Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-02-06T13:57:22.976Z Has data issue: false hasContentIssue false

A generalized Davenport expansion

Published online by Cambridge University Press:  26 August 2021

Alexander E. Patkowski*
Affiliation:
1390 Bumps River Rd., Centerville, MA02632, USA (alexpatk@hotmail.com, alexepatkowski@gmail.com)
Rights & Permissions [Opens in a new window]

Abstract

We prove a new generalization of Davenport's Fourier expansion of the infinite series involving the fractional part function over arithmetic functions. A new Mellin transform related to the Riemann zeta function is also established.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society

1. Introduction and main result

In 1937, Davenport presented infinite series over arithmetic functions, using the Fourier series of the fractional part function, $\{x\}=x-[x],$ where $[x]$ denotes the integer part of $x$. The integer part function is defined as

\[ [x] := \begin{cases}\lfloor{x\rfloor}, & \text{if } x\ge 0,\\ \lceil{x\rceil}, & \text{if } x<0.\end{cases} \]

Here $\lfloor {x\rfloor }$ returns the greatest integer that is $\le x,$ and $\lceil {x\rceil }$ returns the smallest integer that is $\ge x.$ The main result [Reference Davenport4, Equation (2)] is the explicit formula,

(1.1)\begin{equation} \sum_{n=1}^{\infty}\frac{a(n)}{n}\left(\{nx\}-\frac{1}{2}\right)={-}\frac{1}{\pi}\sum_{n=1}^{\infty}\frac{A(n)}{n}\sin(2\pi n x).\end{equation}

Here $a(n)$ is an arithmetic function and $A(n)=\sum \nolimits _{d|n}a(d).$ To date, many authors have researched (1.1) and associated identities, including its convergence [Reference Bateman and Chowla1,Reference Chakraborty, Kanemitsu and Tsukada2,Reference Jaffard5,Reference Li, Ma and Zhang6,Reference Patkowski9,Reference Segal10]. The principal idea of proving (1.1) through Mellin transforms can be found in Segal [Reference Segal10]. A number of authors have generalized (1.1) through the use of periodic Bernoulli polynomials and Mellin inversion [Reference Chakraborty, Kanemitsu and Tsukada2,Reference Li, Ma and Zhang6].

The purpose of this article is to offer a new generalization of (1.1), and in accomplishing this, we obtain a new Mellin transform. Our main theorem provides a Fourier series with coefficients for both sine and cosine, giving (1.1) as the special case $N=1$. The Mellin transform given in our Theorem 1.2 is a more general form of an integral that has been used to obtain many interesting results, including the functional equation for the Riemann zeta function. Recall that the Riemann zeta function is $\zeta (s)=\sum \nolimits _{n\ge 1}n^{-s},$ for $\Re (s)>1.$

Theorem 1.1 Let $a(n)$ be chosen so that $L(s)=\sum \nolimits _{n\ge 1}a(n)n^{-s}$ is analytic for $\Re (s)>1.$ For $N\ge 1,$ and $F_k(n):=\sum \nolimits _{d|n}d^{-k}a({n}/{d})$, we have for real $x>0,$

\begin{align*} &\sum_{n=1}^{\infty}\frac{a(n)}{n}\left(\{nx\}^{N}+N!\sum_{k=0}^{N-1}\frac{\zeta({-}k)}{(N-k)!k!}\right)\\ &\quad={-}N!\sum_{k=0}^{N-1}\frac{({-}1)^{k}}{(N-k)!}\bigg(\frac{\cos(\frac{\pi}{2}k)}{\pi}\sum_{n=1}^{\infty}\frac{F_k(n)}{n}\sin(2 \pi n x)-\frac{\sin(\frac{\pi}{2}k)}{\pi}\sum_{n=1}^{\infty}\frac{F_k(n)}{n}\cos(2 \pi n x)\bigg). \end{align*}

Our proof ensures that if the infinite series on one side of the theorem converges then the infinite series on the other side converges as well. The Mellin transform we need to establish Theorem 1.1 is given in the following and fits in neatly with the family of integrals given in [Reference Coffey and Lettington3]. Let $(s)_k=\varGamma (s+k)/\varGamma (s)$ denote the Pochhammer symbol.

Theorem 1.2 For $0<\Re (s)< N,$ we have$,$

\[ \int_{0}^{\infty}\{y\}^{N}y^{{-}s-1}dy=N!\sum_{k=0}^{N-1}\frac{({-}1)^{k}\zeta(s-k)}{(N-k)!({-}s)_{k+1}}. \]

Proof. A direct computation gives

(1.2)\begin{equation} \begin{aligned}\int_{1}^{\infty}\{y\}^{N} y^{{-}s-1}\,{\textrm{d}}y & =\sum_{k=1}^{\infty}\int_{k}^{k+1}\{y\}^{N} y^{{-}s-1}\,{\textrm{d}}y\\ & =\sum_{k=1}^{\infty}\int_{0}^{1}\frac{y^{N}}{(y+k)^{s+1}}\,{\textrm{d}}y \\ & =\int_{0}^{1}y^{N}\zeta(s+1,y+1)\,{\textrm{d}}y. \end{aligned} \end{equation}

From [Reference Moll and Espinosa7, p. 184, Equation (12.2)], we have

(1.3)\begin{equation} \int_{0}^{1}y^{N}\zeta(s,y)\,{\textrm{d}}y=N!\sum_{k=0}^{N-1}({-}1)^{k}\frac{\zeta(s-k-1)}{(N-k)!(1-s)_{k+1}},\end{equation}

where $\zeta (s,\,y)$ is the Hurwitz zeta function. The left side may be written

(1.4)\begin{equation} \int_{0}^{1}y^{N}\zeta(s,y+1)\,{\textrm{d}}y+\frac{1}{N-s+1}.\end{equation}

Note that, for $0<\Re (s)< N,$

(1.5)\begin{equation} \int_{0}^{1}\frac{\{y\}^{N}}{y^{s+1}}\,{\textrm{d}}y=\int_{0}^{1}y^{N-s-1}\,{\textrm{d}}y=\frac{1}{N-s}.\end{equation}

Combining (1.21.5) gives the theorem.

2. Proof of main theorem

To prove Theorem 1.1, we first obtain a different form of our main integral result contained in Theorem 1.2. After this is accomplished, we generalize the proof of Segal [Reference Segal10].

Proof of Theorem 1.1. By Theorem 1.2,

(2.1)\begin{equation} \{y\}^{N}=\frac{N!}{2\pi i}\int_{(c)}\bigg(\sum_{k=0}^{N-1}\frac{({-}1)^{k}\zeta(s-k)}{(N-k)!({-}s)_{k+1}}\bigg)y^{s}\,{\textrm{d}}s, \end{equation}

if $0<\Re (s)=c< N$. The integrand has a simple pole at $s=0$. Note that

(2.2)\begin{equation} \lim_{s\rightarrow 0}\left(s\frac{\zeta(s-k)}{({-}s)_{k+1}}y^{s}\right)={-}\frac{\zeta({-}k)}{\varGamma(k+1)}.\end{equation}

Therefore, computing the residue at the pole $s=0,$ and moving the line of integration to $-1<\Re (s)=d<0$ in (2.1),

(2.3)\begin{align} &\frac{1}{2\pi i}\int_{(c)}\left(N!\sum_{k=0}^{N-1}\frac{({-}1)^{k}\zeta(s-k)}{(N-k)!({-}s)_{k+1}}\right)y^{s}\,{\textrm{d}}s\nonumber\\ &\quad=N!\sum_{k=0}^{N-1}\frac{\zeta({-}k)}{(N-k)!k!}+\frac{1}{2\pi i}\int_{(d)}\left(N!\sum_{k=0}^{N-1}\frac{({-}1)^{k}\zeta(s-k)}{(N-k)!({-}s)_{k+1}}\right)y^{s}\,{\textrm{d}}s.\end{align}

Collectively, we have for $y>0$

(2.4)\begin{align} \{y\}^{N}-N!\sum_{k=0}^{N-1}\frac{\zeta({-}k)}{(N-k)!k!} =\frac{1}{2\pi i}\int_{(d)}\left(N!\sum_{k=0}^{N-1}\frac{({-}1)^{k}\zeta(s-k)}{(N-k)!({-}s)_{k+1}}\right)y^{s}\,{\textrm{d}}s. \end{align}

By absolute convergence of $L(1-s)$ in the region $-1<\Re (s)=d<0,$ we may invert the desired series over the coefficients $a(n)$ in (2.4) after replacing $y$ by $ny.$ This gives us

(2.5)\begin{align} &\sum_{n=1}^{\infty}\frac{a(n)}{n}\left(\{ny\}^{N}-N!\sum_{k=0}^{N-1}\frac{\zeta({-}k)}{(N-k)!k!}\right)\nonumber\\ &\quad=N!\sum_{k=0}^{N-1}\frac{({-}1)^{k}}{(N-k)!}\frac{1}{2\pi i}\int_{(d)}\frac{\zeta(s-k)}{({-}s)_{k+1}}L(1-s)y^{s}\,{\textrm{d}}s. \end{align}

Notice that, by the functional equation for the Riemann zeta function [Reference Titchmarsh11, p. 13, Theorem 2.1],

\begin{align*} \frac{\zeta(s-k)L(1-s)y^{s}}{({-}s)_{k+1}} &=\frac{\sin(\frac{\pi}{2}(s-k))\varGamma(1+k-s)\zeta(1+k-s)L(1-s)\varGamma({-}s)y^{s}}{\varGamma(k+1-s)}\\ &=\varGamma({-}s)\sin\bigg(\frac{\pi}{2}(s-k)\bigg)\zeta(1+k-s)L(1-s)y^{s}, \end{align*}

and $\sin (({\pi }/{2})(s-k))=\sin (({\pi }/{2})s)\cos (({\pi }/{2})k)+\cos (({\pi }/{2})s)\sin (({\pi }/{2})k).$ Note that $\zeta (k+s)L(s)=\sum \nolimits _{n\ge 1}F_k(n)n^{-s},$ for $\Re (s)>1.$ Therefore, replacing $s$ by $-s$ in our integral in (2.5), and employing [Reference Paris and Kaminski8, p. 406]

\begin{align*} \int_{0}^{\infty}y^{s-1}\cos(2\pi y)\,{\textrm{d}}y&=(2\pi)^{{-}s}\varGamma(s)\cos\bigg(\frac{\pi}{2}s\bigg),\\ \int_{0}^{\infty}y^{s-1}\sin(2\pi y)\,{\textrm{d}}y&=(2\pi)^{{-}s}\varGamma(s)\sin\bigg(\frac{\pi}{2}s\bigg), \end{align*}

both valid for $0<\Re (s)<1,$ we obtain the Fourier series in the right-hand side in Theorem 1.1. To see this, note that $\zeta (1+k-s)$ is analytic for $-1<\Re (s)<0$ since $k\ge 0.$ The same is true for $L(1-s)$ by hypothesis. Therefore, replacing $s$ by $-s$ moves the line of integration into the region $0<\Re (s)<1,$ and we may interchange the series produced from the product $\zeta (1+k+s)L(1+s)$ with the integral by absolute convergence. The resulting formula is valid for real $x>0,$ by Mellin inversion [Reference Paris and Kaminski8, p. 80].

Acknowledgements

We thank the referee for improving the exposition of this article.

References

Bateman, P. T. and Chowla, S., Some special trigonometric series related to the distribution of prime numbers, J. London Math. Soc. 38 (1963), 372374.CrossRefGoogle Scholar
Chakraborty, K., Kanemitsu, S. and Tsukada, H., Arithmetical Fourier series and the modular relation, Kyushu J. Math. 66(2) (2012), 411427.CrossRefGoogle Scholar
Coffey, M. W. and Lettington, M. C., Mellin transforms with only critical zeros: Legendre functions, J. Number Theory 148 (2015), 507536.10.1016/j.jnt.2014.07.021CrossRefGoogle Scholar
Davenport, H., On some infinite series involving arithmetic function, Q. J. Math. 8 (1937), 813.10.1093/qmath/os-8.1.8CrossRefGoogle Scholar
Jaffard, S., On Davenport expansions, in Fractal geometry and applications: A jubilee of Benoit Mandelbrot, Part 1, Proc. Sympos. Pure Math., Volume 72, pp. 273–303 (American Mathematical Society, Providence, RI, 2004).CrossRefGoogle Scholar
Li, H. L., Ma, J. and Zhang, W. P., On some Diophantine Fourier series, Acta Math. Sinica (Engl. Ser.) 26 (2010), 11251132.CrossRefGoogle Scholar
Moll, V. and Espinosa, O., On some definite integrals involving the Hurwitz zeta function. Part 1, Ramanujan J. 6 (2002), 159188.Google Scholar
Paris, R. B. and Kaminski, D., Asymptotics and Mellin–Barnes Integrals (Cambridge University Press, 2001), https://doi.org/10.1017/CBO9780511546662.CrossRefGoogle Scholar
Patkowski, A., On Popov's formula involving the von Mangoldt function, Pi Mu Epsilon J. 15(1) (Fall 2019), 4547.Google Scholar
Segal, S., On an identity between infinite series of arithmetic functions, Acta Arithmetica 28(4) (1976), 345348.CrossRefGoogle Scholar
Titchmarsh, E. C., The theory of the Riemann zeta function, 2nd edn. (Oxford University Press, 1986).Google Scholar