Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-02-06T11:10:44.930Z Has data issue: false hasContentIssue false

Robotic machine learning of anaphora

Published online by Cambridge University Press:  01 July 1998

Patrick Suppes
Affiliation:
Ventura Hall, Stanford University, Stanford CA 94305-4115, USA. E-mail: suppes@csli.stanford.edu.
Michael Böttner
Affiliation:
Ventura Hall, Stanford University, Stanford CA 94305-4115, USA. E-mail: suppes@csli.stanford.edu.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Our contribution tackles the problem of learning to understand anaphoric references in the context of robotic machine learning; e.g. Get the large screw. Put it in the left hole. Our solution assumes the probabilistic theory of learning spelt out in earlier publications. Associations are formed probabilistically between constituents of the verbal command and constituents of a presupposed internal representation. The theory is extended, as a first step, to anaphora by learning how to distinguish between incorrect surface depth and the correct tree-structure depth of the anaphoric references.

Type
Research Article
Copyright
© 1998 Cambridge University Press