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SUMMARY
In parallel mechanisms, singular configurations (singular-
ities) have to be avoided during motion. All the singularities
should be located in order to avoid them. Hence, relation-
ships involving all the singular platform poses (singularity
locus) and the mechanism geometric parameters are useful
in the design of parallel mechanisms. This paper presents a
new expression of the singularity condition of the most
general mechanism (6-6 FPM) of a class of parallel
mechanisms usually named fully-parallel mechanisms
(FPM). The presented expression uses the mixed products
of vectors that are easy to be identified on the mechanism.
This approach will permit some singularities to be geo-
metrically found. A procedure, based on this new expres-
sion, is provided to transform the singularity condition into
a ninth-degree polynomial equation whose unknowns are
the platform pose parameters. This singularity polynomial
equation is cubic in the platform position parameters and a
sixth-degree one in the platform orientation parameters.
Finally, how to derive the expression of the singularity
condition of a specific FPM from the presented 6-6 FPM
singularity condition will be shown along with an example.

KEYWORDS: Parallel manipulators; Kinematics; Mobility
analysis; Singularity locus.

1. INTRODUCTION
Spatial parallel mechanisms (SPM) comprise two rigid
bodies (platform and base) connected to one another by a
number of kinematic chains (legs). The base is the frame
and the platform is the end-effector, whereas only some leg
kinematic pairs are actuated.

A large class of SPMs is the one collecting all those
whose legs are either kinematic chains of the SPS type (S
and P stand for spherical pair and prismatic pair respec-
tively) with actuated prismatic pair, or kinematic chains
equivalent to the SPS chain with actuated prismatic pair.
The mechanisms of this class are usually named fully-
parallel mechanisms1 (FPM). The underlying architectures
are called m-n FPM where m and n are numbers ranging
from 1 to 6 and indicate the numbers of distinct spherical
pairs in the base and in the platform respectively. The 6-6
FPM architecture is the most general one (Figure 1). All the
m-n FPM can be derived from the 6-6 FPM making two or
more spherical pairs coincide in the base and/or in the
platform.

Accordingly, the theoretical results, regarding the 6-6
FPM, are applicable to any m-n FPM, provided that the m-n
FPM peculiar geometry is introduced in the general
relationships obtained for the 6-6 FPM.

The direct position analysis of the 6-6 FPM has been
discussed for a long time and just recently solved.2,3

Another theoretical problem, regarding the same class of
parallel mechanisms, is the identification of all the singular
configurations. Singular configurations (singularities) are
those in which the relationship between the velocities of the
end-effector points and the time derivatives of the active
joint coordinates is not one-to-one. When a parallel
mechanism reaches a singularity, the platform pose (posi-
tion and orientation) cannot be controlled any longer and
infinite active forces are required to balance external forces
applied to the platform. Therefore, singularities have to be
avoided during motion.

The first step to avoid singularities is to identify all of
them. As a consequence, relationships, relating in explicit
form all the singular platform poses (singularity locus) to
the mechanism geometric parameters, are very useful in the
design of parallel mechanisms.

Singularities have been classified4 and physically inter-
preted.5 Moreover, Merlet6 characterized the FPM sin-
gularities by using geometric concepts (Grassmann
geometry). Singularity-locus expressions (singularity
equations) have been reported in the literature for some
parallel mechanisms having three degrees of freedom
(dof).7–11

Two procedures to obtain partial expressions of the 6-6
FPM singularity locus for given mechanism geometry
and platform orientation were discussed by St-Onge and

Fig. 1. The 6-6 fully-parallel mechanism.
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Gosselin.12 The first procedure is based on the linear
decomposition of the determinant of the Jacobian matrix;
the other is based on the systematic use of standard software
packages implementing algebraic manipulations. The only
relevant result of the approach used by St-Onge and
Gosselin12 is that the 6-6 FPM singularity equation is a
cubic polynomial equation in the coordinates of one
platform point, when the platform orientation and the
mechanism geometry are given. No information is provided
about how the 6-6 FPM singularity equation depends on the
platform orientation parameters.

This paper shows that a general explicit-form singularity
condition can be written for the 6-6 FPM. This condition
has to be met by all 6-6 FPM platform singular poses. The
same condition can be exploited in order to find geometric
conditions to be satisfied by singularities, even if a
systematic search of the geometric singular conditions is
difficult to implement.

Moreover, using the Rodrigues parameters to para-
meterize the platform orientation, the singularity condition
in question can be transformed into a ninth-degree poly-
nomial equation which is cubic in the coordinates of one
platform point and a sixth-degree one in the Rodrigues
parameters.

Eventually, how to obtain the singularity condition of an
m-n FPM from the 6-6 FPM singularity condition derived
here will be shown along with an example.

2. SINGULARITY CONDITION
Figure 2 illustrates the notation that will be used. The Bi

points for i=1, . . . , 6 are the base spherical pair centers; the
Pi points for i=1, . . . , 6 are the platform spherical pair
centers. The Sb and Sp coordinate frames are fixed to the
base and to the platform, respectively. The Ob and P points
are the origins of Sb and Sp, respectively. Moreover, the i-th
leg is the one whose spherical pair centers are Bi and Pi; the
i-th leg axis is the line through Bi and Pi; the i-th leg length
is that of the BiPi segment and will be called di.

The 6-6 FPM closure equations can be written as

(Pi �Bi)
2 =di

2, i=1, . . . , 6 (1)

where bold capital letters indicate position vectors measured
in Sb.

If Equations (1) are dependent, the platform can accom-
plish finite displacements without changing the leg lengths

(global singularity). This condition can occur in (i) special
mechanism configurations (kinematotropic mechanism) or
in (ii) any mechanism configuration (architecture singu-
larity). Henceforth, the mechanism geometry is supposed to
be such that the global singularities are excluded.

Differentiation of Equations (1) gives the relationships

Ṗi · (Pi �Bi)=diḋi, i=1, . . . , 6 (2)

where Ṗi and ḋi are the velocity of Pi and the time derivative
of di, respectively.

The Ṗi velocities for i=1, . . . , 6 can be written as

Ṗi = Ṗ+�� (Pi �P), i=1, . . . , 6 (3)

where Ṗ and � are the velocity of point P and the platform
angular velocity, respectively.

Taking into account relationships (3), Equations (2)
become

(Pi �Bi) · Ṗ+[(Pi �P)� (Pi �Bi)] · �=diḋi, i=1, . . . , 6 (4)

Equations (4) can be written in vector form as

JT�Ṗ
��=Dḋ (5)

where

d=[d1, d2, d3, d4, d5, d6]
T (6.1)

D=

d1

0

0

0

0

0

0

d2

0

0

0

0

0

0

d3

0

0

0

0

0

0

d4

0

0

0

0

0

0

d5

0

0

0

0

0

0

d6

(6.2)

ḋ=[ḋ1, ḋ2, ḋ3, ḋ4, ḋ5, ḋ6]
Y (6.3)

J=�U
V� (6.4)

with

U=[u1, u2, u3, u4, u5, u6] (6.5)

ui =Pi �Bi, i=1, . . . , 6 (6.6)

V=[v1, v2, v3, v4, v5, v6] (6.7)

vi = (Pi �P)� ui, i=1, . . . , 6 (6.8)

(symbol [.]T denotes the transpose of [.]).
JT and D are the 6-6 FPM Jacobian matrices. If the rank

of any of D and J is smaller than six, system (5) is not a one-
to-one mapping between the twist of the platform, [ṖT, �T]T,
and the joint rates, ḋi for i=1, . . . , 6, (local singularity).

If rank(D) is smaller than six, infinitesimal leg-length
variations can occur with the platform at rest. Since D is a
diagonal matrix, whose diagonal entries are the leg lengths,
its rank will be smaller than six, if and only if one or more
leg length vanishes. This condition is readily identified and,
in practice, excluded by the mechanism physical limits.Fig. 2. Notations.
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If rank(J) is smaller than six, infinitesimal platform
displacements can occur without changing the leg lengths,
i.e., with all the ḋi for i=1, . . . , 6 equal to zero. This
condition occurs when the platform assumes a pose
(position and orientation) making J singular. Therefore, the
singularity condition is

det(J)=0 (7)

The determinant of J can be written by using the third-order
minors of the U and V submatrices of J by suitably
exploiting the properties of determinants.13 So doing, the
following expression of det(J) results:

det(J)=u123v456 �u124v356 +u125v346 �u126v345 +u134v256

�u135v246 +u136v245 +u145v236 �u146v235

+u156v234 �u234v156 +u235v146 �u236v145

�u245v136 +u246v135 �u256v134 +u345v126

�u346v125 +u356v124 �u456v123 (8)

where

uijk =det([ui, uj, uk])=ui · uj� uk, i, j, k=1, . . . , 6 (9.1)

vijk =det([vi, vj, vk])=vi · vj � vk, i, j, k=1, . . . , 6 (9.2)

Since the Sp origin, P (Figure 2), can be arbitrarily chosen,
it can be coincident with P1 without losing generality. If P
coincides with P1, vector v1, defined by relationship (6.8),
vanishes and all the v1jk mixed products for j, k=2, . . . , 6
vanish. Therefore, expression (8) becomes

det(J)=u123v456 �u124v356 +u125v346 �u126v345

+u134v256 �u135v246 +u136v245 +u145v236

�u146 v235 +u156v234 (10)

The singularity condition (7), featuring expression (8) or
(10) instead of det(J), is the condition that vectors ui and vi

for i=1, . . . , 6 have to satisfy in any singular configura-
tion.

2.1. Geometric interpretation
The geometric relationships among the leg axes in a
singular configuration can be obtained by analyzing ex-
pression (8) or (10) of det(J). In this subsection, some
geometric conditions, making each addend in expressions
(8) and/or (10) vanish, will be presented. The zeroing of
each addend is just one of the conditions making det(J)
vanish. Therefore, the geometric conditions reported below
are not exhaustive.

(a) All the leg axes are parallel to a single plane.
PROOF: If all the leg axes are parallel to a single plane,
the uijk mixed products for i, j, k=1, . . . , 6 will be equal
to zero. Therefore, each addend of expression (8)
vanishes. Q.E.D.

(b) One leg length vanishes.
PROOF: Without loss of generality, the first leg will be
assumed to have zero length. If d1 is zero, u1 vanishes.
Hence, all the u1jk mixed products for j, k=2, . . . , 6, are

zero. As a consequence, expression (10) vanishes.
Q.E.D.

(c) One leg axis is perpendicular to all the straight lines
normal to each couple of leg axes chosen among the
remaining five leg axes.
PROOF: Without loss of generality, the reference leg
will be assumed to be the first one. If the first leg axis
is perpendicular to all the straight lines normal to each
couple of leg axes chosen among the 2nd, 3rd, . . . , 6th
leg axes, then all the u1jk mixed products for
j, k=2, . . . , 6 will be zero. As a result, expression (10)
vanishes. Q.E.D.

(d) All the leg axes pass through a point, P� (Figure 3a).
PROOF: Without loss of generality, the origin, P, of Sp

can be chosen coincident with P�. If P coincides with P�
and all the leg axes pass through P�, definition (6.8) will
lead to the conclusion that all the vi vectors for
i=1, . . . , 6 vanish. Therefore, all the vijk mixed prod-
ucts for i, j, k=1, . . . , 6 vanish and expression (8) also
vanishes. Q.E.D.

(e) All the leg axes intersect a single straight line
(Figure 3b).
PROOF: Without loss of generality, a point lying on the
line intersecting all the leg axes will be chosen as the
origin P of Sp. If P lies on this line, definition (6.8) will
lead to the conclusion that all the vi vectors for
i=1, . . . , 6 are parallel to a plane perpendicular to this

Fig. 3. Some singular configurations: (a) all the leg axes converge
towards a point; (b) all the leg axes intersect a straight line;
(c) four leg axes lie on a plane and the other two leg axes intersect
one another in a point lying on the same plane.
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line. Therefore, all the vijk mixed products for
i, j, k=1, . . . , 6 are equal to zero and expression (8)
vanishes, too. Q.E.D.

(f) Four leg axes lie on a plane and the other two intersect
each other in a point, P�, lying on the same plane (Figure
3c).
PROOF: Without loss of generality, it will be assumed
that the axes of the 3rd, 4th, 5th and 6th legs lie on a
plane and the origin P of Sp coincides with P�. If u3, u4,
u5 and u6 lie on a plane and P coincides with P�,
definition (6.8) will lead to the conclusion that v3, v4, v5

and v6 are perpendicular to the same plane and v1 and v2

are null vectors. Therefore, the v1jk and v2jk mixed
products for j, k=1, . . . , 6 are equal to zero because v1

and v2 are null vectors whilst v456, v356, v346 and v345 are
equal to zero because v3, v4, v5 and v6 are parallel
vectors. As a consequence, all the addends of expression
(8) vanish. Q.E.D.

3. SINGULARITY EQUATION
The expression (10) of det(J) is the sum of ten addends of
type u1ijvkmn, where the i, j, k, m and n index values are
obtained by permuting the 2-3-4-5-6 integer number
sequence. Therefore, an explicit expression of det(J),
containing all the mechanism geometric parameters and the
platform pose parameters, can be obtained with the
following procedure:

(i) the generic mixed product u1ij is written in explicit
form;

(ii) the generic mixed product vkmn is written in explicit
form;

(iii) the symbolic explicit expression of the generic addend
u1ijvkmn is obtained by multiplying the explicit ex-
pressions of u1ij (step (i)) and vkmn (step (ii));

(iv) the explicit expression of det(J) is obtained by
calculating each expression (10) addend from the
symbolic explicit expression of the generic addend
(step (iii)) and by adding the computed addends.

This procedure can be implemented without systematically
resorting to computer algebra, which makes it possible to
find the type of explicit expression of det(J) after the first
two steps have been implemented. In the following
paragraphs, the explicit expressions of u1ij and vkmn will be
derived, followed by the transformation of the singularity
condition (7) into a ninth-degree polynomial equation,
whose unknowns are the platform pose parameters.

The platform pose will be assigned by means of the P1

coordinates, measured in Sb, and the rotation matrix Rbp

transforming vector components measured in Sp into vector
components measured in Sb.

3.1. Explicit expression of u1ij

Definitions (6.6) and (9.1) yield the following expression of
u1ij:

u1ij = (P1 �B1) · (Pi �Bi)� (Pj �Bj) (11)

The Bq position vectors, q=1, i, j, are constant vectors
depending on the base geometry. On the contrary, the Pq

position vectors, q=1, i, j, depend on the platform pose
parameters and the platform geometry, according to the
following relationship

Pq =P1 +Rbp
p(Pq �P1) (12)

where the left superscript p indicates a vector expressed in
Sp coordinates.

By taking into account relationship (12) and expanding
the cross products, expression (11) becomes

u1ij = (P1 �B1) · {Rbp
p[(Pi �P1)� (Pj �P1)]

+Bi� Bj �P1� (Bj �Bi)+P1� [Rbp
p(Pj �Pi)]

+Bj� [Rbp
p(Pi �P1)]�Bi� [Rbp

p(Pj �P1)]} (13)

Moreover, by expanding the dot product in expression (13)
and simplifying the mixed products having two parallel
vectors, expression (13) becomes

u1ij =P1 · {Rbp
p[(Pi �P1)� (Pj �P1)]+Bi� Bj

+Bj� [Rbp
p(Pi �P1)]�Bi� [Rbp

p(Pj �P1)]}

�B1 · {Rbp
p[(Pi �P1)� (Pj �P1)]+Bi� Bj

�P1� (Bj �Bi)+P1� [Rbp
p(Pj �Pi)]+Bj

� [Rbp
p(Pi �P1)]�Bi� [Rbp

p(Pj �P1)]} (14)

The p(Pi �P1), 
p(Pj �P1) and p(Pj �Pi) vectors are constant

vectors depending on the platform geometry.
Expression (14) is the u1ij sought-after explicit form

depending on the mechanism geometric parameters and the
platform pose parameters. Expression (14) is linear in the P1

coordinates and in the Rbp entries; moreover, it includes the
products of the P1 coordinates and the Rbp entries.

Eventually, it is noteworthy that expression (14) would be
greatly simplified if the origin Ob of Sb (Fig. 2) coincided
with B1.

3.2. Explicit expression of vkmn

Definitions (6.6), (6.8) (P�P1) and (9.2) yield the following
expression for vkmn:

vkmn =[(Pk �P1)� (Pk �Bk)] · [(Pm �P1)� (Pm �Bm)]

� [(Pn �P1)� (Pn �Bn)] (15)

By using the vector identity a� (b� c)=(a · c)b� (a · b)c,
where a, b and c are any vectors, and the mixed product
properties, the following identity can be obtained

[(Pm �P1)� (Pm �Bm)]� [(Pn �P1)� (Pn �Bn)]

=[(Pm �Bm)� (Pn �Bn) · (Pm �P1)](Pn �P1)

+[(Pm �P1)� (Pn �P1) · (Pm �Bm)](Pn �Bn) (16)

By introducing expression (16) into (15) and expanding
(15), expression (15) becomes

vkmn =�smntkn + tmnskn (17)

where

sin =(Pi �Bi)� (Pn �Bn) · (Pi �P1), i=m, k (18.1)

tin =(Pi �P1)� (Pn �P1) · (Pi �Bi), i=m, k (18.2)

By substituting expressions (12) with q=i and q=n,
respectively, for Pi and Pn in definitions (18), expanding and
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simplifying those definitions, the following explicit expres-
sions of sin and tin are obtained:

sin =� tin +(Bi� Bn) · [Rbp
p(Pi �P1)]

+P1� (Bi �Bn) · [Rbp
p(Pi �P1)] (19.1)

tin =P1 · {Rbp
p[(Pi �P1)� (Pn �P1)]}

�Bi · {Rbp
p[(Pi �P1)� (Pn �P1)]} (19.2)

Expressions (19) are linear in the coordinates of P1 and in
the entries of Rbp. Moreover, they contain products of the P1

coordinates and the Rbp entries. Therefore, by substituting
expressions (19) for sin and tin, i=m, k, into expression (17),
the resultant expression of vkmn is quadratic in the P1

coordinates and the Rbp entries; besides, it contains products
of quadratic terms of the P1 coordinates and the quadratic
terms of the Rbp entries.

3.3. Explicit expressions of det(J) and the singularity
condition
The product of u1ij, (Eq. (14)), and vkmn, (Eq. (17)), gives the
explicit expression of the generic addend u1ijvkmn of det(J).
Since u1ij and vkmn are linear and quadratic, respectively, in
the P1 coordinates and the Rbp entries, the product u1ijvkmn is
cubic in the P1 coordinates and the Rbp entries; moreover, it
contains the products of the monomials cubic in the P1

coordinates and the monomials cubic in the Rbp entries.
Therefore, the det(J) is at most a sixth-degree polynomial,
which is cubic in the P1 coordinates and the Rbp entries.

If the platform orientation is parameterized by using the
Rodrigues parameters14 the Rbp rotation matrix will have the
following expression

Rbp =
1

1+x2 [2(xxT +xsk)+(1�x2)I3� 3] (20)

where x is the vector (x1, x2, x3)
T of the three Rodrigues

parameters xi for i=1, 2, 3; I3� 3 is the 3� 3 identity matrix
and xsk denotes the skew-symmetric cross-product matrix of
vector x. When the Rodrigues parameters become infinite,
expression (20) of Rbp fails, even if Rbp is defined
(representation singularity). Therefore, the only valid values
of the Rodrigues parameters are the finite ones.

A rational expression of det(J) in the six platform pose
parameters is obtained by substituting expression (20) for
Rbp in the expression of det(J). The numerator of this
rational expression is a polynomial, which is cubic in the P1

coordinates and a sixth-degree one in the Rodrigues
parameters, whereas its denominator is (1+x2)3. The
denominator does not make det(J) vanish for finite values of
the Rodrigues parameters. Hence, the only platform pose
parameters, making det(J) zero are the numerator roots.

If the rational expression of det(J) is introduced into the
singularity condition (7) and the factor (1+x2)�3 is cleared,
a ninth-degree polynomial equation in the platform pose
parameters will result. This polynomial equation is the
singularity equation of the 6-6 FPM in explicit form.

4. SPECIAL CASES OF FPMs
All the m-n FPM can be derived from the 6-6 FPM, making
two or more spherical pairs coincide at the base and/or at the

platform1. The Jacobian matrices of these special cases can
be derived from the J and D matrices of the 6-6 FPM by
introducing their particular geometry into expressions (6.2)
and (6.4).

The singularity condition (7) and the det(J) expressions
(8) and (10) still hold for the m-n FPMs, provided that the
vectors ui and vi for i=1, . . . , 6 are computed by taking into
account their particular geometry. In the following para-
graphs, an example of how to derive the singularity equation
of an m-n FPM from the singularity equation of the 6-6
FPM will be illustrated.

Figure 4 shows a 6-4 FPM. The mechanism of Fig. 4 is
obtained from the 6-6 FPM by making the P1, P2 and P3

platform points coincide. If the origin P of Sp is chosen
coincident with P1, the vectors v1, v2 and v3, defined by
relationship (6.8), vanish. Hence, all the vkmn mixed
products containing at least one of the vectors v1, v2 and v3

vanish. As a consequence, expression (10) of det(J)
becomes

det(J)=u123v456 (21)

and the singularity condition of the 6-4 FPM shown in
Figure 4 is

u123v456 =0 (22)

Singularity condition (22) was reported by Wohlhart15 by
directly addressing the mobility analysis of the 6-4 FPM
shown in Figure 4.

5. CONCLUSIONS
A new expression of the singularity condition of the most
general mechanism (6-6 FPM) of a class of parallel
mechanisms usually named fully-parallel mechanisms
(FPM) has been derived. The presented expression uses the
mixed products of vectors that are easy to be identified on
the mechanism.

This approach has allowed some singularities to be
geometrically found.

The singularity condition derived here lead to a ninth-
degree polynomial equation in the platform pose parameters
by using the Rodrigues parameters to parameterize the
platform orientation. This singularity polynomial equation

Fig. 4. A 6–4 fully parallel mechanism.
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is cubic in the platform position parameters and a sixth-
degree one in the Rodrigues parameters.

The singularity condition of a specific m-n FPM can be
easily derived from the 6-6 FPM singularity condition
reported here. An example has been included.

ACKNOWLEDGEMENTS
The financial support of the Italian MURST is gratefully
acknowledged.

References
1. C. Innocenti and V. Parenti-Castelli, “Exhaustive enumeration

of fully-parallel kinematic chains”, Proc. of the 1994 ASME
Int. Winter Annual Meeting, Chicago, USA (1994) DSC-Vol.
55-2, pp. 1135–1141.

2. M.L. Husty, “An algorithm for solving the direct kinematics
of the Stewart-Gough platform”, Mechanism and Machine
Theory 31(4), 365–380 (1996).

3. C. Innocenti, “Forward kinematics in polynomial form of the
general Stewart platform”, Proc. of the 1998 ASME Design
Engineering Technical Conference, Atlanta (GA), USA
(1998) Paper No. DETC98/MECH-5894.

4. C. Gosselin and J. Angeles, “Singularity analysis of closed-
loop kinematic chains”, IEEE Transactions on Robotics and
Automation 6(3), 281–290 (1990).

5. D. Zlatanov, R.G. Fenton and B. Benhabib, “Singularity
analysis of mechanisms and robots via a motion-space model
of the instantaneous kinematics”, Proc. of the 1994 IEEE Int.
Conf. on Robotics and Automation, San Diego (CA), USA
(1994) Vol. 2, pp. 980–991.

6. J.-P. Merlet, “Singular configurations of parallel manipulators
and Grassmann geometry”, Int. J. Robotics Research 8(5),
45–56 (1989).

7. C. Gosselin and J. Wang, “Singularity loci of planar parallel
manipulators”, Proc. of the IXth World Congress on the
Theory of Machines and Mechanisms, Milano, Italy (1995)
Vol. 3, pp. 1982–1986.

8. J. Sefrioui and C. Gosselin, “Étude et représentation des lieux
de singularité des manipulateurs parallèles sphériques à trois
degrés de liberté avec actioneurs prismatiques”, Mechanism
and Machine Theory 29(4), 559–579 (1994).

9. J. Sefrioui and C. Gosselin, “On the quadratic nature of the
singularity curves of planar three-degree-of-freedom parallel
manipulators”, Mechanism and Machine Theory 30(4),
533–551 (1995).

10. R. Di Gregorio and V. Parenti-Castelli, “Influence of the
geometric parameters of the 3-UPU parallel manipulator on
the singularity loci”, Proc. of the 1999 Int. Workshop on
Parallel Kinematic Machines, Milano, Italy (1999)
pp. 79–86.

11. R. Di Gregorio, “Statics and singularity loci of the 3-UPU
wrist”, Proc. of the 2001 IEEE/ASME International Con-
ference on Advanced Intelligent Mechatronics, Como, Italy
(2001) pp. 470–475.

12. B.M. St-Onge and C. Gosselin, “Singularity analysis and
representation of the general Gough-Stewart platform”, Int. J.
Robotics Research 19(3), 271–288 (2000).

13. M. Villa, Elementi di Algebra (Patron Publisher, Italy 1965) p.
32.

14. R.E. Roberson and R. Schwertassek, Dynamics of Multibody
Systems (Springer-Verlag Publishers, 1988) p. 77.

15. K. Wohlhart, “Displacement analysis of the general spherical
Stewart platform”, Mechanism and Machine Theory 29(4),
581–589 (1994).

Singularity locus328

https://doi.org/10.1017/S026357470100399X Published online by Cambridge University Press

https://doi.org/10.1017/S026357470100399X

