Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-02-07T09:48:04.996Z Has data issue: false hasContentIssue false

Singularity-locus expression of a class of parallel mechanisms

Published online by Cambridge University Press:  07 May 2002

Raffaele Di Gregorio
Affiliation:
Department of Engineering, University of Ferrara, Via Saragat, 1; 44100 FERRARA (Italy)rdigregorio@ing.unife.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In parallel mechanisms, singular configurations (singularities) have to be avoided during motion. All the singularities should be located in order to avoid them. Hence, relationships involving all the singular platform poses (singularity locus) and the mechanism geometric parameters are useful in the design of parallel mechanisms. This paper presents a new expression of the singularity condition of the most general mechanism (6-6 FPM) of a class of parallel mechanisms usually named fully-parallel mechanisms (FPM). The presented expression uses the mixed products of vectors that are easy to be identified on the mechanism. This approach will permit some singularities to be geometrically found. A procedure, based on this new expression, is provided to transform the singularity condition into a ninth-degree polynomial equation whose unknowns are the platform pose parameters. This singularity polynomial equation is cubic in the platform position parameters and a sixth-degree one in the platform orientation parameters. Finally, how to derive the expression of the singularity condition of a specific FPM from the presented 6-6 FPM singularity condition will be shown along with an example.

Type
Research Article
Copyright
2002 Cambridge University Press