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SUMMARY
Our contribution tackles the problem of learning to
understand anaphoric references in the context of robotic
machine learning; e.g. Get the large screw. Put it in the left
hole. Our solution assumes the probabilistic theory of
learning spelt out in earlier publications. Associations are
formed probabilistically between constituents of the verbal
command and constituents of a presupposed internal
representation. The theory is extended, as a first step, to
anaphora by learning how to distinguish between incorrect
surface depth and the correct tree-structure depth of the
anaphoric references.
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Our focus is the problem of learning to understand
anaphoric references in the context of robotic machine
learning; e.g., Get the large screw, Put it in the left hole.
Anaphoric references are an essential feature of natural
language use.

“Robust natural language man/machine communication
requires a machine to have the ability to deal with
anaphoric language in a perspicuous, transportable, non-
ad hoc way.”1

Although a huge amount of attention has been spent on
anaphoric reference in the areas of philosophical logic and
theoretical linguistics, see, e.g. references 2–5, we have
found no reference with detailed learning models of
anaphora but we may be unaware of some relevant prior
work.

Our current work extends our probabilistic theory of
learning spelt out in references 6–8. So far we have
conducted two experiments. One was with a corpus of 460
English sentences in part of considerable complexity. The
other was with 10 corpora of 400 sentences, each in a
different language. Compared to most neural-net rates of
learning, the learning was rapid. In each of the ten
languages one cycle through the entire corpus was sufficient
to produce a comprehension grammar that was intuitively
correct.

The focus of our machine learning is restricted to
comprehension. Most linguistic analysis is concerned with
grammars detailed enough to produce natural utterances of
the language being studied. A comprehension grammar, in
contrast, as we characterize it here, can generate a superset
of utterances. The rules are required only to lead to the
correct semantic interpretation of an utterance of the

language. Robots, like very young children, can easily have
the capacity to understand language before they can produce
it. Although it is difficult and subtle to collect accurate and
anything like complete data on the comprehension grammar
generated by very young children, the evidence is over-
whelming that they comprehend much more than they can
produce.

The learning robot is presented with pairs of a discourse
together with a coerced action (simulated by some kind of
internal representation). Associations are formed probabilis-
tically between constituents of the verbal command and
constituents of a presupposed internal representation. More
specifically, we use anaphoric buffers where the robot’s
descriptions of objects are stored for a short period, together
with some of their morphologic, syntactic, and discourse
features.

The robotic framework and the associated corpora we test
our program on are certainly restricted, although we have
implemented our learning program on Robotworld, a
standard robot used in academic settings for development
purposes. However, our theory does not depend on the
robotic framework but applies to many kinds of systematic
language use, more or less in the sense of sublanguages.9

Another sublanguage would be the language of physics
word problems.10,11

The organization of this paper is as follows. In section 1
we describe our theory of machine learning of natural
language. In section 2 we extend our theory to learning
anaphora.

1. OUR THEORY WITHOUT ANAPHORA
For the purpose of simplification we have separated the task
of learning the semantics of a language from learning its
grammar, i.e. its lexicon and syntax. In our first approach
our focus is on learning the expression assuming that the
content is given. So we assume that the learner has already
the notions of a screw, or a certain color, a spatial relation,
or the action of putting some object at some place. What is
learned are the English words for these notions and how
they are put together to convey compound meanings.

1.1. Basic notions of our theory
Everything that is learned is stored in memory. Our memory
consists of two parts: a working memory to hold its content
for the time period of a single trial and a long-term memory
to store associations of words, denotational values, associa-
tions of grammatical forms and memory traces.

The long-term memory is not empty at the beginning but
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has stored in it an internal language. In the present study
this internal language is stored in memory prior to learning
and does not undergo any change during learning. Assume
the robot is given the English command Get a screw
together with the execution of this command. We here
assume that the execution is given to the robot in some
internal language. In Robotworld this language is RAIL.
But RAIL is much too finegrained for our purpose. What we
need is a language at the proper level of abstraction. In our
experiments conducted so far we used English as our
guideline. Our internal language was designed to have as
many ultimate constituents as there are words denoting
objects, properties, relations or actions in English. English
words that do not denote anything of the afore-mentioned
kind are called nondenoting—a distinction that will become
important for the notion of a denotational value to be
introduced below. In the example Get a screw the words get
and screw are denoting and the word a is nondenoting.
Consequently, our internal language will have to account for
each of the denoting words by some symbol. We use g as a
symbol for the action denoted by get and s as a symbol for
the kind of objects denoted by screw. In addition we use p
as a symbol for the set of objects that are in the perceptual
environment of the learner. Symbols are combined to form
compound expressions by semantic operations here referred
to by I. The internal language expression for the command
Get a screw will be I(g, s, p).

Whatever gets into the memory gets there by association.
We use this concept to establish the connection between
linguistic expressions and their meanings. Here, association
is a binary relation between commands, words and gram-
matical forms, on the one hand, and their counterparts in the
robot’s internal language, on the other hand.

By the denotational value of a word we understand the
probability of that word to have a denotation. If this value is
1 the word is denoting and if it is 0 the word is nondenoting.
Denoting words such as nut refer to elements of our
categories; examples of nondenoting words are the definite
and indefinite articles. Intuitively, only denoting words
should acquire associations to elements of the environment,
including possible actions, as represented internally. The
purpose of this notion is to prevent nondenoting words from
entering again and again into the probabilistic association
procedure. We thereby exploit the fact that nondenoting
words like the, a, and is have a higher frequency of
occurrence and should be learned more easily than denoting
words, which have less frequent occurrences. Consequently,
we set the initial denoting value to be 1 for all words, for we
assume no prior knowledge of which words are denoting in
a given language.

Grammatical forms are generated by a principle of
generalization. For example, the phrase Get the nut
generalizes to the grammatical form A1 the OBJ.

When a generalization is made, the particular word
association on which it is based is stored with it in long-term
memory, as the memory trace justifying the generalization.
The memory trace maps associations of grammatical forms
to sets of word associations. The memory trace of a
grammatical form association thus keeps track of those
word associations that gave rise to this particular grammat-

ical form association. If one of the word associations in the
trace of a grammatical form association is deleted, then so
is this grammatical form association.

The concept of generalization is widely used in psycho-
logical theories of learning. The principle of association
goes back at least to Aristotle, and certainly was used
extensively by eighteenth-century philosophers like Hume
long before psychology had become an experimental
science. The fundamental role of association as a basis for
conditioning is thoroughly recognized in modern neuro-
science and is essential to the experimental study of the
neuronal activity of a variety of animals. For similar reasons
its role is just as central to the learning theory of neural
networks, now rapidly developing in many different direc-
tions. Our distinction about kinds of memory is standard in
psychological studies of human memory, but the details of
our machine-learning process are not necessarily faithful to
human learning of language, and we make no claim that
they are. On the other hand, our basic processes of
association, generalization, specification and rule-genera-
tion almost certainly have analogues in human learning,
some better understood than others at the present time. In
the general axioms formulated in this section we assume
rather little about the specific language of the internal
representation, although the examples that illustrate the
axioms use the internal language described in the preceding
section.

1.2. Background assumptions
We state informally, as background assumptions two
essential aspects of any language learning device. First, how
is the internal representation of an utterance heard, for
example, for the first time, generated by the learner. Second,
at the other end of the comprehension process, so to speak,
is that of generating a semantic interpretation of a new
utterance, but one that falls within the grammar and
semantics already constructed by the learner.

Both of these processes ultimately require thorough
formal analysis in any complete theory, but, as will become
clear, this analysis is not necessary for the framework of this
article. We give only a schematic formulation here.

a. Association by contiguity. When a learner is presented
a sentence that it cannot interpret then it associates the
utterance to patterns in its contiguous environment whose
internal representation may, but not necessarily, be induced
by its own free or coerced actions.

b. Comprehension-and-response axiom. If a learner is
presented a sentence, then using the associations and
grammatical rules stored in long-term memory, the learner
attempts to construct a semantic interpretation of the
sentence and respond accordingly.

1.3. Learning algorithm
For purposes of exposition we first describe the state when
some English has successfully been learned. In a second
step we describe how this state is arrived at.
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If the learner has already learned as much English as to
understand Get a screw, the learner’s memory should
contain (i) a semantically interpreted lexicon, (ii) a grammar
of English, and (iii) a compositional semantics for that
grammar. By a semantically interpreted lexicon we mean a
list of English words together with the internal symbols they
are associated to like this:

get~g, screw~s, . . .

An English grammar would be a set of production rules like,
e.g.

(i) A→A1 O, (ii) O→a S, (iii) S→OBJ,

(iv) A1→get, (v) OBJ→screw, . . .

The corresponding compositional semantics contains a list
of associations of grammatical forms like this:

A1 O~I1(A1, O), a S~I2(S), OBJ~I3(OBJ, p), . . .

An overview of the memory is given in Table 1. With this
memory the learner will be able to interpret the English
command Get a screw by deriving its translation I(g, s, p)
into its internal language. The derivation of the English
command is standard like this:

A1 O→A1 a S→A1 a OBJ→Get a screw

Corresponding replacement of English grammatical forms
by their internal language counterparts returns:

I1(A1, O)=I1(A1, I2(S))=I1(A1, I2(I3(OBJ, p)))

=I1(g, I2(I3(s, p)))

In the following we shall describe how the memory can
reach this state by learning from examples. We distinguish
two cases: either no learning has occurred or some learning
has occurred already. If no learning has occurred, the
memory holds only the internal language part, i.e. left hand
side of Table I.

Whenever a command is not understood correctly its
execution is coerced. This coerced execution is represented
by an internal language expression. A pair

Get a screw~I(g, s, p)

is formed from the natural command and the learner’s
internal language counterpart where ~ is the symbol used
for association.

The learner probabilistically associates the words of the
natural language command with the symbols of the internal
language expression. There are three English words to
associate to two internal symbols. We do not associate
anything to p. Therefore there are six different ways to
associate the words with internal symbols. The probability
that the learner associates screw with s and get with g

screw~s, get~g (1)

is only 1/6. Let us assume this indeed happens.
By a principle of generalization the learner derives

grammatical forms for both languages and derives the
association

A1 a OBJ~I(A1, OBJ, p).

The grammatical form will be stored in conjunction with
those associations upon which the generalization was made.
Since the function symbol I is an abbreviation for a structure
that is internally complex, our memory holds the following
form association

A1 a OBJ~I1(A1, I2(I3(OBJ, p))).

By principles of Form Association, Factorization and
Filtering, this association will get broken down into smaller
units like this:

A1 O~I1(A1, O), a S~I2(S), OBJ~I3(OBJ, p) (2)

By principles of rule generation, we get

A→A1 O, O→a S, S→OBJ, OBJ→screw, A1→get (3)

Taking (1), (2) and (3) together, our memory will contain
exactly what was needed in memory to be able to execute
the original command.

Consider now one of the cases with a wrong association
hypothesized. An association that could arise with equal
probability is

get~g, a~s

By the principle of generalization we would now arrive at
the association of the following grammatical forms:

A1 OBJ screw~I(A1, OBJ, p)

Assume the next trial would be the command Get a nut. The
reaction would be wrong, since the learner would derive the
same internal expression as was present in coercion for the
command Get a screw. Therefore the reasonable next step
would be to coerce

Get a nut~I(g, n, p)

By principle of association, the association get~g would be
kept but the association a~s would be broken and the words
a and nut would enter the sampling process each with an
equal probability to be associated to n.

Our learning algorithm is specified by a set of
axioms.The full set of axioms together with a detailed
explanation of each axiom can be found in reference 8.

2. ANAPHORIC EXTENSION
The standard view is that anaphora, which literally means
back-reference, is a function of pronouns. Pronouns can be

Table I. Memory with learned language stored

Internal language English

A → I1(A1, O) A → A1 O
O → I2(S) O → a S
S → I3(OBJ, p) S → OBJ

OBG → s OBJ → screw
A1 → g A1 → get

. . . . . .
screw ~ s

get ~ g
. . .

A1 O ~ I1(A1, O)
a S ~ I2(S)

OBJ ~ I3(OBJ, p)
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used either deictically or anaphorically. The Greek word
deijis means pointing. Pronouns used deictically refer to
what can be pointed at in the situation of the utterance
taking place, which is what is present for speaker and hearer
in their common perceptual environment. Pronouns used
anaphorically refer to what is not present in the speaker’s
and hearer’s perceptual environment but what may be
expected to be present in the memory common to speaker
and hearer. Although the anaphoric function is closely tied
to this category, pronouns are not the only means to express
an anaphoric relationship. Another means of expressing
anaphoric relationships is the definite article like in, e.g. I
met a strange couple. The man carried a big suitcase.

Pronouns come in various subcategories like, e.g.,
personal pronouns, reflexive pronouns, possessive pro-
nouns, or demonstrative pronouns. Although literally a
pronoun is anything that can replace a noun, pronouns occur
in a variety of syntactical categories. Personal pronouns like
he or you occur as noun phrases. Possessive pronouns like,
e.g. my and demonstrative pronouns like, e.g. this occur as
adjectives or, rather, determiners. And there are pronouns
that can occur in an adverbial position like, e.g. there.

Standard examples occurring in a robotic context are

Go to screw. Pick it up.

Get a screw. Put it in a box.

Get a box. Put a screw in it.

Pick up a red screw and a black screw. Put the larger
one in a box.

These examples have in common that the anaphoric
expression refers to a physical object. In the example

Put a black screw near the hole. Put a nut of the same
colour near the plate

the adjective same refers anaphorically to black. It is also
possible to refer to actions as illustrated by the following
example:

Put a nut on the red screw. Do the same on a black
screw.

Here the phrase do the same refers back to the antecedent
put a nut on.

Gender often distinguishes anaphoric reference, as in:

Susan and Bill went to the movies. She did not like it.

But most of the commands to robots we have in mind are
about inanimate physical objects, for which, in English, the
proper anaphoric pronoun is uniformly it.

Physical implausibility can sometimes disambiguate
anaphoric reference in robotic contexts:

Put the nut in the box. Then put the lid on it.

Nuts do not have lids ordinarily, so box is the anaphoric
reference. The example is intuitively simple, but this general
kind of feature is not, for it implies the robot needs to have
a great deal of commonsense knowledge about the world,
with useful limitations not easily set. In spite of its
importance we do not pursue further the learning of criteria

of physical plausibility. The feature whose learning we do
study is that of grammatical depth, one of the most
important for succcessful anaphoric disambiguation.

Because of the partial and preliminary character of our
results we sketch this anaphoric extension of our theory
informally. We assume, first, that by the methods of
association described above, but extended to include an
internal buffer B, the word it is associated to B. But B holds
in the internal representation the necessarily temporary
reference by association of it. From this point on, we
assume the internal language is Lisp. How is this selected
anaphoric reference learned, in the restricted case we are
considering? Scanning backward in the discourse, various
measures of newness or closeness can easily be defined. For
simplicity we restrict ourselves to two. The measure s(w) is
the number of words between it and the first word of the
phrase w describing an object. The measure d(w) is the
measure of depth of the Lisp expression that corresponds to
w.

Our problem is to formulate a model for learning which
of these two object measures of “depth” is better for
correctly assigning anaphoric reference. This can be done in
many ways. We choose an approach similar to the one used
for denotational value, but with certain differences as well.

Let w1, n be the weight of measure d on learning trial n,
and let w2, n be the weight of learning measure s on trial n.
We set w1, 1 =w2, 1 =1/2, i.e. at the beginning of trial 1 both
weights are 1/2. The decision rule is to use either the
minimum dn =dn or the minimum sn =sn on trial n. The
probability of using dn is w1, n, and, of using sn, is, of course,
w2, n.

The learning model for the weights is a linear one like
that used for denotational value. On each trial n, if d is the
distance of the correct anaphoric reference and s is not,
then

w1, n+1 =(12u)w1, n +u

w2, n+1 =(12u)w2, n,

where 0<u#1, with u the learning parameter. The learning
equations are interchanged when sn is correct and dn is not.
In the denotational computations we found u=0.03 worked
well. In case both d and s choose the correct, or, jointly, the
wrong reference, the weights remain unchanged:

wi, n+1 =wi, n for i=1, 2.

Consider some examples.

Go to the screw. Pick it up.

Here d (the screw) and s (the screw) are both correct, as the
only possibility. So for this learning trial there would be no
change in the weights.

In contrast, consider

Go to a screw left of the box. Pick it up.

Here

d(a screw left of the box)=2 d(the box)=5

s(a screw left of the box)=1 s(the box)=1

So d picks out a screw left of the box and s picks out the box

Anaphora428

https://doi.org/10.1017/S0263574798000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574798000022


as correct anaphoric reference. Since d is correct, the weight
w1 is increased, and the weight of w2 decreased.

We spell out here in more detail the computation of d. We
compute the depth of an antecedent of a pronoun by
counting the nodes from the root of the Lisp tree assuming
the root node to be 0. So in the Lisp tree in Figure 1 the
object computed by the Lisp expression corresponding to
the English expression the box, which is

(io (fo $box *)),

gets count number 5, and the object computed by the Lisp

expression corresponding to a screw left of the box, which
is

(so (fo (fr $left (io (fo $box p)))) (fo $screw p)),

gets count number 2.
We ran our learning model on a small test corpus of the

following eight sentences.

1. Pick up a screw to the right of the washer. Put it in a
box.

2. Pick up the screw in the yellow box. Put it in the green
box.

3. Put in the red box a red screw. Pick it up.

Fig. 1. Lisp tree for Go to a screw left of a box. The Lisp function fa2 turns an action of subcategory A2 and a region G into an action
A; the Lisp function fr turns a spatial relation REL and an object O into a region G; the semantic operation so selects an object O from
a set S of objects; the semantic operation io identifies an object out of a set S of objects; the semantic operation fo selects a set S of objects
of category OBJ.

Fig. 2. Learning curves for depth and surface weights.
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4. Put a screw in the hole of the plate. Now put a nut on
it.

5. Go to the nut left of the screw. Pick it up.
6. Put a bolt in the red hole which is next to the black

box. Then put a washer on it.
7. Put a red nut on a small screw. Next put it in the green

hole.
8. Get a small washer that is on the red plate. Put it on

a bolt.

In the following we list the d and s values for respective
phrases that could be considered as possible antecedents of
the anaphoric pronoun it in the eight robotic commands
listed above. The numbering of the phrases below corre-
sponds to the commands above.

1. a screw to the right of the washer: d=1, s=8
the washer: d=4, s=2

2. the yellow box: d=4, s=3
the screw in the yellow box: d=1, s=6

3. a red screw: d=1, s=3
the red box: d=2, s=6

4. a screw: d=1, s=12
the plate: d=5, s=6
the hole of the plate: d=2, s=9

5. the screw: d=4, s=2
the nut left of the screw: d=2, s=6

6. a bolt: d=1, s=17
the black box: d=4, s=7,
the red hole which is next to the black box: d=2,
s=14

7. a small screw: d=2, s=4
a red nut: d=1, s=8

8. a small washer that is on the red plate: d=1, s=9
the red plate: d=6, s=3

Learning curves for depth and surface weights w1, n and w2, n

are shown in Figure 2. We note that d is the correct measure
in all of the commands considered and the measure s is
correct only once, on trial 3.

This method with two measures can be extended to other
essential features of learning anaphora. The additional
features we immediately have in mind are physical
consistency and gender.

In English, but not in inflected languages like German,
we can handle most robotic commands without gender. So
the anaphoric extension described here can easily be
implemented in a natural way as an extension of our earlier
work with Robotworld.
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APPENDIX
AXIOMS OF LEARNING

1. Computations using Working Memory
1.1. Probabilistic Association. On any trial, let s be

associated to s, let a be in the set of words of s not
associated to any internal expression of s, and let A be
the set of expressions of the internal language made
available for association and let a be in A but not
currently associated with any word of s. Then pairs
(a, a), are sampled, possibly using the current denota-
tional value, and associated, i.e. a~a.

1.2. Form Generalization. If g(g9i)~g(g9i), g9i ~g9i, and g9 is
derivable from X, then g(Xi)~g(Xi), where i is the index
of occurrence.

1.3. Grammar—Rule Generation. If g~g and g is
derivable from X, then X→g.

1.4. Form Association. If g(g9)~g(g9) and g9 and g9 have
the corresponding indexed categories, then g9~g9.

1.5. Form Specification. If g(Xi)~g(Xi), g9~g9, and g is
derivable from X, then g(g9i )~g(g9i ).

1.6. Content Deletion. The content of working memory is
deleted at the end of each trial.

2. Changes in State of Long-term Memory
2.1. Denotational Value Computation. If at the end of

trial n a word a in the presented verbal stimulus is
associated with some internal expression a, then d(a),
the denotational value of a increases and if a is not so
associated d(a) decreases. Moreover, if a word a does
not occur on a trial, then d(a) stays the same unless the
association of a to an internal expression a is broken
on the trial, in which case d(a) decreases.

2.2. Form Factorization. If g~g and g9 is a substring of g
that is already in long-term memory and g9 and g9 are
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derivable from X, then g and g are reduced to g(X) and
g(X). Also g(X)~g(X) is stored in long-term memory,
as is the corresponding grammatical rule generated by
Axiom 1.4.

2.3. Form Filtering. Associations and grammatical rules
are removed from long-term memory at any time if
they can be generated.

2.4. Congruence Computation. If w is a substring of g, w9
is a substring of g9 and they are such that
(a) g~g and g9~g,
(b) g9 differs from g only in the occurrence of w9 in
place of w,
(c) w and w9 contain no words of high denotational
value,
then w9≈w and the congruence is stored in long-term
memory.

2.5. Formation of Memory Trace. The first time a form
generalization, grammatical rule or congruence is
formed, the word associations on which the general-
ization, grammatical rule or congruence is based are
stored with it in long-term memory.

2.6. Deletion of Associations.
(a) When a word in a sentence is given a new

association, any prior association of that word is
deleted from long-term memory.

(b) If a~a at the beginning of a trial, a appears in the
utterance s given on that trial but a does not appear
in the internal representation s of s, then the
association a~a is deleted from long-term mem-
ory.

(c) If (i) no internal representation is generated from
the occurrence of a sentence s, (ii) s is then given
as the correct internal representation, and (iii)
there are several words in s associated to an
internal expression a of s such that the number of
occurrences of these words is greater than the
number of occurrences of a in s, then these
associations are deleted.

2.7. Deletion of Form Association or Grammatical Rule.
If a~a is deleted, then any form generalization,
grammatical rule or congruence for which a~a is a
memory trace is also deleted from long-term memory.
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