Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-02-06T07:58:56.395Z Has data issue: false hasContentIssue false

Mixing input-output pseudolinearization and gain scheduling techniques for stabilization of mobile robots with two independently driven wheels

Published online by Cambridge University Press:  01 September 1997

Jin-Tsong Jeng
Affiliation:
Department of Electrical Engineering, National Taiwan Institute of Technology, 43, Section 4, Keelung Road, Taipei, Taiwan 106, R.O.C. E-mail: shih@biped.ee.ntit.edu.tw
Ching-Long Shih
Affiliation:
Department of Electrical Engineering, National Taiwan Institute of Technology, 43, Section 4, Keelung Road, Taipei, Taiwan 106, R.O.C. E-mail: shih@biped.ee.ntit.edu.tw
Tsu-Tian Lee
Affiliation:
Department of Electrical Engineering, National Taiwan Institute of Technology, 43, Section 4, Keelung Road, Taipei, Taiwan 106, R.O.C. E-mail: shih@biped.ee.ntit.edu.tw
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we propose a two-loop structure to transform and stabilize the kinematic model of a nonholonomic mobile robot with two independently driven wheels. This two-loop structure consists of input-output pseudolinearization and gain scheduling techniques. A comparison with previous methods is included. The main contribution of this paper is to apply a input-output pseudolinearization transformation method and to use an effective pole-assignment strategy for stabilizing a mobile robot with two independently driven wheels. The proposed method has demonstrated superiority over previous methods.

Type
Research Article
Copyright
© 1997 Cambridge University Press