with unity.
For k ∈ N and a1 , a2 , . . . , ak ∈ A, we define

C(k)
n (a1 , . . . , ak)
∶= ∑

I
(−1)∣i2 ∣+⋅⋅⋅+∣ik ∣(Fi1 , i2 ⊗ a1)(Fi1 , i2 ⊗ a1) . . . (Fik−1 , ik ⊗ ak−1)(Fik , i1 ⊗ ak),

where the sum is over all the multi-subsets I = {i1 , i2 , . . . , ik} of B of cardinality k.
Note that C(k)

n (a1 , . . . , ak) ∈ U(q(n) ⊗ A).
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10 A. Das and S. Pattanayak

It is easy to see that [x , C(k)
n (a1 , . . . , ak)] = 0 for all x ∈ q(n) and a1 , a2 , . . . , ak ∈ A

and so C(k)
n (a1 , . . . , ak) ∈ U(q(n) ⊗ A)q(n). These central operators generalize the

classical Gelfand invariants for the general linear Lie algebra. We call them the
“generalized casimir operators” for q(n). In fact, as in the classical case, in this
section we show that these central operators generate U(q(n) ⊗ A)q(n) as an algebra.
We proceed to describe a spanning set of U(q(n))q(n). First we introduce few
notations.
• For a k-length multi-subset I = (i1 , . . . , ik) of B, we put JI = (i2 , i3 , . . . , ik , i1).
• For σ ∈ Sk and ccc ∈ Clk , we set

JI
σ⊗ccc = ((−1)εσ(k) iσ(k) , (−1)εσ(1) iσ(1), . . . , (−1)εσ(k−1) iσ(k−1)).

• Set ν(ccc, I, σ) ∶= ς(ccc, I, σ)(−1)p(JI
σ⊗ccc , JI)+∑ ε t ∣e it ∣, where ς(ccc, I, σ) is defined in Equa-

tion (4.1).
• Let ζ(k)

σ−1 ,ccc denote the following element in U(q(n)):

ζ(k)
σ−1 ,ccc ∶= ∑

I
ν(ccc, I, σ)F(−1)εσ(k) iσ(k) , i2

F(−1)εσ(1) iσ(1) , i3

. . .F(−1)εσ(k−2) iσ(k−2) , ik
F(−1)εσ(k−1) iσ(k−1) , i1

,
(5.1)

where the sum is over all the multi-subsets I = {i1 , i2 , . . . , ik} of B of cardinality k.

Theorem 5.1 The space U(q(n))q(n) is spanned by the set described below:

⋃
k≥0
{ζ(k)

σ−1 ,ccc ∶ ccc ∈ Clk , σ ∈ Sk}.

Proof We have a canonical projection map T(q(n)) → U(q(n)) which respects
the gradings of both the algebras. Since the grading of T(q(n))q(n) is induced from
that of T(q(n)), we obtain a degree preserving algebra epimorphism T(q(n))q(n) →
U(q(n))q(n). We claim that the kth-graded component of T(q(n))q(n), i.e.,
(q(n)⊗k)q(n) is spanned by the set {η(k)

σ−1 ,ccc ∶ ccc ∈ Clk , σ ∈ Sk} with

η(k)
σ−1 ,ccc = ∑

I
ν(ccc, I, σ)F(−1)εσ(k) iσ(k) , i2

⊗ F(−1)εσ(1) iσ(1) , i3

⊗⋯⊗ F(−1)εσ(k−2) iσ(k−2) , ik
⊗ F(−1)εσ(k−1) iσ(k−1) , i1

.

To prove the claim we note that by Theorem 4.1, the space (V⊗k ⊗ V∗⊗k)q(n) is
spanned by the set {ξ(k)

σ−1 ,ccc ∶ ccc ∈ Clk , σ ∈ Sk}, where

ξ(k)
σ−1 ,ccc = ∑

I
ς(ccc, I, σ)(Pεσ(1) e iσ(1) ⊗ ⋅ ⋅ ⋅ ⊗ Pεσ(k) eσ(ik)) ⊗ (e∗i1

⊗ ⋅ ⋅ ⋅ ⊗ e∗ik
),

and the sum is over all the multi-subsets I = {i1 , i2 , . . . , ik} of B of cardinality k. Let
τ ∈ S2k be the permutation defined by:

(τ(1), τ(2), . . . , τ(k), τ(k + 1), τ(k + 2), . . . , τ(2k))
= (3, 5, . . . , 2k − 1, 1, 2k, 2 . . . , 2k − 2).
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By applying τ to (V ⊗ V∗)⊗k = (V ⊗ V∗) ⊗ (V ⊗ V∗) ⊗ ⋅ ⋅ ⋅ ⊗ (V ⊗ V∗), we get
a q(n)-module isomorphism between (V ⊗ V∗)⊗k and V⊗k ⊗ V∗⊗k . So we get
((V ⊗ V∗)⊗k)q(n) ≅ (V⊗k ⊗ V∗⊗k)q(n). Under this isomorphism the element
ξ(k)

σ−1 ,ccc ∈ (V⊗k ⊗ V∗⊗k)q(n) maps to θ(k)
σ−1 ,ccc in (EndC(V)⊗k)q(n), where

θ(k)
σ−1 ,ccc = ∑

I
ς(ccc, I, σ)(−1)p(JI

σ⊗ccc , JI)(Pεσ(k) e iσ(k) ⊗ e∗i2
) ⊗ (Pεσ(1) e iσ(1) ⊗ e∗i3

)

⊗⋯⊗ (Pεσ(k−1) eσ(ik−1) ⊗ e∗i1
).

Using the fact that Pε e i = (−1)ε∣e i ∣e−i for each i and the identification E i , j = e i ⊗ e∗j ,
we get that

θ(k)
σ−1 ,ccc = ∑

I
ν(ccc, I, σ)E(−1)εσ(k) iσ(k) , i2

⊗ E(−1)εσ(1) iσ(1) , i3

⊗⋯⊗ E(−1)εσ(k−2) iσ(k−2) , ik
⊗ E(−1)εσ(k−1) iσ(k−1) , i1

.

(5.2)

Under ϕ the image of θ(k)
σ−1 ,ccc in (q(n)⊗k)q(n) is the following element:

η(k)
σ−1 ,ccc = ∑

I
ν(ccc, I, σ)F(−1)εσ(k) iσ(k) , i2

⊗ F(−1)εσ(1) iσ(1) , i3

⊗⋯⊗ F(−1)εσ(k−2) iσ(k−2) , ik
⊗ F(−1)εσ(k−1) iσ(k−1) , i1

.

(5.3)

Since ϕ surjective, we get that {η(k)
σ−1 ,ccc ∶ ccc ∈ Clk , σ ∈ Sk} spans (q(n)⊗k)q(n). This

means that the images of these elements under the canonical map T(q(n))q(n) →
U(q(n))q(n) span the kth-graded component of U(q(n))q(n). By definition, the
image of η(k)

σ−1 ,ccc is the element ζ(k)
σ−1 ,ccc . Consequently, the result follows. ∎

Let A be a finitely generated associative commutative C-algebra with identity. For
a1 , . . . , ak ∈ A, we define:

ζ(k)
σ−1 ,ccc(a1 , . . . , ak) ∶= ∑

I∶∣I∣=k
ν(ccc, I, σ)(F(−1)εσ(k) iσ(k) , i2

⊗ a1)(F(−1)εσ(1) iσ(1) , i3
⊗ a2)

(5.4)

. . . (F(−1)εσ(k−2) iσ(k−2) , ik
⊗ ak−1)(F(−1)εσ(k−1) iσ(k−1) , i1

⊗ ak),

where the sum is over all the multi-subsets I = {i1 , i2 , . . . , ik} of B of cardinality k.
With this notation, we have the following corollary.

Corollary 5.2 Let A be a finitely generated associative commutative C-algebra with
identity, and aaa ∶= (a1 , . . . , ak) be an arbitrary k-tuple. Then U(q(n) ⊗ A)q(n) is
spanned by the following set:

⋃
k≥0

⋃
aaa∈A

{ζ(k)
σ−1 ,ccc(a1 , . . . , ak)∶ ccc ∈ Clk , σ ∈ Sk}.
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12 A. Das and S. Pattanayak

Proof By the above Theorem, we see that U(q(n))q(n) is spanned by the set
described in formula (5.1). Therefore, it follows from Proposition 3.1 that U(q(n) ⊗
A)q(n) is spanned by the elements given above. ∎

5.1 Center of q(n)

In this subsection, we describe a set of algebra generators of Z(q(n)) = U(q(n))q(n).
In what follows we denote the k-cycle (12 . . . k) by σk and ∣e i ∣ by just ∣i∣.

Theorem 5.3 The centre Z(q(n)) is generated as an algebra by the following elements:

C(k)
n ∶= ∑

I
(−1)∣i2 ∣+⋅⋅⋅+∣ik ∣Fi1 , i2 Fi1 , i2 . . . Fik−1 , ik Fik , i1 ,

where k runs over the set of all odd positive integers and I over all multi-subsets of B of
cardinality k.

Proof Choose an arbitrary basis element ccc = cε1
1 . . . cεk

k of Clk . Then formula (5.3)
shows that the invariant associated with σ−1

k ⊗ ccc in (q(n)⊗k)q(n) is given by

η(k)
σ−1

k ,ccc = ∑
I

ν(ccc, I, σk)F(−1)ε1 i1 , i2 ⊗ ⋅ ⋅ ⋅ ⊗ F(−1)εk ik , i1(5.5)

We begin by calculating explicitly the element in Equation (5.6). In this case, the sign
ν(ccc, I, σk) is given by

ν(ccc, I, σk) = (−1)γ(I ,σk)+p(I ,I)+p(Jσ⊗ccc
I , JI)+∑t ε t ∣e i t ∣+∑s>t εs ∣e i t ∣ .(5.6)

Since Inv(σk) = {(1, k), (2, k), . . . , (k − 1, k)}, it follows that γ(I, σk) = ∣i1∣(∣i2∣ +
⋯∣ik ∣).

By definition

p(I, I) = ∣i1∣(∣i2∣ + ⋯∣ik ∣) + ∣i2∣(∣i3∣ + ⋯∣ik ∣) + ⋯ + ∣ik−1∣∣ik ∣.
We also have

∑
s>t

εs ∣e i t ∣ +∑
t

εt ∣e i t ∣ = ∣i1∣(ε1 + ⋅ ⋅ ⋅ + εk) + ∣i2∣(ε2 + ⋅ ⋅ ⋅ + εk) + ⋅ ⋅ ⋅ + ∣ik ∣εk .

Recall that JI
σ⊗ccc = ((−1)εσ(k) iσ(k), (−1)εσ(1) iσ(1) , . . . , (−1)εσ(k−1) iσ(k−1)) for σ ∈ Sk

where JI = (i2 , . . . , ik , i1). So for σ = σk , we get that

p(JI
σk⊗ccc , JI) = ∣i2∣(∣(−1)ε2 i2∣ + ⋅ ⋅ ⋅ + ∣(−1)εk ik ∣) + ∣i3∣(∣(−1)ε3 i3∣ + ⋅ ⋅ ⋅ + ∣(−1)εk ik ∣)

+ ⋅ ⋅ ⋅ + ∣ik ∣∣(−1)εk ik ∣.
Since ∣(−1)ε i∣ = ε + ∣i∣ and ∣i∣2 = ∣i∣, we get that

p(JI
σk⊗ccc , JI)= (∣i2∣ + ∣i3∣ + ⋯ + ∣ik ∣) + ∣i2∣(ε2 + ⋅ ⋅ ⋅ + εk) + ⋅ ⋅ ⋅ +∣ik−1∣(εk−1 + εk)+ ∣ik ∣εk

(5.7)

+ p(I, I) − γ(I, σk).

= (∣i2∣ + ∣i3∣ + ⋯ + ∣ik ∣) +∑
s>t

εs ∣e i t ∣ +∑
t

εt ∣e i t ∣ − (ε1 + ⋅ ⋅ ⋅ + εk)∣i1∣ + p(I, I) − γ(I, σk).

So ν(ccc, I, σk) = (−1)(ε1+⋅⋅⋅+εk)∣i1 ∣+(∣i2 ∣+⋅⋅⋅+∣ik ∣) .
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In particular, if ccc = ct1 . . . ctm with 0 ≠ t1 > ⋅ ⋅ ⋅ > tm , then ν(ccc, I, σk) =
(−1)m∣i1 ∣+∣i2 ∣+⋅⋅⋅+∣ik ∣. Using this information we can rewrite Equation (5.5) correspond-
ing to σ = σk , and ccc = ct1 . . . ctm as

∑
I
(−1)m∣i1 ∣+∣i2 ∣+⋅⋅⋅+∣ik ∣Fi1 , i2 ⊗⋯⊗ Fi t1−1 , i t1

⊗ F−i t1 , i t1+1
(5.5a)

⊗ ⋅ ⋅ ⋅ ⊗ Fi tm−1 , i tm
⊗ F−i tm , i tm+1

⊗ ⋅ ⋅ ⋅ ⊗ Fik , i1 .

In the sum (5.5a) we first replace it1 by −it1 , and then using the relation Fi , j = F−i ,− j ,
we replace the factor Fi t1−1 , i t1

⊗ F−i t1 , i t1+1
in (5.5a) by F−i t1−1 , i t1

⊗ Fi t1 , i t1+1
. Since for any

1 ≤ q ≤ k, we have (−1)∣iq ∣ = −(−1)∣−iq ∣, this replacement will have the sole effect of
multiplication by −1. Performing the same operation inductively on it1−1 and then up
to on i2, we can bring the negative sign to i1 while keeping the signs of all intermediate
subscripts between i2 and it1 positive. This implies that the sum (5.5a) is same as

(−1)t1−1 ∑
I
(−1)m∣i1 ∣+∣i2 ∣+⋅⋅⋅+∣ik ∣F−i1 , i2 ⊗⋯⊗ Fi t1−1 , i t1

⊗ Fi t1 , i t1+1

(5.5b)

⊗ ⋅ ⋅ ⋅ ⊗ Fi tm−1 , i tm
⊗ F−i tm , i tm+1

⊗ ⋅ ⋅ ⋅ ⊗ Fik , i1 .

Now, we repeat the same procedure in the sum (5.5b) with it2 and then inductively up
to itm to obtain that the sum (5.5a) is same as:

(−1)t1+⋅⋅⋅+tm−m ∑
I
(−1)m∣i1 ∣+∣i2 ∣+⋅⋅⋅+∣ik ∣F(−1)m i1 , i2 ⊗ Fi2 , i3 ⊗ ⋅ ⋅ ⋅ ⊗ Fik , i1 .(5.5c)

We denote by f the sum in (5.5c) without the sign (−1)t1+⋅⋅⋅+tm−m . When m is an even
integer, we have f = C(k)

n . If m is odd we show that f = 0.
When m is odd, we have

f = ∑
I
(−1)∣i1 ∣+∣i2 ∣+⋅⋅⋅+∣ik ∣F−i1 , i2 ⊗ Fi2 , i3 ⊗ ⋅ ⋅ ⋅ ⊗ Fik , i1 .

By changing the signs of all the subscripts and using Fi , j = F−i ,− j , we get that
f = (−1)k f . Therefore, f = 0 when k is odd. We have the following identity:

∣F−i1 , i2 ∣ = ∣ − i1∣ + ∣i2∣ = 1 + ∣i1∣ + ∣i2∣ = ∣Fi2 , i3 ⊗ ⋅ ⋅ ⋅ ⊗ Fik , i1 ∣ + 1.

So, f can also be written as

f = ∑
I
(−1)∣i1 ∣+∣i2 ∣+⋅⋅⋅+∣ik ∣Fi2 , i3 ⊗ ⋅ ⋅ ⋅ ⊗ Fik , i1 ⊗ F−i1 , i2 .

Now we replace i2 , . . . , ik by their negatives to obtain f = (−1)k−1 f . This implies that
f = 0 when k is even too.

To sum up, we have obtained that for any positive integer k, the element in (5.5)
corresponding to (σ−1

k ⊗ ct1 . . . ctm) is 0 when m is odd; and when m is even, it equals
either C(k)

n or −C(k)
n . Therefore, for each k ≥ 1, we associate to it the element C(k)

n .
Since the symmetric group Sk is generated by the cycles (12) = σ2, and (12 . . . k) =

σk , it follows that any element of ∪k≥1Sk can be written as a product of various σk ’s
where k ∈ N. The multiplication for the Sergeev algebra enables us to write (σ1σ2 ⊗

Downloaded from https://www.cambridge.org/core. 11 Feb 2025 at 16:33:13, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


14 A. Das and S. Pattanayak

ccc) = (σ1 ⊗ 1) ⋅ (σ2 ⊗ ccc), for any σ1 , σ2 ∈ Sk . As Ψk is an algebra homomorphism, we get
that η(k)

σ ,ccc = η(k)
σ1 ,111η

(k)
σ2 ,ccc . From here we conclude that the elements {Ck

n ∶ k ∈ N} generate
Z(q(n)) as an algebra. ∎

Corollary 5.4 Let A be a finitely generated associative commutative C-algebra with
identity. Then U(q(n) ⊗ A)q(n) is generated as an algebra by the following elements:

C(k)
n (a1 , . . . , ak) = ∑

I∶∣I∣=k
(−1)∣i2 ∣+⋅⋅⋅+∣ik ∣(Fi1 , i2 ⊗ a1) ⊗ ⋅ ⋅ ⋅ ⊗ (Fik , i1 ⊗ ak),

where k runs over the set of all odd positive integers, a1 , . . . , ak ∈ A are arbitrary, and I
runs over all multi-subsets of B of cardinality k.

Proof Follows directly from Proposition 3.1. ∎

Remark: Let V(λ1), . . . , V(λm) be finite-dimensional irreducible modules for
q(n). Let A = C[t, t−1] be the algebra of Laurent polynomials in one variable,
and d1 , . . . , dm be m distinct nonzero complex numbers. We denote the m-tuples
(λ1 , . . . , λm), and (d1 , . . . , dm), respectively by λλλ and ddd. Then V(λλλ, ddd) ∶= V(λ1) ⊗
⋅ ⋅ ⋅ ⊗ V(λm) is a q(n) ⊗ A-module, where the action is defined by

(x ⊗ f (t)) ⋅ (v1 ⊗ ⋅ ⋅ ⋅ ⊗ vm) = f (d1)(x ⋅ v1 ⊗ ⋅ ⋅ ⋅ ⊗ vm) + (−1)∣x ∣∣v1 ∣ f (d2)(v1 ⊗ x ⋅ v2 ⊗ ⋅ ⋅ ⋅ ⊗ vm)

+ ⋅ ⋅ ⋅ + (−1)∣x ∣(∣v1 ∣+⋅⋅⋅+∣vm−1 ∣ f (dm)(v1 ⊗ ⋅ ⋅ ⋅ ⊗ x ⋅ vm) for x ⊗ f (t) ∈ q(n) ⊗ A and v i ∈ V(λ i).

Then V(λλλ, ddd) with the above action is called an evaluation module. A proof
similar to the proof given in [14, Section IV, Part C] shows that the q(n) ⊗ A-
module V(λλλ, ddd) is irreducible. Moreover, if V(λλλ, ddd) = ⊕μ∈h∗ V(λλλ, ddd)μ is the weight
space decomposition, where V(λλλ, ddd)μ = {v ∈ V(λλλ, ddd)∶ h ⋅ v = μ(h)v , ∀ h ∈ h}, then
we have that

C(k)
n (p i1(t), . . . , p ik(t)) ⋅ V(λλλ, ddd)+μ ⊆ V(λλλ, ddd)+μ ,

where V(λλλ, ddd)+μ = {v ∈ V(λλλ, ddd)μ ∶ q(n)+v = 0}, q(n)+ is the sum of all root spaces,
p i is the Lagrange’s polynomial defined by p i(t) = ∏k≠i(t − dk)/(d i − dk), for
1 ≤ i ≤ m, i1 , . . . , ik ∈ {1, . . . , m}, and C(k)

n (p1 , . . . , pk) = ∑I(−1)∣i2 ∣+⋅⋅⋅+∣ik ∣Fi1 , i2(p1) ⊗
⋅ ⋅ ⋅ ⊗ Fik , i1(pk), with Fp,q(p i) = Fp,q ⊗ p i . This means that the central operators
C(k)

n (p i1(t), . . . , p ik(t)) send a highest weight vector to another highest weight
vector. This is an effective method of producing new highest weight vectors from a
given one. For details, we refer to [14, Section IV, Part D].

6 Invariants of the periplectic Lie superalgebra

6.1 Periplectic Lie superalgebra

The periplectic Lie superalgebra is the Lie superalgebra preserving an odd non-
degenerate symmetric or skew-symmetric bilinear form. It is thus a superanalog of
the orthogonal or symplectic Lie algebra.
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For n ∈ N, let V = C
n ⊕C

n equipped with a non-degenerate odd symmetric
bilinear form

β ∶ V ⊗ V → C, β(v , w) = β(w , v) and β(v , w) = 0 for ∣v∣ = ∣w∣.

Then p(V) is the Lie sub-superalgebra of EndC(V) preserving β, i.e., satisfying

β(Xv , w) + (−1)∣X∣∣v∣β(v , Xw) = 0.

It can also be defined as the fixed point Lie sub-superalgebra of the involution
σ ∶ gl(n∣n) → gl(n∣n) by E i , j ↦ −(−1)∣i∣∣ j∣+∣i∣En+ j,n+i .

We note that p(V) acts on V by matrix multiplication and on the r-fold tensor
product V⊗r by the rule given in Equation (2.1).

Since the bilinear form is nondegenerate on V, we can choose bases v1 , v2 , . . . , vn
for V0 and vn+1 , vn+2 , . . . , v2n for V1 such that β(vn+i , v j) = β(v j , vn+i) = δ i j and
β(v i , v j) = β(vn+i , vn+ j) = 0 for i , j = 1, 2, . . . , n. The basis elements v i and vn+i are
dual to each other with respect to the bilinear form. This form enables us to identify
V and V∗. An element f ∈ V∗ is identified with v f ∈ V such that f (u) = β(u, v f ) for
every u ∈ V . The matrix of β with respect to this basis is

( 0 In
In 0 )

We use the notation v∗i+n ∶= v i and v∗i ∶= v i+n .
With respect to the above basis an element X ∈ p(V) can be represented in matrix

form as

X = (A B
C −AT) ,

where A, B, C are n × n matrices such that B = BT and C = −CT . We identify
p(V) with the space p(n) of matrices in the above form. The elements E i , j −
E j+n , i+n , E i , j+n + E j, i+n , E i+n , j − E j+n , i , for 1 ≤ i , j ≤ n form a basis for p(n).

There is a grading p(n) = p(n)−1 ⊕ p(n)0 ⊕ p(n)1, where p(n)0 ≅ gln , p(n)−1 ≅
∧2((Cn)∗) and p(n)1 ≅ Sym2(Cn) as p(n)0-modules. It is well known that the
derived superalgebra sp(n) = p(n) ∩ sl(n, n) = [p(n), p(n)] is simple for n ≥ 3. We
have p(n) = CI′ ⊕ sp(n), where I′ = ( In 0

0 −In
).

6.2

We note that the following element

c =
2n
∑
i=1
(−1)∣i∣v i ⊗ v∗i ,

where v∗i = v i+n for 1 ≤ i ≤ n, and v∗i = v i−n when n < i ≤ 2n, is p(V)-invariant [9].
Then we have that

c⊗k = ∑
I
(−1)∣i1 ∣+∣i3 ∣+⋅⋅⋅+∣i2k−1 ∣(v i1 ⊗ v i2) ⊗ (v i3 ⊗ v i4) ⊗ ⋅ ⋅ ⋅ ⊗ (v i2k−1 ⊗ v i2k),(6.1)
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where the sum runs over all 2k-multi-subsets I = (i1 , i2 , . . . , i2k) of the index set
{1, 2, . . . , 2n} with the property that ∣i1 − i2∣ = ∣i3 − i4∣ = ⋅ ⋅ ⋅ = ∣i2k−1 − i2k ∣ = n. As
the action of p(V) on V⊗2k commutes with the action of S2k , all the 2k-tensors
θσ ∶= σ ○ c⊗k are also p(V) invariants for every σ ∈ S2k . We have that

θσ−1 = ∑
I
(−1)γ(I ,σ)+(∣i1 ∣+∣i3 ∣+⋅⋅⋅+∣i2k−1 ∣)(v iσ(1) ⊗ v iσ(2)) ⊗ (v iσ(3) ⊗ v iσ(4))

⊗ ⋅ ⋅ ⋅ ⊗ (v iσ(2k−1) ⊗ v iσ(2k)),

where I is as described above, and γ(I, σ) is the sign resulting from the action of σ−1

on vI = v i1 ⊗ ⋅ ⋅ ⋅ ⊗ v i2k . It is known that the space (V⊗2k)p(V) is spanned by the set
{θσ ∶ σ ∈ S2k} (see [4],[19]).

We have a p(V)-module isomorphism ϕ1∶V ⊗ V ≅ gl(V) which sends v i ⊗ v i+n
to (−1)∣i∣E i , i and v i+n ⊗ v i to (−1)∣i+n∣E i+n , i+n for 1 ≤ i ≤ n. There is a surjective
homomorphism ϕ2∶gl(V) → p(V), that sends a basis vector E i , j of gl(V) to a certain
basis vector of p(V) by the following rule:

ϕ2(E i , j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

E i , j − E j+n , i+n for 1 ≤ i , j ≤ n
E i , j − E j−n , i−n for n < i , j ≤ 2n
E i , j + E j−n , i+n for 1 ≤ i ≤ n and n < j ≤ 2n
E i , j − E j+n , i−n for n < i ≤ 2n and 1 ≤ j ≤ n.

(6.2)

We denote the composition ϕ2 ○ ϕ1∶V ⊗ V → p(V) by ϕ. Then,

ϕ(v i ⊗ v j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(−1)∣i∣E i , j+n + E j, i+n for 1 ≤ i , j ≤ n
(−1)∣i∣E i , j−n − E j, i−n for n < i , j ≤ 2n
(−1)∣i∣E i , j−n − E j, i+n for 1 ≤ i ≤ n and n < j ≤ 2n
(−1)∣i∣E i , j+n − E j, i−n for n < i ≤ 2n and 1 ≤ j ≤ n.

(6.3)

The map ϕ induces an epimorphism ϕ⊗k ∶ (V ⊗ V)⊗k = V⊗2k → p(V)⊗k defined by

ϕ⊗k((v1 ⊗ v2) ⊗ ⋅ ⋅ ⋅ ⊗ (v2k−1 ⊗ v2k)) = ϕ(v1 ⊗ v2) ⊗ ⋅ ⋅ ⋅ ⊗ ϕ(v2k−1 ⊗ v2k) ,

which further induces a surjective map η on the p(V)-invariants:

η∶ (V⊗2k)p(V) → (p(V)⊗k)p(V).

We now calculate the image of the element c ∈ V ⊗ V under ϕ. Using formula (6.3),
we find that

ϕ(c) = ϕ(
n
∑
i=1
(−1)∣i∣v i ⊗ v i+n) + ϕ(

n
∑
j=1
(−1)∣ j+n∣v j+n ⊗ v j)

=
n
∑
i=1
(E i , i − En+i ,n+i) +

n
∑
j=1
(En+ j,n+ j − E j, j) = 0.

Therefore, η(c⊗k) = ϕ⊗k(c⊗k) = 0. Since the action of p(V) is compatible with the
action of the symmetric group S2k on V⊗2k we conclude that η(θσ−1) = 0 for every
σ ∈ S2k . This means (p(V)⊗k)p(V) = 0, for every positive integer k, and consequently,
T(p(V))p(V) = C. Thus by Proposition 3.1, we obtain the following.
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Proposition 6.1 Let A be an associative commutative finitely generatedC-algebra with
identity. Then U(p(V) ⊗ A)p(V) = C. In particular, for A = C, we get that the center of
U(p(V)) consists only of scalars.
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