Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-02-11T13:25:40.898Z Has data issue: false hasContentIssue false

Piecewise deterministic processes following two alternating patterns

Published online by Cambridge University Press:  11 December 2019

Nikita Ratanov*
Affiliation:
Universidad del Rosario
Antonio Di Crescenzo*
Affiliation:
Università di Salerno
Barbara Martinucci*
Affiliation:
Università di Salerno
*
* Postal address: Facultad de Economía, Universidad del Rosario, Calle 12c, No. 4-69, Bogotá, D. C. Cundinamarca, Colombia.
*** Postal address: Dipartimento di Matematica, Università di Salerno, 84084 Fisciano (SA), Italia.
*** Postal address: Dipartimento di Matematica, Università di Salerno, 84084 Fisciano (SA), Italia.
Rights & Permissions [Opens in a new window]

Abstract

We propose a wide generalization of known results related to the telegraph process. Functionals of the simple telegraph process on a straight line and their generalizations on an arbitrary state space are studied.

Type
Research Papers
Copyright
© Applied Probability Trust 2019 

1. Motivation and problem settings

The aim of this paper is to study some examples of a continuous-time stochastic process with deterministic behaviour between random switching times, the so-called piecewise deterministic process with continuous paths.

Let $${({{\cal F}_t})_{t \ge 0}}$$ be a filtration and let ${{\varepsilon}} = ({{\varepsilon}}(t))_{t\geq0}$ be an arbitrary measurable and adapted process defined on $(\Omega , \mathcal F, \mathcal F_t , {{\mathrm P}})$ with values in a finite space $\{1,\ldots, N\}$ . Let $\phi_1,\ldots,\phi_N$ be N deterministic flows in a phase space $(G, \mathcal G)$ , where we assume that G is a topological space and $\mathcal G$ is the Borel $\sigma$ -algebra. Let $\{\tau_n\}_{n\geq1}$ be the sequence of switching times of ${{\varepsilon}}$ . The piecewise deterministic process ${{\mathbb X}}$ is defined as

\begin{equation*} {{\mathbb X}}(t)=\phi_{{{\varepsilon}}(\tau_n)}(t),\qquad \tau_n\leq t<\tau_{n+1}. \end{equation*}

The family of piecewise deterministic processes was introduced in [Reference Davis4], and a subclass of piecewise linear processes was first studied in [Reference Gnedenko and Kovalenko10]. This important class of random processes was then thoroughly studied in [Reference Davis5]; see [Reference Jacobsen11] for a modern presentation. Piecewise deterministic processes are intensively exploited in biology [Reference Lasota, Mackey and Tyrcha18], insurance [Reference Embrechts and Schmidli8], storage models [Reference Boxma, Kaspi, Kella and Perry3], financial market modelling [Reference Kolesnik and Ratanov16], and in many other fields.

To simplify our presentation we restrict ourselves to switchings driven by a Markov process with only two values (states). The simplest example of such a process is a piecewise linear (telegraph) process based on the two-state Markov process ${{\varepsilon}}={{\varepsilon}}(t)\in\{0, 1\}$ :

(1.1) \begin{equation} T(t)=V(0)\int_0^t({-}\,1)^{N(\tau)}\,{{\rm d}} \tau,\qquad t>0, \label{eqn1} \end{equation}

driven by a homogeneous Poisson process $N=N(t)$ . The value T(t) corresponds to the position of a particle moving on the line with velocities $-1$ and $+1$ alternating at Poisson times. The random starting velocity $V(0)\in\{-1, %\; +1\}$ is independent of N.

The theory of telegraph processes is well developed, beginning from [Reference Kac12]. Over the past few decades, many generalizations of the telegraph process have been proposed in the literature including motions characterized by arbitrary numbers of possible velocities [Reference Kolesnik13], by random velocities [Reference Stadje and Zacks24, Reference De Gregorio6], with velocity changes governed by an alternating renewal process (for instance [Reference Di Crescenzo and Martinucci7] or perturbed by jumps [Reference Ratanov23, Reference López and Ratanov19]). See also the monograph [Reference Kolesnik and Ratanov16] and the references therein for full details on the telegraph process.

The classic telegraph model (1.1) can be easily generalized to the process T(t) of inhomogeneous structure with velocities $c_0$ and $c_1$ , $c_0>c_1$ , alternating with intensities ${{\lambda}}_0$ and ${{\lambda}}_1$ respectively. The distribution of the random variable T(t) is given hereafter.

Let

$$ f_i(x, t;\, n)={{\mathrm P}}\{T(t)\in{{\rm d}} x,\; N(t)=n~|~ \!{\mid}\! {{\varepsilon}}(0)=i\}/{{\rm d}} x,\qquad n\geq1,\ quad i\in\{0, 1\},$$

be the density function of $T(t){\mathbf{1}}_{\{N(t)=n\}}$ . Note that

$$ {{\mathrm P}}\{T(t)\in{{\rm d}} x,\; N(t)=0~|~ \!{\mid}\! {{\varepsilon}}(0)=i\} ={{\rm e}}^{-{{\lambda}}_it}\delta_{c_it}({{\rm d}} x),\qquad i\in\{0, 1\},$$

where $\delta_{z}({\cdot})$ denotes Dirac’s delta-measure on a line throughout the paper.

Proposition 1.1. The distribution of T(t), $t>0$ , is described by

(1.2) \begin{equation} \begin{split} f_i(x, t;\, n) = q_i(\xi, t-\xi;\, n)\theta(\xi, t-\xi), \\ \xi=\xi(x)=\dfrac{x-c_1t}{c_0-c_1}, \quad t-\xi=\dfrac{c_0t-x}{c_0-c_1}. \end{split} \label{eqn2} \end{equation}

Here, $q_i(\xi, \eta;\, n)$ , $i\in\{0, 1\}$ , $n\geq1$ , are separately defined for even and odd n by the equalities

(1.3) \begin{equation} \begin{split} q_0(\xi, \eta;\, 2k)=\frac{{{\lambda}}_0^k{{\lambda}}_1^k}{(k-1)!k!}\xi^k\eta^{k-1}, \qquad q_1(\xi, \eta;\, 2k)=\frac{{{\lambda}}_0^k{{\lambda}}_1^k}{(k-1)!k!}\xi^{k-1}\eta^{k}, \\ q_0(\xi, \eta;\, 2k+1)=\frac{{{\lambda}}_0^{k+1}{{\lambda}}_1^k}{k!^2}\xi^{k}\eta^{k}, \qquad q_1(\xi, \eta;\, 2k+1)=\frac{{{\lambda}}_0^k{{\lambda}}_1^{k+1}}{k!^2}\xi^{k}\eta^{k}, \end{split} \label{eqn3} \end{equation}
$$ \xi, \eta>0,$$

and

(1.4) \begin{equation} \theta(\xi,\; \eta)\,{:\!=}\,\frac{\exp({-}\,{{\lambda}}_0\xi-{{\lambda}}_1\eta)}{c_0-c_1}{\mathbf{1}}_{\{\xi>0,\,\eta>0\}}. \label{eqn4} \end{equation}

For the proof, see, e.g., [Reference Kolesnik and Ratanov16, Proposition 4.1]. In the following, Proposition 1.1 will be generalized to the case of a piecewise linear process in an arbitrary linear normed space; see Section 2.1.

The paper is structured as follows. In Section 2 piecewise deterministic flows are studied. After recalling some elementary properties of basic deterministic flows, Section 2 is divided into two main parts: Section 2.1 regarding the distribution of the telegraph process ${{\mathbb T}}(t)$ , $t\geq0$ , in a normed vector space, and Section 2.2 where we study the time-homogeneous process ${{\mathbb X}}$ defined as ${{\mathbb X}}(t)=\Phi^{-1}(\Phi(x)+{{\mathbb T}}(t))$ , $t\geq0$ (with $\Phi$ a continuous injection defined on the state space of the process ${{\mathbb X}}$ ). In Section 3 we present two examples: a one-dimensional (1D) squared telegraph process and a two-dimensional process with alternating radial and circular movements. In Section 4 some observations concerning self-similarity are presented.

2. Piecewise deterministic flows

Consider the phase space $(G, {{\mathcal G}})$ where G is a topological space with the Borel $\sigma$ -algebra ${{\mathcal G}}$ . For any fixed $x\in G$ consider a continuous flow on G,

$$ t\to\phi(t)= \phi(t~|~ \!{\mid}\! x, s)\in G,\qquad t, s\in({-}\infty,\; \infty),\quad t>s,$$

starting at time s from position $x\in G$ : $\phi(t~|~ \!{\mid}\! x, s)|_{t\downarrow s}=x=\phi(t~|~ \!{\mid}\! x, s)|_{s\uparrow t}$ . Assume that for any s, t, $s<t$ , the mapping $x\to\phi^{ts}(x)=\phi(t~|~ \!{\mid}\! x, s)$ , $t>s$ , is a homeomorphism.

Assume that $\phi^{ts}$ as well as the inverse mapping (the reverse flow) form a two-parameter semigroup under composition; see, e.g., [Reference Jacobsen11].

In the following we will study piecewise deterministic flows consistently switching between two alternating patterns $\phi_0(t~|~ \!{\mid}\!{\cdot}\,)$ and $\phi_1(t~|~ \!{\mid}\!{\cdot}\,)$ at random times.

Let x denote the state of the process at initial time s, and let $t>s$ . Consider two continuous functions $\tau\to g_0(\tau)$ , $\tau\to g_1(\tau)$ , $\tau\in[s,\; t]$ , which are defined by iterated superposition of these two flows:

(2.1) \begin{equation} g_0(\tau)=\phi_1(t~|~ \!{\mid}\!\phi_0(\tau~|~ \!{\mid}\! x, s), \tau),\qquad g_1(\tau)=\phi_0(t~|~ \!{\mid}\!\phi_1(\tau~|~ \!{\mid}\! x, s), \tau),\qquad s\leq\tau\leq t. \label{eqn5} \end{equation}

These functions determine the pieces of continuous curves $\ell_0=\ell_0(x)$ and $\ell_1=\ell_1(x)$ on the space G,

(2.2) \begin{equation} \ell_0=\{y\in G~|~ \!{\mid}\! y=g_0(\tau),\; \tau\in[s, t]\},\qquad \ell_1=\{y\in G~|~ \!{\mid}\! y=g_1(\tau),\; \tau\in[s, t]\}. \label{eqn6} \end{equation}

For any target point $y\in\ell_0(x)$ , the time $\tau_0^*(y;\, x)$ when the flow is switched from $\phi_0$ to $\phi_1$ exists and is unique. Indeed, the equation $g_0(\tau)=y$ has the unique solution $\tau=\tau_0^*(y;\, x)\in[s,\; t]$ . Similarly, $\tau_1^*(y;\, x)\in[s,\; t]$ , $y\in\ell_1(x)$ , is defined as the root of the equation $y=g_1(\tau)$ .

Further, the stochastic switching mechanism between two deterministic flows $\phi_0$ and $\phi_1$ is defined by a two-state random process ${{\varepsilon}}={{\varepsilon}}(t)\in\{0, 1\}$ , $t\in({-}\infty, \infty)$ , with independent inter-switching times.

Let $s\in({-}\infty, \infty)$ be the (fixed) starting time, and let $\tau^s$ be the first switching time after s, $\tau^s>s$ . Denote by $F^s_i(t)={{\mathrm P}}_i\{\tau^s<t\}={{\mathrm P}}\{\tau^s<t~|~ \!{\mid}\!{{\varepsilon}}(s)=i\}$ the (conditional) distribution function of $\tau^s$ under the given initial state ${{\varepsilon}}(s)=i$ , $i\in\{0, 1\}$ . That is,

$$ \label{def:la} {{\mathrm P}}\{{{\varepsilon}}(t')=i\,\;\forall \text{for all}\ t'\in(s, t)~|~ \!{\mid}\!{{\varepsilon}}(s)=i\}=1-F^s_i(t)=:\overline{F^s_i}(t),\qquad t>s.$$

We study the marginal distributions of the piecewise deterministic continuous random walk $\mathbb X=\mathbb X(t)$ on the topological space G which follows two patterns $\phi_0$ and $\phi_1$ alternating at switching times of ${{\varepsilon}}$ . Let $N=N(s, t)$ count the number of switches of ${{\varepsilon}}({\cdot})$ during the time interval [s, t).

By conditioning on the first pattern’s switching, one can observe that the transition probabilities $P_i(A, t;\,\; n~|~ \!{\mid}\! x, s)\,{:\!=}\,{{\mathrm P}}\{\mathbb X(t)\in A,\; N(s, t)=n~|~ \!{\mid}\!\mathbb X(s)=x,\; {{\varepsilon}}(s)=i\}$ , $n\geq0$ , $i\in\{0, 1\}$ , of ${{\mathbb X}}(t),\;t>s,$ satisfy the following coupled integral Chapman–Kolmogorov equations for $t>s$ :

(2.3) \begin{equation} \left\{ \begin{aligned} P_0(\,{\cdot}\,, t;\,\; n~|~ \!{\mid}\! x, s)=& \int_s^{t}P_1(\,{\cdot}\,, t;\,\; n-1~|~ \!{\mid}\!\phi_0(\tau~|~ \!{\mid}\! x,s), \tau)\,{{\rm d}} F^s_0(\tau),\\ P_1(\,{\cdot}\,, t;\,\; n~|~ \!{\mid}\! x,s)=&\int_s^{t} P_0(\,{\cdot}\,, t;\,\; n-1~|~ \!{\mid}\!\phi_1(\tau~|~ \!{\mid}\! x,s), \tau)\,{{\rm d}} F^s_1(\tau), \end{aligned} \qquad n\geq1. \right. \label{eqn7} \end{equation}

The distribution of ${{\mathbb X}}(t)$ with no switchings till time t is given by

(2.4) \begin{equation} \begin{aligned} P_0(A, t;\,\; 0~|~ \!{\mid}\! x, s)=\ &(1-F^s_0(t))\ \delta_{\phi_0(t~|~ \!{\mid}\! x, s)}(A),\\ P_1(A, t;\,\; 0~|~ \!{\mid}\! x, s)=\ &(1-F^s_1(t))\ \delta_{\phi_1(t~|~ \!{\mid}\! x, s)}(A). \end{aligned} \label{eqn8} \end{equation}

In the following we consider in detail the Markovian case, that is,

$$\label{def:markov} F_i^s(t)={{\mathrm P}}_i\{\tau^s<t\}=1-{{\rm e}}^{-{{\lambda}}_i(t-s)},\qquad t\geq s,\quad i\in\{0, 1\}, \end{equation*}

with ${{\lambda}}_0,{{\lambda}}_1>0$ .

We begin with the example of a random walk ${{\mathbb T}}(t)$ that follows a linear flow in a linear normed space.

2.1. Piecewise linear processes in a linear normed space

Let V be a linear normed vector space and $c_0, c_1\in V$ , $c_0\neq c_1$ . We consider the linear time-homogeneous case, where ${{\mathbb T}}={{\mathbb T}}(t)$ , $t\geq0$ , is the piecewise linear process (the integrated telegraph process) on the space V, switching between two linear flows

$$ \phi_0(t~|~ \!{\mid}\! x, s)=x+tc_0,\qquad \phi_1(t~|~ \!{\mid}\! x, s)=x+tc_1.$$

The current position ${{\mathbb T}}(t)$ is given by

(2.5) \begin{equation} {{\mathbb T}}(t)\,{:\!=}\,\int_0^tc_{{{\varepsilon}}(\tau)}\,{{\rm d}}\tau =\sum_{n=0}^{N(t)-1}c_{{{\varepsilon}}_n}(\tau_{n+1}-\tau_{n})+c_{{{\varepsilon}}_{N(t)}}(t-\tau_{N(t)}),\qquad t\geq0, \label{eqn9} \end{equation}

where $\tau_n$ , $n\geq0$ , are the switching times, $\tau_0=0$ , ${{\varepsilon}}_n={{\varepsilon}}(\tau_n)$ , $n\geq0$ , and N(t) is the number of switchings occurring till time t, $t>0$ , $N(0)=0$ .

The distribution of ${{\mathbb T}}(t)$ , $t>0$ , is supported on the straight segment $I_t\subset V$ ,

(2.6) \begin{equation} I_t=\{z\in V~|~ \!{\mid}\! z=\tau c_0+(t-\tau)c_1,\ 0\leq\tau\leq t\}. \label{eqn10} \end{equation}

Indeed, for any $z\in I_t$ , we have ${{\mathbb T}}(t)=z=\tau c_0+(t-\tau)c_1$ , where $\tau\in[0, t]$ is the time spent by the underlying Markov process ${{\varepsilon}}(u)$ , $0\leq u\leq t$ , in state 0.

Due to (2.3), the distribution densities

$$ \label{def:pT} \begin{aligned} p_0^{{\mathbb T}}(z, t;\,\; n)\,{:\!=}\ &{{\mathrm P}}\{{{\mathbb T}}(t)\in{{\rm d}} z,\; N(t)=n~|~ \!{\mid}\!{{\varepsilon}}(0)=0\}/{{\rm d}} z, \\ p_1^{{\mathbb T}}(z, t;\,\; n)\,{:\!=}\ &{{\mathrm P}}\{{{\mathbb T}}(t)\in{{\rm d}} z,\; N(t)=n~|~ \!{\mid}\! {{\varepsilon}}(0)=1\}/{{\rm d}} z, \end{aligned}$$

follow the coupled integral equations

(2.7) \begin{equation} \left\{ \begin{aligned} p_0^{{\mathbb T}}(z, t;\,\; n)= &\int_0^t{{\lambda}}_0{{\rm e}}^{-{{\lambda}}_0\tau}p_1^{{\mathbb T}}(z-\tau c_0, t-\tau;\,\; n-1)\,{{\rm d}}\tau, \\ p_1^{{\mathbb T}}(z, t;\,\; n)= &\int_0^t{{\lambda}}_1{{\rm e}}^{-{{\lambda}}_1\tau}p_0^{{\mathbb T}}(z-\tau c_1, t-\tau;\,\; n-1)\,{{\rm d}}\tau, \end{aligned}\qquad n\geq1.\right. \label{eqn11} \end{equation}

The case of no switchings, corresponding to ${{\mathbb T}}(t){\mathbf{1}}_{N(t)=0}$ , is given by

(2.8) \begin{equation} \begin{aligned} {{\mathrm P}}\{{{\mathbb T}}(t)\in{{\rm d}} z,\; N(t)=0~|~ \!{\mid}\!{{\varepsilon}}(0)=0\}&=\exp({-}\,{{\lambda}}_0t)\delta_{tc_0}({{\rm d}} z)\\ & =\exp({-}\,{{\lambda}}_0t)\delta(z-tc_0){{\rm d}} z,\\ {{\mathrm P}}\{{{\mathbb T}}(t)\in{{\rm d}} z,\; N(t)=0~|~ \!{\mid}\!{{\varepsilon}}(0)=1\}&=\exp({-}\,{{\lambda}}_1t)\delta_{tc_1}({{\rm d}} z)\\ & =\exp({-}\,{{\lambda}}_1t)\delta(z-tc_1){{\rm d}} z. \end{aligned} \label{eqn12} \end{equation}

In the particular case of linearly dependent vectors $c_0, c_1\in V$ , $c_0,c_1\neq0$ , the random process ${{\mathbb T}}={{\mathbb T}}(t)$ is one-dimensional and the distribution of ${{\mathbb T}}(t)$ is supported on the segment $I_t$ of the straight line L with direction vector $c_0$ (or $c_1$ ), $I_t\subset L\subset V$ . Moreover, the density functions $p_0^{{\mathbb T}}(\,{\cdot}\,, t;\,\; n)$ and $ p_1^{{\mathbb T}}(\,{\cdot}\,, t;\,\; n)$ , $n\geq1$ , coincide with functions $f_0(\,{\cdot}\,, t;\,\; n)$ and $f_1(\,{\cdot}\,, t;\; n)$ ; see the formulae in (1.2) with $\xi$ , $0\leq\xi\leq t$ , defined by the equation $z-tc_1=\xi(c_0-c_1)$ , $z\in L$ .

In general, the segment $I_t$ given in (2.6) floats in V (with constant velocity $\frac12(c_0+c_1)$ ). By solving the equations in (2.7), the density functions $p_0^{{\mathbb T}}(z, t;\,\; n)$ and $ p_1^{{\mathbb T}}(z, t;\,\; n)$ , $n\geq1$ , can be shown to satisfy formulae similar to (1.2) with $\xi\in[0, t]$ , which is defined as the (unique) solution $\xi=\varphi(z, t)$ of the equation

(2.9) \begin{equation} z-tc_1=\xi(c_0-c_1),\qquad z\in I_t. \label{eqn13} \end{equation}

Proposition 2.1. The density functions $p_0^{{\mathbb T}}(z, t;\,\; n)$ and $ p_1^{{\mathbb T}}(z, t;\,\; n)$ , $n\geq1$ , are given by $p_i^{{\mathbb T}}(z, t;\, \; n)=q_i(\xi, t-\xi;\,\; n)\theta(\xi, t-\xi)$ , where $q_i(\xi, \eta;\, \; n)$ are defined by (1.3), and the function $\theta$ is

(2.10) \begin{equation} \theta(\xi,\; \eta)\,{:\!=}\,\frac{1}{\|c_0-c_1\|} \exp({-}\,{{\lambda}}_0\xi-{{\lambda}}_1\eta) {\mathbf{1}}_{\{\xi>0, \eta>0\}}. \label{eqn14} \end{equation}

Here, $\xi=\varphi(z, t)\in[0, t]$ , $z\in I_t$ is the solution of (2.9) and $\eta=t-\xi$ .

See the proof in Appendix B.

2.2. Time-homogeneous piecewise deterministic process ${{\mathbb X}}$

Consider the time-homogeneous case, so that the deterministic pattern $\phi(t~|~ \!{\mid}\! x, s)$ depends on s, t through $t-s$ only. Assume that the flow $\phi$ is defined by

(2.11) \begin{equation} t\to\phi(t~|~ \!{\mid}\! x, s)=\Phi^{-1}(\Phi(x)+c(t-s)),\qquad t\geq s, \label{eqn15} \end{equation}

where $\Phi\,{:}\, G\to V$ is a continuous injective map from G to a topological vector space V and $c\in V$ is a constant. The reverse flow is defined by $s\to\Phi^{-1}(\Phi(y)-c(t-s))$ , $s\leq t$ .

In the following we will use the shortened notation

$$\label{eq:notations} \phi(t;\, x)\,{:\!=}\,\phi(t~|~ \!{\mid}\! x, 0).$$

Remark 2.1. Let $G={{\mathbb R}}^d$ , $V={{\mathbb R}}^d$ , and $\Phi\,{:}\, {{\mathbb R}}^d\to{{\mathbb R}}^d$ be a diffeomorphism. Therefore, the trajectory of $\phi$ defined by (2.11) is differentiable, $\Phi(\phi(t;\, x))=\Phi(x)+ct$ , and

$$ \frac{{\rm d}}{{{\rm d}} t}[\Phi(\phi(t;\, x))]\equiv c,\qquad t>0.$$

This means that $\phi$ follows the differential equation

(2.12) \begin{equation} \frac{{{\rm d}} \phi(t;\, x)}{{{\rm d}} t}=a( \phi(t;\, x)),\qquad t>0, \label{eqn16} \end{equation}

with the initial condition $ \phi(t;\, x)|_{t\downarrow 0}=x$ , where $a(y)=[\Phi'(y)]^{-1}c$ .

The mapping $\Phi$ acts as a rectifying diffeomorphism for equation (2.12); see [Reference Arnold1].

In the case when the time-homogeneous flows $\phi_0$ and $\phi_1$ are defined by (2.11) with $c_0, c_1\,{\in}\, V$ , $c_0\neq c_1$ , and are characterized by a common rectifying mapping $\Phi\,{:}\,G\to V$ , that is,

$$ \phi_0(t~|~ \!{\mid}\! x, s)=\Phi^{-1}(\Phi(x)+c_0(t-s)),\qquad \phi_1(t~|~ \!{\mid}\! x, s)=\Phi^{-1}(\Phi(x)+c_1(t-s)), \qquad t\geq s,$$

the mappings $g_0$ and $g_1$ defined by (2.1) become

$$\label{eq:lg0} \begin{aligned} g_0(\tau) &=\Phi^{-1}(\Phi(x)+c_0\tau+c_1(t-\tau)),\qquad \tau\in[0,\; t],\\ g_1(\tau) &=\Phi^{-1}(\Phi(x)+c_1\tau+c_0(t-\tau)),\qquad \tau\in[0,\; t]. \end{aligned}$$

Hence, the curves $\ell_0$ and $\ell_1$ defined in (2.2) identify

$$\ell\,{:\!=}\,\ell_0=\ell_1=\Phi^{-1}(\Phi(x)+I_{t}),$$

where $I_{t}$ is the straight segment (2.6).

Let the time-homogeneous flows $\phi_0=\phi_0(t;\, x)$ and $\phi_1=\phi_1(t;\, x)$ , $0\leq t<\infty$ , be defined by (2.11) with a common diffeomorphism $\Phi\,{:}\, G\to V$ from the open subset G of a linear normed space into a linear normed space V, and with constant ‘velocities’ $c_0, c_1\in V$ , $c_0\neq c_1$ . Therefore, the corresponding piecewise deterministic time-homogeneous continuous process ${{\mathbb X}}^x={{\mathbb X}}^x(t)\in G$ starting from point x is defined by

(2.13) \begin{equation} {{\mathbb X}}^x(t)=\Phi^{-1}(\Phi(x)+{{\mathbb T}}(t)),\quad 0\leq t<\infty;\qquad {{\mathbb X}}^x(0)=x. \label{eqn17} \end{equation}

Here, ${{\mathbb T}}={{\mathbb T}}(t)$ , $t\geq0$ , is the telegraph process defined by (2.5) with the two velocities $c_0, c_1\in V$ alternating with switching intensities ${{\lambda}}_0, {{\lambda}}_1>0$ .

For any fixed $t>0$ , the distribution of ${{\mathbb T}}(t)$ is supported on the straight segment $I_t\subset V$ ; see Proposition 2.1. Hence, the distribution of $\mathbb X^x(t)$ is supported on the segment of the continuous curve $\ell=\ell_{t,x}$ , $\ell\subset G$ , $\ell=\Phi^{-1}(\Phi(x)+I_{t })$ ; see Figure 1.

Figure 1. Flows $\phi_0(\,{\cdot}\,;\,\; x)$ and $\phi_1(\,{\cdot}\,;\,\; x)$ with common mapping $\Phi\,:\, G\to V$ ; a sample path of ${{\mathbb X}}^x(t)$ .

Let $p_0^{{\mathbb X}}(y, t;\, n~|~ \!{\mid}\! x)$ and $p_1^{{\mathbb X}}(y, t;\, n~|~ \!{\mid}\! x)$ be the transition densities of ${{\mathbb X}}(t)$ , $t>s$ :

$$ \label{def:density} p_i^{{\mathbb X}}(y, t;\, n~|~ \!{\mid}\! x)\,{{\rm d}} y\,{:\!=}\,{{\mathrm P}}\{{{\mathbb X}}^x(t)\in{{\rm d}} y,\; N(t)=n~|~ \!{\mid}\!{{\varepsilon}}(0)=i\},\,\, \qquad i\in\{0, 1\},\,\, n=0, 1, 2,\ldots.$$

In the case of no switchings, $n=0$ , by (2.4) we have

$$\begin{aligned} p_0^{\mathbb X}(y, t;\, 0~|~ \!{\mid}\! x) ={{\rm e}}^{-{{\lambda}}_0t}\delta(y-\phi_0(t;\, x)),\qquad p_1^{\mathbb X}(y, t;\, 0~|~ \!{\mid}\! x) ={{\rm e}}^{-{{\lambda}}_1t}\delta(y-\phi_1(t;\, x)). \end{aligned}$$

Theorem 2.1. The transition densities $p_i^{{\mathbb X}}(y, t;\, n~|~ \!{\mid}\! x)$ , $n\geq1$ , for each positive t are given by Proposition 2.1 with $\xi=\varphi(\Phi(y)-\Phi(x),\; t)$ , see (2.9), and with $\theta$ given by

$$\label{def:theta0} \begin{aligned} \theta&=k(y)\exp\{\left( -{{\lambda}}_0\xi-{{\lambda}}_1(t-\xi) \} \\ \right)\\ &= k(y)\exp\{\left( -{{\lambda}}_0\varphi(\Phi(y)-\Phi(x),\; t)-{{\lambda}}_1(t-\varphi(\Phi(y)-\Phi(x),\; t)) \},\right), \end{aligned}$$

where $k(y)=\dfrac{\|\Phi'(y)\|}{\|c_0-c_1\|}{\mathbf{1}}_{\{y\in\ell\}}$ .

Further,

(2.14) \begin{equation} \begin{aligned} p_0^{\mathbb X}(y, t~|~ \!{\mid}\! x)= {{\rm e}}^{-{{\lambda}}_0t}\delta(y-\phi_0(t;\, x)) & +\theta\mathcal P_0(\xi, t-\xi;\, t),\\ \label{eq:p1bessel} p_1^{\mathbb X}(y, t~|~ \!{\mid}\! x)= {{\rm e}}^{-{{\lambda}}_1t}\delta(y-\phi_1(t;\, x)) & + \theta \mathcal P_1(\xi, t-\xi;\, t), \end{aligned} \label{eqn18} \end{equation}

where

(2.15) \begin{equation} \begin{aligned} \mathcal P_0(\xi, \eta;\, t)&={{\lambda}}_0I_0(2\sqrt{{{\lambda}}_0{{\lambda}}_1\xi{\cdot}\eta}) +\sqrt{{{\lambda}}_0{{\lambda}}_1\xi/\eta}I_1(2\sqrt{{{\lambda}}_0{{\lambda}}_1\xi{\cdot}\eta}), \\ \mathcal P_1(\xi, \eta;\, t)&={{\lambda}}_1I_0(2\sqrt{{{\lambda}}_0{{\lambda}}_1\xi{\cdot}\eta}) +\sqrt{{{\lambda}}_0{{\lambda}}_1\eta/\xi}I_1(2\sqrt{{{\lambda}}_0{{\lambda}}_1\xi{\cdot}\eta}). \end{aligned} \label{eqn19} \end{equation}

Proof. By (2.13),

$$ {{\mathrm P}}_i\{{{\mathbb X}}(t)\in{{\rm d}} y~|~ \!{\mid}\!{{\mathbb X}}(0)=x\}={{\mathrm P}}_i\{\Phi(x)+{{\mathbb T}}(t)\in\Phi({{\rm d}} y)\}, \qquad i\in\{0, 1\}.$$

The proof follows from the result of Proposition 2.1. Summing over n one can obtain (2.14).

The next section is related to other examples.

3. Examples

3.1. Squared telegraph process

First, we present the important example of the squared telegraph process,

$${{\mathbb X}}(t)={{\mathbb X}}^x(t)=(\sqrt{x}+T(t))^2,\qquad t>0,$$

${{\mathbb X}}^x(0)=x$ , where the underlying telegraph process $T=T(t)$ is determined by velocities $c_0, c_1$ , $c_0>c_1$ , and switching intensities ${{\lambda}}_0, {{\lambda}}_1$ (see (1.1)). Such a process can be obtained by (2.13), with $\Phi(x)=\sqrt{x}$ , $x\geq0$ .

Although $x\to\Phi^{-1}(x)=x^2$ , $x\in({-}\infty, \infty)$ , is not a diffeomorphism, Theorem 2.1 can be applied.

The density functions $p_i(\,{\cdot}\,, t;\, n~|~ \!{\mid}\! x)$ , $n\geq1$ , of ${{\mathbb X}}^x(t)$ can be expressed using $f_0(x, t;\, n)$ and $f_1(x, t;\, n)$ defined in (1.2)–(1.4). The explicit expressions for $p_i(\,{\cdot}\,, t;\, n~|~ \!{\mid}\! x)$ , $n\geq1$ , are different for the following four cases, defined by the four possible relationships between the parameters and the time value t, $t>0$ .

(A) ${0\leq\sqrt{x}+c_1t<\sqrt{x}+c_0t}$ :

The distribution of ${{\mathbb X}}^x(t)$ is supported on the segment

$$\Delta_{\rm A}\,{:\!=}\,[(\sqrt{x}+c_1t)^2,\; (\sqrt{x}+c_0t)^2]\subset{{\mathbb R}}^1_+,$$

the equation $(\sqrt{x}+z)^2=y$ , $y\in\Delta_{\rm A}$ , has the unique solution $z=\sqrt{y}-\sqrt{x}$ , and

(3.1) \begin{equation} p_i(y, t;\, n~|~ \!{\mid}\! x)=\frac{1}{2\sqrt{y}\,}f_i(\sqrt{y}-\sqrt{x}, t;\, n), \qquad n\geq1,\quad i\in\{0, 1\},\qquad y\in\Delta_{\rm A}.; \label{eqn20} \end{equation}

(B) ${\sqrt{x}+c_1t<0<-\sqrt{x}-c_1t\leq\sqrt{x}+c_0t}$ :

The distribution of ${{\mathbb X}}^x(t)$ is supported on

$$\Delta_{\rm B}\,{:\!=}\,[0,\; (\sqrt{x}+c_0t)^2]\subset{{\mathbb R}}^1_+.$$

For all y, $0<y\leq(\sqrt{x}+c_1t)^2$ , the equation $(\sqrt{x}+z)^2=y$ has two roots $z=\pm\sqrt{y}-\sqrt{x}$ ; if $(\sqrt{x}+c_1t)^2<y\leq(\sqrt{x}+c_0t)^2$ this equation has the unique solution $z=\sqrt{y}-\sqrt{x}$ between $c_1t$ and $c_0t$ . Hence, for $n\geq1$ , $i\in\{0, 1\}$ , the density function $p_i(y, t;\, n~|~ \!{\mid}\! x)$ is given by

(3.2) \begin{equation} \frac{1}{2\sqrt{y}}\left\{ \begin{aligned} &f_i({-}\,\sqrt{y}-\sqrt{x}, t;\, n)+f_i(\sqrt{y}-\sqrt{x}, t;\, n),\quad & & 0<y<(\sqrt{x}+c_1t)^2,\\ & f_i(\sqrt{y}-\sqrt{x}, t;\, n), & & \qquad (\sqrt{x}+c_1t)^2<y\leq(\sqrt{x}+c_0t)^2 . ; \end{aligned} \right. \label{eqn21} \end{equation}

(C) ${\sqrt{x}+c_1t\leq-\sqrt{x}-c_0t<0<\sqrt{x}+c_0t}$ :

The distribution of ${{\mathbb X}}^x(t)$ is supported on

$$\Delta_{\rm C}\,{:\!=}\,[0,\; (\sqrt{x}+c_1t)^2]\subset{{\mathbb R}}^1_+.$$

For all y, $0<y\leq(\sqrt{x}+c_0t)^2$ , the equation $(\sqrt{x}+z)^2=y$ has two roots $z=\pm\sqrt{y}-\sqrt{x}$ ; if $(\sqrt{x}+c_0t)^2<y\leq(\sqrt{x}+c_1t)^2$ , this equation has the unique solution $z=-\sqrt{y}-\sqrt{x}$ between $c_1t$ and $c_0t$ . Hence, for $n\geq1$ , $i\in\{0, 1\}$ , the density function $p_i(y, t;\, n~|~ \!{\mid}\! x)$ is given by

(3.3) \begin{equation} \frac{1}{2\sqrt{y}}\left\{ \begin{aligned} & f_i({-}\,\sqrt{y}-\sqrt{x}, t;\, n)+f_i(\sqrt{y}-\sqrt{x}, t;\, n), & & \quad y<(\sqrt{x}+c_0t)^2,\\ & f_i({-}\,\sqrt{y}-\sqrt{x}, t;\, n), & & \quad (\sqrt{x}+c_0t)^2<y\leq(\sqrt{x}+c_1t)^2, \end{aligned} \right. \label{eqn22} \end{equation}
$$\qquad n\geq1,\quad i\in\{0, 1\}.$$

(D) ${\sqrt{x}+c_1t<\sqrt{x}+c_0t\leq0}$ :

The distribution of ${{\mathbb X}}^x(t)$ is supported on the segment

$$\Delta_{\rm D}\,{:\!=}\,[(\sqrt{x}+c_0t)^2,\; (\sqrt{x}+c_1t)^2]\subset{{\mathbb R}}^1_+,$$

the equation $(\sqrt{x}+z)^2=y$ , $y\in\Delta_{\rm D}$ , has the unique root $z=-\sqrt{y}-\sqrt{x}$ . Thus

(3.4) \begin{equation} p_i(y, t;\, n~|~ \!{\mid}\! x)=\frac{1}{2\sqrt{y}}f_i({-}\,\sqrt{y}-\sqrt{x}, t;\, n), \qquad n\geq1,\quad i\in\{0, 1\},\qquad y\in\Delta_{\rm D}. \label{eqn23} \end{equation}

As a result, the distribution of ${{\mathbb X}}(t)$ depends on the signs of velocities.

First, if both velocities are positive, $c_0>c_1\geq0$ , then T(t) is a subordinator and the distribution of ${{\mathbb X}}^x(t)=(\sqrt{x}+T(t))^2$ fits case (A).

Second, let $c_0\geq0>c_1$ . For sufficiently small times, $0<t\leq \sqrt{x}/({-}\,c_1)$ , the value $\sqrt{x}+T(t)$ remains positive. Hence the density functions $p_i(y, t;\, n~|~ \!{\mid}\! x)$ , $i\in\{0, 1\}$ , are again given by (3.1) (case (A)).

For large t the solution depends on the relation between $c_0$ and $|c_1|$ .

If $c_0+c_1<0$ and $\sqrt{x}/({-}\,c_1)<t\leq2\sqrt{x}/({-}\,c_0-c_1)$ or $c_0+c_1\geq0$ and $t>\sqrt{x}/({-}\,c_1)$ , then $\sqrt{x}+c_1t<0<-\sqrt{x}-c_1t<\sqrt{x}+c_0t$ , which corresponds to case (B). Hence, the formula (3.2) holds.

If $c_0+c_1<0$ and $t\geq2\sqrt{x}/({-}\,c_0-c_1),$ then $\sqrt{x}+c_1t<-\sqrt{x}-c_0t<0<\sqrt{x}+c_0t$ , which is case (C), and (3.3) holds.

Third, let both velocities be negative, $0>c_0>c_1$ . The distribution of ${{\mathbb X}}^x(t)$ is given separately for the different time intervals:

$$ \begin{aligned} 0<t\leq \sqrt{x}/({-}\,c_1)& \Rightarrow \qquad \text{case (A) and formula (\ref{eqn20}); }\\ \sqrt{x}/({-}\,c_1)<t\leq2\sqrt{x}/({-}\,c_0-c_1)& \Rightarrow \qquad \text{case (B) and formula (\ref{eqn21});}\\ 2\sqrt{x}/({-}\,c_0-c_1)\leq t<\sqrt{x}/({-}\,c_0)& \Rightarrow \qquad \text{case (C) and formula (\ref{eqn22});}\\ t>\sqrt{x}/({-}\,c_0)& \Rightarrow \qquad \text{case (D) and formula (\ref{eqn23}).} \end{aligned}$$

If $t=2\sqrt{x}/({-}\,c_0-c_1)$ (with $c_0+c_1<0$ ), case (B) coincides with case (C) and $p_i(y, t;\, n~|~ \!{\mid}\! x)=\dfrac{1}{2\sqrt{y}} [ f_i({-}\,\sqrt{y}-\sqrt{x}, t;\, n)+f_i(\sqrt{y}-\sqrt{x}, t;\, n)]$ , $0<y<(\sqrt{x}+c_1t)^2$ .

A slightly different approach is given in [Reference Martinucci and Meoli20].

3.2. Process in the plane and polar coordinates

The piecewise deterministic process in the plane has been studied in the past in various contexts [Reference Garra, Orsingher and Ratanov9, Reference Kolesnik14, Reference Kolesnik and Orsingher15, Reference Orsingher21, Reference Orsingher and Ratanov22]. Here we present an example of planar motion in the spirit of our construction (2.13).

Let $\Phi({{x}})=(r({{x}}),\; \alpha({{x}}))$ , ${{x}}=(x_1, x_2)\in{{\mathbb R}}^2$ , ${{x}}\neq{{\mathbf 0}}$ , be the operator setting the polar coordinates $r({{x}})=|{{x}}|=\sqrt{x_1^2+x_2^2}>0$ and $\alpha({{x}})\in S^1$ for any ${{x}}=(x_1, x_2)\in{{\mathbb R}}^2$ , ${{x}}\neq{{\mathbf 0}}$ . The mapping $\Phi$ is the (local) diffeomorphism from ${{\mathbb R}}^2\setminus\{{{\mathbf 0}}\}$ to the semi-cylinder $(0,\; +\infty)\times S^1$ .

Let $\mathcal J\,{:}\, {{\mathbb C}}\to{{\mathbb R}}^2$ be defined by

$$ \mathcal J(z)=(r\cos(\alpha),\; r\sin(\alpha))^\top,\qquad z=r{{\rm e}}^{{\rm i}\alpha}\in{{\mathbb C}}.$$

Consider the two basic deterministic flows $\phi_0(t;\, {{x}})$ and $\phi_1(t;\, {{x}})$ defined by (2.13) with ${{c}}={{c}}_0=(c_0, 0)^\top$ and ${{c}}={{c}}_1=(0, c_1)^\top$ respectively. Here, $c_0>0$ is the velocity of a radial flight and $c_1>0$ is the constant angular velocity.

The flow

$$\phi_0(t;\, {{x}})=\widehat r_{c_0t}({{x}})={{x}}+c_0t{{x}}/|{{x}}|=(1+c_0t/|{{x}}|){{x}}$$

is the radial movement starting from point ${{x}}\in {{\mathbb R}}^2$ , ${{x}}\neq{{\mathbf 0}}$ , and the flow $\phi_1(t;\, {{x}})$ is the circular motion defined by rotation of ${{x}}$ :

$$\phi_1(t;\, {{x}})=\widehat \omega_{c_1t}({{x}}) =\mathcal J(r({{x}}){{\rm e}}^{{\rm i}(\alpha+c_1t)}),\qquad t\geq0.$$

The process ${{\mathbb X}}^{{x}}$ is defined by the radial-circular motion, switching from radial to circular motion with intensity ${{\lambda}}_0$ and vice versa with intensity ${{\lambda}}_1$ .

The distribution of ${{\mathbb X}}^{{x}}(t)$ is supported on the segment $\ell=\ell(t, {{x}})$ of the Archimedean spiral, ${{y}}\in\ell(t, {{x}})$ (Figure 2),

(3.5) \begin{equation} \left\{ \begin{aligned} y_1&=(r({{x}})+c_0\tau)\cos(\alpha({{x}})+c_1(t-\tau)), \\ y_2&=(r({{x}})+c_0\tau)\sin(\alpha({{x}})+c_1(t-\tau)), \end{aligned} \right.\qquad\tau\in[0,\; t]. \label{eqn24} \end{equation}

Figure 2. The support of the distribution of ${{\mathbb X}}(t)$ : the Archimedean spiral $\ell({{x}}, t)$ defined by (3.5) with ${{x}}=(10, 0)$ , $c_0=2$ , $c_1=3$ , and time $t=10$ .

Let $\xi=\xi({{x}}, {{y}})=\dfrac{|{{y}}|-|{{x}}|}{c_0}$ , ${{y}}\in\ell(t, {{x}})$ , be the total time of radial motion, $0\leq\xi\leq t$ , such that the remaining time, $t-\xi$ , is the total time of circular motion.

From Theorem 2.1, the density functions $p_i({{y}}, t;\, n~|~ \!{\mid}\!{{x}})$ of ${{\mathbb X}}^{{x}}(t)$ are given by

(3.6) \begin{equation} p_i({{y}}, t;\, n~|~ \!{\mid}\!{{x}})\,{{\rm d}}{{y}}=\frac{|{{y}}|}{\sqrt{c_0^2+c_1^2}} q_i(\xi, t-\xi;\, n)\theta({{x}}, {{y}})\delta_\ell({{\rm d}} {{y}}), \exp\left({-}\,{{\lambda}}_0\xi-{{\lambda}}_1(t-\xi)\right), \qquad i\in\{0, 1\},\quad n\geq1 , . \label{eqn25} \end{equation}

where

$$\theta({{x}},{{y}})=\dfrac{|{{y}}|}{\sqrt{c_0^2+c_1^2}\,}\exp({-}\,{{\lambda}}_0\xi-{{\lambda}}_1(t-\xi)),$$

and $q_i(\xi, \eta;\, n)$ are defined by (1.3). If there are no switchings, we have

$$\begin{aligned} p_0({{y}}, t;\, 0~|~ \!{\mid}\!{{x}})&={{\rm e}}^{-{{\lambda}}_0t}\delta( {{y}}-\widehat r_{c_0t}({{x}})),\\ p_1({{y}}, t;\, 0~|~ \!{\mid}\!{{x}})&={{\rm e}}^{-{{\lambda}}_1t}\delta( {{y}}-\widehat\omega_{c_1t}({{x}})). \end{aligned}$$

Here,

$$\widehat r_{c_0t}({{x}})={{x}}\Big(1+c_0t\dfrac{{{x}}}{|{{x}}|}\Big)$$

is the radial displacement and $\widehat \omega_\alpha({{x}})$ denotes the rotation of ${{x}}$ .

The density functions $p_i({{y}}, t~|~ \!{\mid}\!{{x}})$ , $i\in\{0, 1\}$ , ${{y}}\in\ell({{x}}, t)$ , can be obtained by summing up in (3.6) similarly to (2.14) and (2.15); see Figure 3.

Figure 3. The regular part of the density function $p_0(\,{\cdot}\,, 10 ~|~ \!{\mid}\!{{x}})$ with $c_0=c_1=1$ , ${{\lambda}}_0={{\lambda}}_1=2$ , and the initial point ${{x}}=(1, 1)$ .

4. Self-similarity

The process ${{\mathbb X}}^x={{\mathbb X}}^x(t)\in {{\mathbb R}}_+^1$ is called positive self-similar if there exists a constant $\gamma > 0$ such that, for any $x > 0$ and $R > 0$ ,

(4.1) \begin{equation} R\,{\cdot}\,\mathbb X^{x}(R^{-\gamma}t) ~\text{is equal in law to}~{{\mathbb X}}^{Rx}(t),\qquad t\geq0 ; , \label{eqn26} \end{equation}

see the definition in [Reference Kyprianou17, Chapter 13].

The following theorem characterizes piecewise deterministic positive (1D) self-similar processes.

Theorem 4.1. Let ${{\mathbb X}}^x={{\mathbb X}}^x(t)\in{{\mathbb R}}^1_+$ , $x>0$ , be the positive piecewise deterministic time-homogeneous process with two alternating patterns $\phi_0$ , $\phi_1$ based on a common rectifying diffeomorphism $\Phi$ , (2.13), such that $\phi_0=\Phi^{-1}(\Phi(x)+c_0t)$ and $\phi_1=\Phi^{-1}(\Phi(x)+c_1t)$ with $c_0, c_1>0$ .

The process ${{\mathbb X}}^x$ is positive self-similar with index $\gamma>0$ if and only if the underlying patterns are given by $\Phi(x)=x^{\gamma}$ , $x\in{{\mathbb R}}^1_+$ .

Proof. Let ${{\mathbb X}}^x$ be the piecewise deterministic time-homogeneous process based on the two patterns

(4.2) \begin{equation} \phi_i(t;\, x)=(x^{\gamma}+c_it)^{1/\gamma},\qquad t\geq0,\quad x>0, \qquad i\in\{0, 1\} , . \label{eqn27} \end{equation}

with $c_0, c_1>0$ .

Note that the flows $\phi_i(t;\, x)$ , $i\in\{0,1\}$ , defined by (4.2) satisfy the scaling relation

(4.3) \begin{equation} \phi_i(R^{-\gamma}t;\, R^{-1}x)=R^{-1}\phi_i(t;\, x),\qquad x>0,\ \; t\geq0, \qquad i\in\{0, 1\}. \label{eqn28} \end{equation}

Moreover, under the time scaling $t\to R^{-\gamma}t$ the switching intensities are transformed as

(4.4) \begin{equation} \lambda_0\to R^\gamma\lambda_0,\qquad \lambda_1\to R^\gamma\lambda_1. \label{eqn29} \end{equation}

Therefore, the piecewise deterministic process $\mathbb X^x(t)$ , $t\geq 0$ , which follows the patterns (4.2), switching from one to another with alternating intensities ${{\lambda}}_0$ , ${{\lambda}}_1$ , is the positive self-similar continuous process with index $\gamma$ , (4.1).

Note that this can also be verified by using explicit formulae for the distribution. Let $\Phi(x)=x^\gamma$ , $x>0$ . Under the space–time scaling $x\to R^{-1}x$ , $t\to R^{-\gamma}t$ the variable $\xi=\varphi(\Phi(y)-\Phi(x),t)$ , (2.9), used in Theorem 2.1, is transformed as $\xi\to R^{-\gamma}\xi$ . Hence, by Theorem 2.1 and Equations (4.4) and (4.3), the transition densities $p_i^{{\mathbb X}}(\,{\cdot}\,, t;\, n~|~ \!{\mid}\! x)$ satisfy the relation

$$\label{eq:ssn-gamma} R^{-1}p_i^{\mathbb X}(R^{-1}y, R^{-\gamma}t, n~|~ \!{\mid}\! R^{-1}x) |_{\lambda_0\to R^\gamma\lambda_0,\,\lambda_1\to R^\gamma\lambda_1} \equiv p_i^{\mathbb X}(y, t, n~|~ \!{\mid}\! x),\qquad n\geq0,\ t>0.$$

The same is fulfilled for $p_i^{{\mathbb X}}(y, t~|~ \!{\mid}\! x)$ :

$$\label{eq:ssinfty} R^{-1}p_i^{\mathbb X}(R^{-1}y, R^{-\gamma}t~|~ \!{\mid}\! R^{-1}x) |_{\lambda_0\to R^\gamma\lambda_0,\,\lambda_1\to R^\gamma\lambda_1} \equiv p_i^{\mathbb X}(y, t~|~ \!{\mid}\! x),$$

$i\in\{0, 1\}$ , which corresponds to (4.1).

To prove the inverse assertion note that by definition (4.1) (with $x\downarrow0$ ) one can see that the underlying patterns satisfy

$$ \phi_i(t;\, 0)=(c_it)^{1/\gamma},$$

where $c_i=\phi_i(1;\, 0)^\gamma>0$ .

Due to the semi-group property $\phi_i(t-s;\, \phi_i(0;\,s))=\phi_i(t;\, 0)$ , we have

$$ \phi_i( t-s;\, (c_is)^{1/\gamma})=(c_it)^{1/\gamma},\qquad 0<s<t.$$

Hence,

$$ \phi_i(t-x^\gamma/c_i;\,\; x)=(c_it)^{1/\gamma}.$$

Therefore (under the shift $t\to t+x^\gamma/c_i$ ) we have

$$ \phi_i(t;\,\; x)=(x^\gamma+c_it)^{1/\gamma}.\tag*{$$}$$

Remark 4.1. If the ‘velocities’ $c_0, c_1$ are positive, the process ${{\mathbb X}}^x$ is a subordinator (defined for all $t\geq0$ ).

In the case of a negative velocity the process ${{\mathbb X}}^x$ is defined until hitting zero at time $\zeta^x=\inf\{t>0~|~ \!{\mid}\! X^x(t)=0\}=\inf\{t>0~|~ \!{\mid}\! T(t)=-x^\gamma\}$ . The distribution of $\zeta^x$ is known explicitly; see, e.g., [Reference Bogachev and Ratanov2].

Remark 4.2. Consider the time-homogeneous process ${{\mathbb X}}^x$ determined by the alternating patterns $\phi_0$ , $\phi_1$ with common diffeomorphism $\Phi(x)={{\rm e}}^x$ , $x\in{{\mathbb R}}^{1}$ :

$$ \phi_i(t;\, x)=\log({{\rm e}}^{x}+c_it),\qquad t\geq0,\quad {{\rm e}}^x+c_it>0, \qquad i\in\{0, 1\}.$$

If $c_0, c_1\geq0$ , the process ${{\mathbb X}}^x(t)$ is defined for all $t\geq0$ . In the case of negative $c_i$ the process is killed and sent to the cemetery state $-\infty$ at time $t_*=\inf\{t>0~|~ \!{\mid}\!{{\mathbb T}}(t)=-{{\rm e}}^x\}$ , where ${{\mathbb T}}(t)$ is the respective telegraph process.

The process ${{\mathbb X}}^x(t)$ possesses the property of additive self-similarity: under time scaling the process takes a spatial shift,

$${{\mathbb X}}^{x-R}({{\rm e}}^{-R}t)~\text{is equal in law to}~{{\mathbb X}}^x(t)-R.$$

Indeed, under transformations $t\to {{\rm e}}^{-R}t$ and $x\to x-R$ the switching intensities are transformed as ${{\lambda}}_0\to{{\rm e}}^{R}{{\lambda}}_0$ , ${{\lambda}}_1\to{{\rm e}}^{R}{{\lambda}}_1$ , and $\xi\to{{\rm e}}^{-R}\xi$ . By Theorem 2.1, the distributions of ${{\mathbb X}}^{x-R}({{\rm e}}^{-R}t)$ and ${{\mathbb X}}^x(t)-R$ coincide.

Appendix A. The auxiliary result

Lemma A.1. Let $z\in I_t$ be fixed, and $\xi=\varphi(z, t)$ , $0\leq\xi\leq t$ , be the (unique) solution of the equation $z-tc_1=\xi(c_0-c_1)$ , (2.9). Then $z-c_0\tau\in I_{t-\tau}$ and $z-c_1\tau\in I_{t-\tau}$ for sufficiently small $\tau$ , $\tau>0$ .

Further, for all $z\in I_t$ the solution $\xi=\varphi(z, t)$ of (2.9) satisfies the following identities:

(A.1) \begin{equation} \begin{aligned} \varphi(z-c_0\tau, t-\tau) & \equiv \xi-\tau \quad & & \text{if }\tau\in[0,\; \xi], \\ \quad \varphi(z-c_1\tau, t-\tau) & \equiv \xi \quad & & \text{if } \tau\in[0,\; t-\xi].\\ \end{aligned} \label{eqn30} \end{equation}

Proof. By substitution of $z-c_0\tau$ and $z-c_1\tau$ with z and $t-\tau$ with t into (2.9) one can obtain

(A.2) \begin{equation} z-c_0\tau=\widetilde\xi c_0+(t-\tau-\widetilde\xi)c_1, \qquad\widetilde\xi=\varphi(z-c_0\tau,\; t-\tau), \label{eqn31} \end{equation}

and

(A.3) \begin{equation} z-c_1\tau=\tilde\xi c_0+(t-\tau-\tilde\xi)c_1,\qquad\tilde\xi=\varphi(z-c_1\tau,\; t-\tau). \label{eqn32} \end{equation}

Equation (A.2) is satisfied by $\widetilde\xi=\xi-\tau$ if $\tau\leq\xi$ , and (A.3) is satisfied by $\widetilde\xi=\xi$ if $\tau\leq t-\xi$ .

Further, note that, by definition, $z-c_0\tau\notin I_{t-\tau}$ if $\tau>\xi$ and $z-c_1\tau\notin I_{t-\tau}$ if $\tau>t-\xi$ . Hence, the lemma is proved.

Appendix B. Proof of Proposition 2.1

System (2.7), $n=1$ , and (2.8) give the density functions $p_0^{{\mathbb T}}(z, t;\,\; 1)$ and $p_1^{{\mathbb T}}(z, t;\,\; 1)$ . Indeed,

$$ \begin{aligned} p_0^{{\mathbb T}}(z, t;\;1) & = \int_0^t{{\lambda}}_0{{\rm e}}^{-{{\lambda}}_0\tau}{{\rm e}}^{-{{\lambda}}_1(t-\tau)} \delta(z-\tau c_0-(t-\tau)c_1)\,{{\rm d}}\tau\\ & = \frac{{{\lambda}}_0}{\|c_0-c_1\|} \exp({-}\,{{\lambda}}_0\xi-{{\lambda}}_1(t-\xi)) {\mathbf{1}}_{\{0<\xi<t\}} \\ & = \lambda_0\theta(\xi, t-\xi), \end{aligned}$$

where $\xi=\varphi(z, t)$ , $\xi\in(0, t)$ , is the solution of (2.9). Similarly, $p_1^{{\mathbb T}}(z, t;\,\; 1)={{\lambda}}_1\theta(\xi, t-\xi)$ . This corresponds to (1.2), $n=1$ , with $q_i(\xi, \eta;\, 1)$ defined by (1.3) ( $k=0$ ) and $\theta$ defined by (2.10).

By recalling Lemma A.1 in Appendix A and (2.10),

(B.1) \begin{equation} \begin{aligned} {{\rm e}}^{-{{\lambda}}_0\tau} \theta(\varphi(z-c_0\tau, t-\tau), t-\tau-\varphi(z-c_0\tau, t-\tau))\\ & = {{\rm e}}^{-{{\lambda}}_0\tau}\theta(\widetilde\xi, t-\tau-\widetilde\xi) \big|_{\widetilde\xi=\xi-\tau} \\ \equiv\theta(\xi,\; t-\xi){\mathbf{1}}_{\{\tau<\xi\}} , \quad {{\rm e}}^{-{{\lambda}}_1\tau} \theta(\varphi(z-c_1\tau, t-\tau), t-\tau-\varphi(z-c_1\tau, t-\tau))\\ & ={{\rm e}}^{-{{\lambda}}_1\tau}\theta(\widetilde\xi, t-\tau-\widetilde\xi) \big|_{\widetilde\xi=\xi} \equiv\theta(\xi,\; t-\xi){\mathbf{1}}_{\{\tau<t-\xi\}}. \end{aligned} \label{eqn33} \end{equation}

Moreover, by applying (A.1) and (B.1) one can obtain the following identities, which are sufficient to finish the proof:

\begin{equation} \begin{aligned} \int_0^t{{\rm e}}^{-{{\lambda}}_0\tau} \varphi(z-c_0\tau, t-\tau)^m(t-\tau-\varphi(z-c_0\tau, t-\tau))^k \\ & \times\theta(\varphi(z-c_0\tau, t-\tau), t-\tau-\varphi(z-c_0\tau, t-\tau))\,{{\rm d}}\tau =\theta(\xi, t-\xi)\int_0^\xi(\varphi(z, t)-\tau)^m(t-\varphi(z, t))^k\,{{\rm d}}\tau \\ & =\theta(\xi, t-\xi)\frac{\xi^{m+1}}{m+1}(t-\xi)^k,\qquad \xi=\varphi(y, t); \end{aligned} \end{equation}

\begin{equation} \begin{aligned} \int_0^t{{\rm e}}^{-{{\lambda}}_1\tau} \varphi(z-c_1\tau, t-\tau)^m(t-\tau-\varphi(z-c_1\tau, t-\tau))^k \\ & \times\theta(\varphi(z-c_1\tau, t-\tau), t-\tau-\varphi(z-c_1\tau, t-\tau))\,{{\rm d}}\tau =\theta(\xi, t-\xi)\int_0^{t-\xi}\varphi(z, t)^m(t-\tau-\varphi(z, t))^k\,{{\rm d}}\tau \\ & =\theta(\xi, t-\xi)\xi^m\frac{(t-\xi)^{k+1}}{k+1}, \end{aligned} \end{equation}

$\xi=\varphi(z, t)$ ; cf. [Reference Kolesnik and Ratanov16, Chapter 4].

Acknowledgements

We express our thanks to the referees for useful comments that helped to improve the paper. A.D.C. and B.M. are members of the research group GNCS of INdAM.

References

Arnold, V. I. (1992). Ordinary Differential Equations. Springer, Berlin.Google Scholar
Bogachev, L. and Ratanov, N. (2011). Occupation time distributions for the telegraph process. Stoch. Process. Appl. 121, 18161844.CrossRefGoogle Scholar
Boxma, O., Kaspi, H., Kella, O. and Perry, D. (2005). On/off storage systems with state-dependent input, output and switching rates. Probab. Engrg. Inform. Sci. 19, 114.CrossRefGoogle Scholar
Davis, M. H. A. (1984). Piecewise-deterministic Markov processes: A general class of non-diffusion stochastic models. J. R. Statist. Soc. B, 46, 353388.Google Scholar
Davis, M. H. A. (1993). Markov Models and Optimization. Chapman & Hall, London.CrossRefGoogle Scholar
De Gregorio, A. (2010). Stochastic velocity motions and processes with random time. Adv. Appl. Prob. 42, 10281056.CrossRefGoogle Scholar
Di Crescenzo, A. and Martinucci, B. (2010). A damped telegraph random process with logistic stationary distribution. J. Appl. Prob. 47, 8496.CrossRefGoogle Scholar
Embrechts, P. and Schmidli, H (1994). Ruin estimation for a general insurance risk model. Adv. Appl. Prob. 26, 404422.CrossRefGoogle Scholar
Garra, R., Orsingher, E. and Ratanov, N. (2017). Planar piecewise linear random motions with jumps. Math. Meth. Appl. Sci. 40, 76737685.CrossRefGoogle Scholar
Gnedenko, B. V. and Kovalenko, I. N. (1989). Introduction to Queueing Theory, 2nd edn. Birkhaüser, Boston.Google Scholar
Jacobsen, M. (2006). Point Process Theory and Applications. Marked Point and Piecewise Deterministic Processes. Birkhäuser, Boston.Google Scholar
Kac, M. (1974). A stochastic model related to the telegrapher’s equation. Rocky Mountain J. Math. 4, 497509.CrossRefGoogle Scholar
Kolesnik, A. D. (1998). The equations of Markovian random evolution on the line. J. Appl. Prob. 35, 2735.CrossRefGoogle Scholar
Kolesnik, A. D. (2007). A note on planar random motion at finite speed. J. Appl. Prob. 44, 838842.CrossRefGoogle Scholar
Kolesnik, A. D. and Orsingher, E. (2005) A planar random motion with an infinite number of directions controlled by the damped wave equation. J. Appl. Prob. 42, b 11681182.CrossRefGoogle Scholar
Kolesnik, A. D. and Ratanov, N. (2013). Telegraph Processes and Option Pricing. Springer, Heidelberg.CrossRefGoogle Scholar
Kyprianou, A. E. (2014). Fluctuations of Lévy Processes with Applications. Introductory lectures, 2nd edn. Springer, Heidelberg.CrossRefGoogle Scholar
Lasota, A., Mackey, M. C. and Tyrcha, J. (1992). The statistical dynamics of recurrent biological events. J. Math. Biol. 30, 775800.CrossRefGoogle Scholar
López, O. and Ratanov, N. (2012). Option pricing driven by a telegraph process with random jumps. J. Appl. Prob. 49, 838849.CrossRefGoogle Scholar
Martinucci, B. and Meoli, A. (2019). On certain functionals of squared telegraph processes. Stoch. Dynam. Available at https://doi.org/10.1142/S0219493720500057.CrossRefGoogle Scholar
Orsingher, E. (2000). Exact joint distribution in a model of planar random motion. Stoch. Stoch. Rep. 69, 110.CrossRefGoogle Scholar
Orsingher, E. and Ratanov, N. (2002) Planar random motions with drift. J. Appl. Math. Stoch. Anal. 15, 189205.CrossRefGoogle Scholar
Ratanov, N. (2007). Jump telegraph processes and financial markets with memory. J. Appl. Math. Stoch. Anal. 2007, 72326.CrossRefGoogle Scholar
Stadje, W. and Zacks, S. (2004). Telegraph processes with random velocities. J. Appl. Prob. 41, 665678.CrossRefGoogle Scholar
Figure 0

Figure 1. Flows $\phi_0(\,{\cdot}\,;\,\; x)$ and $\phi_1(\,{\cdot}\,;\,\; x)$ with common mapping $\Phi\,:\, G\to V$; a sample path of ${{\mathbb X}}^x(t)$.

Figure 1

Figure 2. The support of the distribution of ${{\mathbb X}}(t)$: the Archimedean spiral $\ell({{x}}, t)$ defined by (3.5) with ${{x}}=(10, 0)$, $c_0=2$, $c_1=3$, and time $t=10$.

Figure 2

Figure 3. The regular part of the density function $p_0(\,{\cdot}\,, 10 ~|~ \!{\mid}\!{{x}})$ with $c_0=c_1=1$, ${{\lambda}}_0={{\lambda}}_1=2$, and the initial point ${{x}}=(1, 1)$.