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Abstract We prove a new generalization of Davenport’s Fourier expansion of the infinite series involving
the fractional part function over arithmetic functions. A new Mellin transform related to the Riemann
zeta function is also established.
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1. Introduction and main result

In 1937, Davenport presented infinite series over arithmetic functions, using the Fourier
series of the fractional part function, {x} = x − [x], where [x] denotes the integer part
of x. The integer part function is defined as

[x] :=

{
�x�, if x ≥ 0,

�x�, if x < 0.

Here �x� returns the greatest integer that is ≤ x, and �x� returns the smallest integer
that is ≥ x. The main result [4, Equation (2)] is the explicit formula,

∞∑
n=1

a(n)
n

(
{nx} − 1

2

)
= − 1

π

∞∑
n=1

A(n)
n

sin(2πnx). (1.1)

Here a(n) is an arithmetic function and A(n) =
∑

d|n a(d). To date, many authors have
researched (1.1) and associated identities, including its convergence [1,2,5,6,9,10]. The
principal idea of proving (1.1) through Mellin transforms can be found in Segal [10].
A number of authors have generalized (1.1) through the use of periodic Bernoulli
polynomials and Mellin inversion [2,6].
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The purpose of this article is to offer a new generalization of (1.1), and in accomplishing
this, we obtain a new Mellin transform. Our main theorem provides a Fourier series with
coefficients for both sine and cosine, giving (1.1) as the special case N = 1. The Mellin
transform given in our Theorem 1.2 is a more general form of an integral that has been
used to obtain many interesting results, including the functional equation for the Riemann
zeta function. Recall that the Riemann zeta function is ζ(s) =

∑
n≥1 n−s, for �(s) > 1.

Theorem 1.1. Let a(n) be chosen so that L(s) =
∑

n≥1 a(n)n−s is analytic for

�(s) > 1. For N ≥ 1, and Fk(n) :=
∑

d|n d−ka(n/d), we have for real x > 0,

∞∑
n=1

a(n)
n

(
{nx}N + N !

N−1∑
k=0

ζ(−k)
(N − k)!k!

)

= −N !
N−1∑
k=0

(−1)k

(N − k)!

(
cos(π

2 k)
π

∞∑
n=1

Fk(n)
n

sin(2πnx) − sin(π
2 k)

π

∞∑
n=1

Fk(n)
n

cos(2πnx)
)

.

Our proof ensures that if the infinite series on one side of the theorem converges then
the infinite series on the other side converges as well. The Mellin transform we need
to establish Theorem 1.1 is given in the following and fits in neatly with the family of
integrals given in [3]. Let (s)k = Γ (s + k)/Γ (s) denote the Pochhammer symbol.

Theorem 1.2. For 0 < �(s) < N, we have,

∫ ∞

0

{y}Ny−s−1dy = N !
N−1∑
k=0

(−1)kζ(s − k)
(N − k)!(−s)k+1

.

Proof. A direct computation gives∫ ∞

1

{y}Ny−s−1 dy =
∞∑

k=1

∫ k+1

k

{y}Ny−s−1 dy

=
∞∑

k=1

∫ 1

0

yN

(y + k)s+1
dy

=
∫ 1

0

yNζ(s + 1, y + 1) dy.

(1.2)

From [7, p. 184, Equation (12.2)], we have

∫ 1

0

yNζ(s, y) dy = N !
N−1∑
k=0

(−1)k ζ(s − k − 1)
(N − k)!(1 − s)k+1

, (1.3)

where ζ(s, y) is the Hurwitz zeta function. The left side may be written∫ 1

0

yNζ(s, y + 1) dy +
1

N − s + 1
. (1.4)
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Note that, for 0 < �(s) < N,

∫ 1

0

{y}N

ys+1
dy =

∫ 1

0

yN−s−1 dy =
1

N − s
. (1.5)

Combining (1.2–1.5) gives the theorem. �

2. Proof of main theorem

To prove Theorem 1.1, we first obtain a different form of our main integral result contained
in Theorem 1.2. After this is accomplished, we generalize the proof of Segal [10].

Proof of Theorem 1.1. By Theorem 1.2,

{y}N =
N !
2πi

∫
(c)

(N−1∑
k=0

(−1)kζ(s − k)
(N − k)!(−s)k+1

)
ys ds, (2.1)

if 0 < �(s) = c < N . The integrand has a simple pole at s = 0. Note that

lim
s→0

(
s
ζ(s − k)
(−s)k+1

ys

)
= − ζ(−k)

Γ (k + 1)
. (2.2)

Therefore, computing the residue at the pole s = 0, and moving the line of integration to
−1 < �(s) = d < 0 in (2.1),

1
2πi

∫
(c)

(
N !

N−1∑
k=0

(−1)kζ(s − k)
(N − k)!(−s)k+1

)
ys ds

= N !
N−1∑
k=0

ζ(−k)
(N − k)!k!

+
1

2πi

∫
(d)

(
N !

N−1∑
k=0

(−1)kζ(s − k)
(N − k)!(−s)k+1

)
ys ds. (2.3)

Collectively, we have for y > 0

{y}N − N !
N−1∑
k=0

ζ(−k)
(N − k)!k!

=
1

2πi

∫
(d)

(
N !

N−1∑
k=0

(−1)kζ(s − k)
(N − k)!(−s)k+1

)
ys ds. (2.4)

By absolute convergence of L(1 − s) in the region −1 < �(s) = d < 0, we may invert the
desired series over the coefficients a(n) in (2.4) after replacing y by ny. This gives us

∞∑
n=1

a(n)
n

(
{ny}N − N !

N−1∑
k=0

ζ(−k)
(N − k)!k!

)

= N !
N−1∑
k=0

(−1)k

(N − k)!
1

2πi

∫
(d)

ζ(s − k)
(−s)k+1

L(1 − s)ys ds. (2.5)
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Notice that, by the functional equation for the Riemann zeta function [11, p. 13,
Theorem 2.1],

ζ(s − k)L(1 − s)ys

(−s)k+1
=

sin(π
2 (s − k))Γ (1 + k − s)ζ(1 + k − s)L(1 − s)Γ (−s)ys

Γ (k + 1 − s)

= Γ (−s) sin
(

π

2
(s − k)

)
ζ(1 + k − s)L(1 − s)ys,

and sin((π/2)(s − k)) = sin((π/2)s) cos((π/2)k) + cos((π/2)s) sin((π/2)k). Note that
ζ(k + s)L(s) =

∑
n≥1 Fk(n)n−s, for �(s) > 1. Therefore, replacing s by −s in our integral

in (2.5), and employing [8, p. 406]∫ ∞

0

ys−1 cos(2πy) dy = (2π)−sΓ (s) cos
(

π

2
s

)
,

∫ ∞

0

ys−1 sin(2πy) dy = (2π)−sΓ (s) sin
(

π

2
s

)
,

both valid for 0 < �(s) < 1, we obtain the Fourier series in the right-hand side in
Theorem 1.1. To see this, note that ζ(1 + k − s) is analytic for −1 < �(s) < 0 since k ≥ 0.
The same is true for L(1 − s) by hypothesis. Therefore, replacing s by −s moves the line
of integration into the region 0 < �(s) < 1, and we may interchange the series produced
from the product ζ(1 + k + s)L(1 + s) with the integral by absolute convergence. The
resulting formula is valid for real x > 0, by Mellin inversion [8, p. 80]. �

Acknowledgements. We thank the referee for improving the exposition of this
article.

References

1. P. T. Bateman and S. Chowla, Some special trigonometric series related to the
distribution of prime numbers, J. London Math. Soc. 38 (1963), 372–374.

2. K. Chakraborty, S. Kanemitsu and H. Tsukada, Arithmetical Fourier series and the
modular relation, Kyushu J. Math. 66(2) (2012), 411–427.

3. M. W. Coffey and M. C. Lettington, Mellin transforms with only critical zeros:
Legendre functions, J. Number Theory 148 (2015), 507–536.

4. H. Davenport, On some infinite series involving arithmetic function, Q. J. Math. 8 (1937),
8–13.

5. S. Jaffard, On Davenport expansions, in Fractal geometry and applications: A jubilee of
Benoit Mandelbrot, Part 1, Proc. Sympos. Pure Math., Volume 72, pp. 273–303 (American
Mathematical Society, Providence, RI, 2004).

6. H. L. Li, J. Ma and W. P. Zhang, On some Diophantine Fourier series, Acta Math.
Sinica (Engl. Ser.) 26 (2010), 1125–1132.

7. V. Moll and O. Espinosa, On some definite integrals involving the Hurwitz zeta
function. Part 1, Ramanujan J. 6 (2002), 159–188.

8. R. B. Paris and D. Kaminski, Asymptotics and Mellin–Barnes Integrals (Cambridge
University Press, 2001), https://doi.org/10.1017/CBO9780511546662.

9. A. Patkowski, On Popov’s formula involving the von Mangoldt function, Pi Mu Epsilon
J. 15(1) (Fall 2019), 45–47.

https://doi.org/10.1017/S0013091521000468 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546662
https://doi.org/10.1017/S0013091521000468


A generalized Davenport expansion 715

10. S. Segal, On an identity between infinite series of arithmetic functions, Acta Arithmetica
28(4) (1976), 345–348.

11. E. C. Titchmarsh, The theory of the Riemann zeta function, 2nd edn. (Oxford University
Press, 1986).

https://doi.org/10.1017/S0013091521000468 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091521000468

	1 Introduction and main result
	2 Proof of main theorem
	References

