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SUMMARY
This paper is aimed at presenting a study on the kinematics
of the Tricept robot, which comprises a three-degree-of-
freedom (dof) parallel structure having a radial link of
variable length. The robot workspace is characterized and
the inverse kinematics equation is obtained by using
spherical coordinates. The inverse differential kinematics
and statics are derived in terms of both an analytical and a
geometric Jacobian, and a manipulability analysis along the
various workspace directions is developed using the concept
of force and velocity ellipsoids. A Jacobian-based Closed-
Loop Direct Kinematics (CLDK) algorithm is presented to
solve the direct kinematics problem along a given trajectory.
Simulation results are illustrated for an industrial robot of
the Tricept family.

KEYWORDS: Parallel robots; Inverse kinematics; Jacobian,
Manipulability ellipsoids; Direct kinematics algorithms.

1. INTRODUCTION
Assembly workcells have long constistuted a typical field of
application of industrial robots. Conventional open kine-
matic chain manipulators have been successfully used to
perform assembly of electronic components, e.g. the
SCARA robot. On the other hand, for assembly of
mechanical or electromechanical parts, new robot manip-
ulator geometries have been sought to achieve high position
accuracy along with large payload capability. In this respect,
the adoption of closed-chain mechanisms has constituted a
breakthrough in the area. Robot manipulators with a
parallelogram structure have been designed to naturally
counterbalance the weight of the outer links of the
kinematic chain.

Recently, a novel type of closed-chain manipulators have
been receiving quite a deal of attention; namely, the parallel
robots1 which are constituted by a fixed base and a mobile
base, connected by a number of independent kinematic
chains. This allows obtaining high structural stiffness and
performing high-speed motions, e.g. the Delta robot2 and
the Hexa robot.3 One drawback with respect ot open-chain
manipulators, though, is a typically reduced workspace. In
the study of kinematics of parallel robots, the inverse

kinematics problem admits an analytical solution whereas
the direct kinematics problem may require the use of
iterative algorithms.

A particular family of parallel robots is characterized by
having a radial link connected to the end effector of variable
length. To this family belongs the industrial robot Tricept
HP1 integrated by Comau.4 It is a six-degree-of-freedom
(dof) robot manipulator comprising a three-dof parallel
structure and a spherical wrist.

This work is aimed at studying the kinematics of this
family of robots, with specific concern to the parallel
structure. The robot workspace is characterized and spher-
ical coordinates are used to obtain the inverse kinematics
equation of the structure. Then, the inverse differential
kinematics mapping is derived in terms of the inverse
Jacobian, both the inverse analytic Jacobian and the inverse
geometric Jacobian.5 In force of duality, the inverse statics
mapping is also derived. Such mappings are effectively used
to perform a velocity and force analysis by means of
manipulability ellipsoids,6 demonstrating the features of the
structure from a design standpoint.

The above Jacobians are at the basis of an algorithm to
solve the direct kinematics problem which is developed by
transposition of the well-known Closed-Loop Inverse Kine-
matics (CLIK) algorithm7 used for open-chain robot
manipulators. The algorithm can employ either the trans-
pose of the inverse Jacobian or the direct Jacobian; in the
former case, a simple Layapunov argument is used to prove
algorithm convergence. For given joint motion trajectories,
the resulting trajectory of the mobile base is computed in
terms of both position and velocity. It should be mentioned
that this type of algorithm has already been succesfully used
for the Hexa robot.8,9

Simulation results are illustrated throughout the paper to
validate the theoretical findings.

2. INVERSE KINEMATICS
Most spatial parallel robot prototypes are characterized by
having the outer link connected to the end effector of
variable length. Just recently, the adoption of parallel
structures has found a fertile field also in the robotic
industry. The Tricept HP1 integrated by Comau is a
commercially available robot (Fig. 1), whose primary
application is in the area of assembly when large insertion

Robotica (1999) volume 17, pp. 437–445. Printed in the United Kingdom © 1999 Cambridge University Press

https://doi.org/10.1017/S0263574799001678 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799001678


forces are required, e.g., as in the automobile industry.
Other applications include deburring, milling, wood
machining, laser and water-jet cutting, spot and laser
welding. An International Parallel Kinematic Consortium
has been recently established (October 1998) which is
coordinated by Siemens10 and gathers all the industrial
partners engaged into the Tricept project.

The robot manipulator has a three-dof structure of
parallel type to execute translational motions and a three-
dof spherical wrist to execute rotational motions. The
inventor of this structure is K.-E. Neumann11 while the
mechanics has been constructed by Neos.12 The design has
been logically derived from the Tetrabot.13 Its workspace is
to be considered quite large relative to the robot size, as can
be appreciated from the two side views and the top view in
Figure 2. In order to further enlarge the size of the
workspace, the addition of a revolute joint at the fixed based
has been envisaged, leading to kinematic redundancy into
the robot manipulator.

As for the spherical wrist, this is standard and its direct
and inverse kinematics is well known, see e.g., reference
[5]. Hence, in the remainder the study will focus on the
parallel structure only.

With reference to Figure 3, the parallel structure consists
of three links with actuated prismatic joints (2) allowing
translation along axis III. The fixed base (equilateral
triangle) (1) is part of the supporting structure of the

manipulator. Each link is connected to the triangle by means
of a Cardan joint (3) allowing the link to rotate about axes
I and II that are both orthogonal to the link. On the other
end, the links are connected to the mobile base (equilateral
triangle) (4) by three spherical joints (5). Besides the above
three links, a radial link (6) is present: This is connected to
the fixed base by a three-dof joint allowing the link to rotate
about axes IV and V that are both orthogonal to the link, and
to translate along through-hole axis VI; the connection of
the radial link to the mobile base is fixed and orthogonal so
as to avoid axial rotations and determine the reference point
for the attachment of the spherical wrist.

According to Grübler]s formula,1 the structure is
comprised of 8 bodies, 10 joints (3 spherical with 3 dof’s
each, 3 Cardan with 2 dof’s each, 3 prismatic with 1 dof
each, and 1 3-dof joint) and thus its mobility is
6·(8–10–1)+3·3+3·2+3·1+3=3, and thus the actuation of
the 3 prismatic joints.

It is easy to recognize that the parallel structure has three
dof’s which are described by the axial translation of the
radial link and by the two rotations about two axes
orthogonal to the link itself. Consider the frame O 0 2x0y0z0

attached to the fixed base and the frame O 3 2x3y3z3 attached
to the mobile base, and let r, a, b denote a set of spherical
coordinates (Figure 4). With reference to the robot work-
space, these coordinates vary within the limits

930≤r ≤1530 2
p

3
≤ a≤

p

3
2

p

3
≤ b≤

p

3
(1)

where dimensions are expressed in mm and rad; further, the
side lengths of the two triangles are a=600 for the fixed
base and b=173 for the mobile base, respectively.

The inverse kinematics equation gives the vector of
prismatic joint variables q =[q2 q2 q3]

T as a function of the
vector of spherical coordinates x =[r a b]T. In order to
derive it, it is sufficient to consider the origin of frame 3
with respect to frame 0 described by the position vector

O0O3 =

x
y
z

=

rsacb

rsb

rcacb

(2)

and the orientation of frame 3 with respect to frame 0
described by the rotation matrix

R 0
3 =

ca

0
2sa

2sasb

cb

2casb

sa

sb

cacb

, (3)

where standard abbreviations sa = sin a, ca = cos a have
been used. Notice that the above transformation from
spherical to Cartesian coordinates is always well defined
except when b =±p/2 but, with reference to (1), this value
is of no interest since it is outside the robot workspace.

After simple computation, the inverse kinematics equa-
tion can be obtained in the form:Fig. 1. The robot Comau Tricept HP1.
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Notice that the solution is unique since the joint variables
attain positive values only.

3. MANIPULABILITY ANALYSIS
Having determined the inverse kinematics equation, it is
possible to compute the inverse differential kinematics

mapping between the vector of task space velocities ẋ =[ṙ ȧ
ḃ ]T and the vector of joint velocities q̇ =[q̇1 q̇2 q̇3 ]T in the
form

q̇ = J 21
A (x)ẋ (5)

with
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where, with reference to (4), the property q̇i = (1/2qi)
(dq2

i /dt ) for i =1, 2, 3 has been exploited. The matrix JA is
the analytical Jacobian5 to be distinguished from the
geometric Jacobian J relating the joint velocity vector to the
linear velocity vector y =[yx yy yz]

T obtained from the
position vector p =[x y z]T of the origin of the frame
attached to the mobile base (Figure 4). The inverse
differential kinematics in terms of the geometric Jacobian is
written as

q̇ = J 21(p)y. (7)

By comparing (5) with (7), the relationship between the two
Jacobians is established by

Fig. 2. Side and top views of robot workspace.
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J 21(p)= J 21
A (x)TA(p) (8)

where the transformation matrix is

x

Ïx2 +y2 +z2

y

Ïx2 +y2 +z2

z

Ïx2 +y2 +z2

T A =
z

x2 +z2

0
2

x
x2 +z2 .

2
xy

(x2 +y2 +z2)Ïx2 +z2

x2 +z2

(x2 +y2 +z2)Ïx2 +z2

yz

2 (x2 +y2 +z2)Ïx2 +z2

(9)

The above workspace limits (1) can be expressed in terms of
Cartesian coordinates as

2765Ï3 ≤ x ≤ 765Ï3 2765Ï3 ≤ y ≤ 765Ï3 382.5 ≤ z ≤ 1530 (10)

from which it can be seen that T A is always nonsingular
inside the workspace. In fact, as a result of a MATLAB
simulation, Figure 5 illustrates the determinant of TA as a
function of x and y for z=1000. It can be seen that the
transformation TA does not introduce representation singu-
larities, and the singularities of the inverse differential
kinematics mapping are those of either J 21

A or J 21. In
particular, a singularity analysis of the determinant of J 21

A

reveals that this is always different from zero inside the
workspace, e.g., as illustrated also in Figure 5 as a function
of a and b for r=1000. The apparent discrepancy in the
orders of magnitude of the two determinants in Figure 5 is
just caused by the use of millimeters in the dimensions.

By virtue of the duality established by the principle of
virtual works, the inverse statics mapping between the
vector of joint torques t and the vector of linear forces f on
the mobile base is given by

f = J 2T(p)t. (11)

The kineto-static duality can be keenly exploited to carry
out a velocity/force analysis of the structure in terms of
manipulability ellipsoids.6 The sphere in the joint velocity
space

q̇Tq̇ =1 (12)

under the mapping (7) is transformed into the velocity
manipulability ellipsoid in the linear velocity space

yT(J (p)JT(p))21y=1. (13)

Dually, the sphere in the joint torque space

tTt=1 (14)

under the mapping (11) is transformed into the force
manipulability ellipsoid in the linear force spaceFig. 3. Characterization of parallel structure.

Fig. 4. Left: frame definitions – right: spherical and Cartesian coordinates.
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fT(J(p)J T(p))f =1. (15)

The principal axes of the two ellipsoids coincide, while the
dimensions of the respective axes are in inverse proportion.
Therefore, according to the concept of force/velocity
duality, a direction along which good velocity manipul-
ability is obtained is a direction along which poor force
manipulability is obtained, and vice versa. This is confirmed
by the results in Figure 6 which illustrate the intersections of
the force and velocity manipulability ellipsoids with the yz
plane and the xz plane, respectively, when the manipulator is
in the following configurations: p =[0 0 1530]T, p =[0 2930
600]T, p =[0 930 1000]T.

Further insight into the robot manipulability can be
gained by resorting to the mechanical transformer formal-
ism in reference [14]. Once a unit vector u along a direction
has been assigned, it is possible to compute the transforma-
tion ratio for the velocity manipulability ellipsoid as

n(p )=SuT(J (p)J T(p))21uD21/2

(16)

and for the force manipulability ellipsoid as

f(p )=SuTJ (p)J T(p)uD21/2

. (17)

The transformation ratios have been computed at certain
robot configurations along given directions (see Table I). A
comparison between the results in the first two rows clearly
indicates the capability of the robot to exert larger values of
forces along the vertical direction as well as to move at
larger speeds along a horizontal direction. Also, from a
comparison between the results in the first and third rows it
is seen that n increases while f decreases as z decreases;
this is in agreement with the fact, as z increases, the
prismatic joints tend to attain a vertical configuration and
thus they have a better capability to exert forces along that
direction. Interestingly enough, at the configuration in the
fourth to sixth row, the length of the radial link is equal to
that in the configuration in the first two rows; the results in
those rows confirm the intuition that the mechanical
structure is designed so as to exhibit a good attitude to exert
forces along the direction of the radial link, and such

Fig. 5. Left: determinant of transformation matrix – right: determinant of inverse of analytical Jacobian.

Fig. 6. Force and velocity manipulability ellipses. Left: in plane yz – right: in plane xz.

Table I. Transformation ratios for certain configurations along given
directions

p T u T n f

[0 0 1530] [0 0 1] 0.584 1.710
[0 0 1530] [0 21 0] 3.653 0.274
[0 0 1050] [0 0 1] 0.593 1.686

[662.5 1325 382.5] [0 0 1] 2.389 0.064
[662.5 1325 382.5] [0 21 0] 0.669 0.294
[662.5 1325 382.5] [0.433 0.866 0.25] 0.583 1.633
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attitude improves as much as the radial link tends to be
aligned with the vertical direction.

4. CLDK ALGORITHM
The direct kinematics problem for a parallel robot consists
of finding the vector of position coordinates p (or x) as a
function of the vector of joint variables q. Typically, such a
problem does not admit closed-form solutions and numer-
ical algorithms should be used. A crucial point with using a
numerical algorithm15 regards the possibility of computing
all the feasible solutions to the problem, and preventing
solutions to jump from one branch to another. For the
parallel structure at issue in this work, up to eight solutions
can be found; this result can be derived by referring to the
direct kinematics of the parallel manipulator analyzed in
reference [16] when three of the six links have fixed length
and intersect at a common point.

A conceptually different approach to the problem can be
pursued as follows. Instead of seeking one (or more)
position solution corresponding to the given set of joint
variable, the direct kinematics problem can be formulated as
that to determine the motion of the mobile base as a function
of the joint motion. In other words, assume that the initial
joint configuration is assigned and a corresponding feasible
position is known, e.g. via an off-line analytical or
numerical procedure; assume, also, that a joint trajectory is
assigned as a function of time (joint positions and
velocities). Then, the goal is to compute on-line the
resulting trajectory of the mobile base (position and
velocity) starting from the initial posture of the robot. Such
an approach involves the use of the robot differential
kinematics as in the well-known Closed-Loop Inverse
Kinematics (CLIK) scheme7 developed for open-chain robot
manipulators, which provides an inverse kinematics algo-
rithm whose convergence is ensured through the stability of
a closed-loop dynamic system of the tracking error.

Therefore, an effective solution to the direct kinematics
problem for a parallel robot can be devised by transposing
the above CLIK algorithm as explained below. Let qd denote
a set of desired joint variables and

e = qd 2 q (18)

denote the error between qd and the computed joint variables
q. Differentiating (18) with respect to time and accounting
for (7) yields

ė= q̇d 2 J 21(p)v (19)

This error dynamics equation is at the basis of a Closed-
Loop Direct Kinematics (CLDK) algorithm based on the
geometric Jacobian. In particular, taking

y=J(p)(q̇d + Ke) (20)

leads to the linear system

ė + Ke =0, (21)

and the choice of a positive definite (symmetric) matrix gain
K guarantees that the error uniformly converges to zero, i.e.
p that can be computed by integration of (20) is a solution
to the direct kinematics problem. Notice that both position
and velocity are obtained for given joint position and
velocities; the closed loop on the tracking error of the
algorithm guarantees convergence and eliminates the
steady-state errors, as in typical open-loop resolved rate
schemes instead. The resulting CLDK algorithm can be
represented in block scheme form as in Figure 7 which
shows that the inverse of the Jacobian inverse has to be
computed besides the inverse kinematics function in the
return path.

An alternative and computationally more efficient solu-
tion can be devised which avoids the inversion of the inverse
geometric Jacobian to compute J in (20). In fact, the
choice

v= J 2T(p)Ke (22)

is based on the transpose of the inverse geometric Jacobian.
In this case, convergence of the algorithm can be studied by
considering the positive definite Lyapunov function

V =
1
2

eTKe. (23)

Taking the time derivative of (23) and computing it along
the trajectories of the error system (19) gives

V̇=eTKq̇d 2 eTKJ 21(p)J 2T(p)Ke (24)

which reveals that, if q̇d =0 then the second term is negative
definite and thus e asymptotically converges to zero. On the
other hand, for a time-varying trajectory q̇d ≠0, the tracking
error can be upper bounded by suitably increasing the
eigenvalues of K and in any case convergence is obtained at
steady state. The resulting CLDK algorithm can be
represented in block scheme form as in Figure 8 which

Fig. 7. Block scheme of CLDK algorithm using the inverse of the Jacobian inverse.
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shows that the transpose of the Jacobian inverse has to be
computed besides the inverse kinematics function in the
return path. Notice that, differently from the solution (20),
the solution (22) does not require the inversion of the
inverse geometric Jacobian and thus it may work well also
in the neighbourhood of kinematic singularities.

It should be clear that analogous direct kinematics
algorithms can be formulated on the basis of the analytical
Jacobian, and the expected performance is essentially the
same as long as representation singularities are not encoun-
tered; as seen above, this is the case for the parallel robot at
issue in this work.

In order to test the effectiveness of the presented direct
kinematics algorithms, a case study has been simulated in
MATLAB by using Euler numerical integration at 1 ms
sampling time. The mobile base is in the initial position
p =[0 0 1479.6] corresponding to the posture q =[1500 1500
1500]. The following desired trajectory profile is assigned to

the joint variables:

152t3 2456t2 +1500
165t3 2495t2 +1500
41t3 2123t2 +1500

0≤ t ≤ 2

qd(t)=

891
838
1337

t > 2.

The two algorithms based on solutions (20) and (22) have
been implemented with a matrix gain K =diag{500, 500,
500}. The results are illustrated in Figures 9 and 10 in terms
of the time history of the three components of position and
velocity of the mobile base and of the norm of the tracking

Fig. 8. Block scheme of CLDK algorithm using the transpose of the Jacobian inverse.

Fig. 9. Time history of position and velocity of mobile base and norm of tracking error for the CLDK algorithm based on the inverse
of the Jacobian inverse.
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error, for the two algorithms, respectively. It can be
recognized that the tracking error is practically null for the
first algorithm, and is anyhow limited for the second
algorithm (of the order of the millimeter). Nevertheless,
error convergence to zero at steady state is ensured in both
cases. Furthermore, it can be recognized how the resulting
motion of the mobile base is continuous, i.e. it does not
involve any abrupt jump from one solution to another.

5. CONCLUSION
The results of a study on the kinematics of the Tricept
parallel robot have been reported in this work. The inverse
kinematics equation has been obtained in analytical form
and the inverse Jacobian has been derived to characterize
the inverse differential kinematics mapping. Based on a
kineto-static duality concept, a manipulability analysis of
the structure has been accomplished to ascertain the
procedure to execute forces/velocities along given work-
space directions. The direct kinematics problem has been
solved by resorting to a closed-loop algorithm based either
on the inverse or on the transpose of the inverse Jacobian,
leading to computing both the position and velocity of the
mobile base as a function of the joint trajectories. Simula-
tion results for the industrial parallel robot Comau Tricept
HP1 have shown the effectiveness of the approach.
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