1 Introduction
In his ingenious proof of the irrationality of
$\zeta (2)$
and
$\zeta (3)$
, Apéry [Reference Apéry1] introduced the numbers
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S000497272200020X:S000497272200020X_eqnu2.png?pub-status=live)
which are now known as the Apéry numbers. Since the appearance of the Apéry numbers, some interesting arithmetic properties have been gradually discovered. For instance, Sun [Reference Sun8, formula (1.6)] showed that for any prime
$p\ge 5$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S000497272200020X:S000497272200020X_eqnu3.png?pub-status=live)
where
$B_n$
denotes the nth Bernoulli number. In 2012, Guo and Zeng [Reference Guo and Zeng3, Theorem 1.3] proved that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S000497272200020X:S000497272200020X_eqnu4.png?pub-status=live)
In 2012, Sun [Reference Sun8] introduced the Apéry polynomials,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S000497272200020X:S000497272200020X_eqnu5.png?pub-status=live)
and conjectured that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S000497272200020X:S000497272200020X_eqnu6.png?pub-status=live)
where
$\epsilon =\pm 1$
and
$n,m$
are positive integers. This conjectural divisibility result was confirmed by Pan [Reference Pan5, Theorem 1.1].
In 2020, Sun [Reference Sun7, formula (1.8)] introduced the Apéry-like polynomials
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S000497272200020X:S000497272200020X_eqnu7.png?pub-status=live)
Note that
$V_n(n)=A_n$
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S000497272200020X:S000497272200020X_eqnu8.png?pub-status=live)
Let
$p\ge 5$
be a prime and, for
$x\in \mathbb {Z}_p$
, let
$\langle x\rangle _p$
denote the least nonnegative integer a with
$a\equiv x \pmod {p}$
. Sun [Reference Sun7, Theorem 4.5] also showed that for
$x\not \equiv 0,-1\pmod {p}$
and
$x'=(x-\langle x\rangle _p)/p$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S000497272200020X:S000497272200020X_eqnu9.png?pub-status=live)
where
$H_n=\sum _{i=1}^n1/i$
denotes the nth harmonic number.
Recently, Wang [Reference Wang10, Theorem 1.1] proved that for any prime
$p\ge 5$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S000497272200020X:S000497272200020X_eqnu10.png?pub-status=live)
which confirm two supercongruence conjectures due to Sun [Reference Sun9, Conjecture 33].
In his talk at the 7th Chinese National Conference on Combinatorial Number Theory, Z.-H. Sun discussed the sums of squares of the Apéry-like polynomials
$V_n(x)$
and proposed the following divisibility conjecture.
Conjecture 1.1. Let
$p\ge 5$
be a prime. For
$x\in \mathbb {Z}_p$
and
$x\not \equiv -1/2\pmod {p}$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S000497272200020X:S000497272200020X_eqnu11.png?pub-status=live)
The aim of this note is to give a positive answer to this problem as follows.
Theorem 1.2. Let
$p\ge 5$
be a prime. For
$x\in \mathbb {Z}_p$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S000497272200020X:S000497272200020X_eqnu12.png?pub-status=live)
2 Proof of Theorem 1.2
We begin with the following identity [Reference Guo2, formula (2.5)]:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S000497272200020X:S000497272200020X_eqn1.png?pub-status=live)
Using (2.1) twice, we obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S000497272200020X:S000497272200020X_eqnu13.png?pub-status=live)
It follows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S000497272200020X:S000497272200020X_eqn2.png?pub-status=live)
Since
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S000497272200020X:S000497272200020X_eqnu14.png?pub-status=live)
which can be easily proved by induction on N, we deduce that for
$0\le r\le 2p-2$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S000497272200020X:S000497272200020X_eqn3.png?pub-status=live)
Substituting (2.3) into the right-hand side of (2.2) gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S000497272200020X:S000497272200020X_eqn4.png?pub-status=live)
Using the identity,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S000497272200020X:S000497272200020X_eqnu15.png?pub-status=live)
from [Reference Liu4, formula (2.2)], we get
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S000497272200020X:S000497272200020X_eqn5.png?pub-status=live)
Combining (2.4) and (2.5), we obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S000497272200020X:S000497272200020X_eqn6.png?pub-status=live)
Since the summands on the right-hand side of (2.6) are congruent to
$0$
modulo
$p^2$
except for
$j+k=p-1$
, we conclude that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S000497272200020X:S000497272200020X_eqnu16.png?pub-status=live)
where we have used the Chu–Vandermonde identity in the last step.
Furthermore, we have
${p-1\choose s}\equiv (-1)^s\pmod {p}$
and
${2s\choose p-1}\equiv p/(2s+1)\pmod {p}$
for
$0\le s\le p-1$
. It follows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S000497272200020X:S000497272200020X_eqn7.png?pub-status=live)
Next, we recall the identity [Reference Prodinger6, formula (2.1)],
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S000497272200020X:S000497272200020X_eqn8.png?pub-status=live)
The case
$z=1/2$
in (2.8) reads
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S000497272200020X:S000497272200020X_eqn9.png?pub-status=live)
Finally, combining (2.7) and (2.9), we obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230412142831535-0993:S000497272200020X:S000497272200020X_eqnu17.png?pub-status=live)
as desired.