Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-02-11T07:28:38.920Z Has data issue: false hasContentIssue false

The Tricept robot: Inverse kinematics, manipulability analysis and closed-loop direct kinematics algorithm

Published online by Cambridge University Press:  01 July 1999

Bruno Siciliano
Affiliation:
PRISMA Lab, Dipartimento di Informatica e Sistemistica, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy). E-mail: siciliano@disna.dis.unina.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper is aimed at presenting a study on the kinematics of the Tricept robot, which comprises a three-degree-of-freedom (dof) parallel structure having a radial link of variable length. The robot workspace is characterized and the inverse kinematics equation is obtained by using spherical coordinates. The inverse differential kinematics and statics are derived in terms of both an analytical and a geometric Jacobian, and a manipulability analysis along the various workspace directions is developed using the concept of force and velocity ellipsoids. A Jacobian-based Closed-Loop Direct Kinematics (CLDK) algorithm is presented to solve the direct kinematics problem along a given trajectory. Simulation results are illustrated for an industrial robot of the Tricept family.

Type
Research Article
Copyright
© 1999 Cambridge University Press