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SUMMARY

In this paper, we propose a two-loop structure to
transform and stabilize the kinematic model of a
nonholonomic mobile robot with two independently
driven wheels. This two-loop structure consists of
input-output pseudolinearization and gain scheduling
techniques. A comparison with previous methods is
included. The main contribution of this paper is to apply
a input-output pseudolinearization transformation
method and to use an effective pole-assignment strategy
for stabilizing a mobile robot with two independently
driven wheels. The proposed method has demonstrated
superiority over previous methods.
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1. INTRODUCTION

The guidance of a nonholonomic system to an arbitrary
point and having it follow a desired trajectory in a state
space are, in general, quite difficult.""* An example of a
nonholonomic system is a mobile robot. Mobile robots
either have car-like wheels,> with two that are
independently driven,® or have omni-directional wheels.*
For nonholonomic control systems it is very important to
define a model representation before designing the
stabilizing controller. The model of nonholonomic
systems can be divided into kinematic models, which are
affine nonlinear driftless systems, and dynamic models,
which are affine nonlinear system.! The stabilized
methods for nonholonomic control systems are largely
dependent on the modeling techniques. For two different
model representations the same control method cannot
be applied to both of them. The stabilization problems
are concerned with designing the feedback laws which
guarantee that an equilibrium of the closed-loop system
is asymptotically stable. Previous works on stabilization
of mobile robots use discontinuous time-invariant
stabilization,” time-varying stabilization,’ and hybrid
feedback laws.” Most of the previous works in
stabilization of mobile robots are based on the so-called
chain form or power form. To transform into these
forms, one is required to apply techniques of Lie algebra
and exterior differential systems, because these systems
are still nonlinear driftless systems. Therefore, compli-
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cated controllers are needed to stabilize these systems.
That is, these methods must use an unsmooth and
complicated trajectory for the feedback stabilization of
nonholonomic systems. Moreover, these stabilizing
structures are all single feedback loop systems for a new
nonlinear driftless system. In this paper, a new controller
structure and improved trajectory are proposed to
stabilize mobile robots with independently driven wheels.

The notion of pseudolinearization was introduced by
Champetier et al.”>™7 as a method to approximately
linearize the input-state behavior of a general nonlinear
system. That 1is, pseudolinearization involves the
computation of a state feedback and state coordinate
transformation so that the resulting closed-loop state
equation in the new coordinates has a family of
linearizations that is independent of the closed-loop
operating point. Moreover, the necessary and sufficient
condition for existence of a state feedback and state
coordinate change that transforms a given nonlinear
system into a pseudo-normal form is input-output
pseudolinearization.'® This method is better for applica-
tion in a mobile robot than the state space exact
linearization."” The gain scheduling technique is com-
monly used in designing controllers for linear time-
varying and nonlinear systems.”?! Roughly speaking,
design of controllers by the gain scheduling technique is
as follows: (1) linear time-invariant approximations are
obtained; (2) linear time-invariant controllers are
designed for each linearized representation of the system
at the selected operating points, so that stability and
certain performance objectives are achieved; and (3)
these controllers are then linked together in order to
obtain a single controller for the entire range of the
system operation. Shahruz and Behtash® first proposed a
new algorithm to design a controller for linear MIMO
systems whose dynamics depend on a time-varying
parameter. In this paper we first apply the gain
scheduling technique to design the controller for
stabilizing the control of a mobile robot after the
pseudo-normal form has been obtained by utilizing the
input-output pseudolinearization.

In this paper, a mobile robot with two independently
driven wheels is considered, which can be steered to any
position in the free space. Position means the location
and the orientation of the robot. However, the robot’s
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freedom of motion is limited; it cannot move sideways.
Thus, complicated maneuvering is needed to bring the
robot to an arbitrary position and to follow an arbitrary
trajectory. The problems of stabilizing the robot at a
specific position are solved by a two feedback-loop
control structure by the input-output pseudolinearization
and the gain scheduling technique. In particular, the
input-output pseudolinearization is used in the inner loop
and gain scheduling techniques (pole-assignment type
algorithm) for stabilization of mobile robots is used in
the outer loop. Input-output pseudolinearization is first
used to transform the MIMO nonlinear system to a
pseudo-normal form. This procedure is called an
input-output pseudolinearization loop. We then show
that the pseudo-normal form can be transformed into a
linear parameter-varying system, which can be easily be
stabilized by the common gain scheduling technique.
This procedure is called a pole-placement loop. That is, a
two-loop control structure is proposed to transform and
stabilize the kinematic model of a nonholonomic mobile
robot. Moreover, the proposed method first transforms
the nonlinear driftless system to a linear parameter-
varying system. It turns out that the proposed structure
has a much simpler mathematical method in the process
of transformation and has a smoother and simpler
trajectory than previous methods. In summary, the
proposed method is much easier than previous works for
stabilization of mobile robots, moreover the proposed
method has demonstrated superiority over previous
methods.

2. INPUT-OUTPUT PSEUDOLINEARIZATION

In this section, we summarize some concepts and results
about the input-output pseudolinearization. Generally
speaking, pseudolinearization involves the computation
of a state feedback and state coordinate change such that
the resulting closed-loop state equation in the new
coordinates has a family of linearizations that is
independent of the closed-loop operating point. By the
same token, a nonlinear system is in pseudo-normal form
if its family of linearizations has an input-output behavior
that is independent of the operating point. Consider an
m-input, m-output, and n-dimensional nonlinear system

X() = f(x(0), u (1))
y(0) =h(x@)),

where f(-, -) and h(-) are smooth functions and satisfy
f(0,0)=0, h(0)=0. We also assume that equation (1)
has a parameterized constant operating point family
described by the smooth function [x(«), u(a), y(a)],
a €I', where T is an open set containing the origin in R".
That is,

1)

flx(@), u(a)) =0,
h(x(a)) = y(a),
The problem of transformation to Pseudo-Normal

form is stated below: Given system equation (1) with a
constant operating point family [x(a), u(a), y(a)],

2

ael.
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ael’, and a linearization family satisfying
rank(dx/da)(a) =m, find (if possible) positive integers
Pi,---,Pm, and an admissible state coordinate change
and state feedback, such that the resulting closed-loop
system in the new coordinates with a constant operating
point family [z(«), v(a), y(a)], @ €I has a correspond-
ing linearization family described by

Ag(@) Am(a)], B:[O

o C=[0 ],
0 Ay Bl] [ )

®)

Ae)=|

where
0 1

- O

A1, = blockdiag ,piXpni=1,...,m |,

00

00

0

B, = blockdiag O
1

C, = blockdiag([1 0

,p X Li=1,...,m |,

and

0, 1Xp,i=1,...,m).

It is easy to see that for each a €I’, equation (3)
specifies a linear system in normal form. Furthermore,
for all a eI, from the transfer matrix corresponding to

equation (4)
it )

o sPm

1
G(s)= diag{T Yo
Ky 1

it is clear that a nonlinear system in pseudo-normal form
is input-output pseudolinearized. This means, one can
obtain the pseudo-normal form when wusing the
input-output pseudolinearization method. The procedure
of input-output pseudolinearization is based on Defini-
tion 1 and Theorem 1 below.

Definition 1."® At each « €I the pointwise relative
degree of the linearization family is the m-tuple of
positive integers [pi(a), ..., p.(a)] satisfying, for
i=1,...,m,

c(@)A H(a)B(a)=0, j=1,...,p(a)=1 (5
ci(@)AP O~ (a)B(a)#0, (6)
where c;(a) denotes the ith row of C(«).

Theorem 1.'"* Suppose system equation (1) has a
linearization family that satisfies

ax(a)

Jda

ank (@) =m and dim [B(a) Nx(a)]=d, (7)

where m is the number of inputs and d is a positive
integer. There then exists a transformation to pseudo-
normal form if and only if


https://doi.org/10.1017/S0263574797000660

Robot stabilization

(i) the linearization family,

A@) = L (x(@), (@),

B(@) = 2 (x(), u(w),

oh
Cla)=—(x(a)) and @ €T,
Jax
has constant pointwise relative degree [py,..., p,] at

each a eI
(i) matrix
ci(@)A” (a)B(a)
M(a) = :
Cm(@)AP" Y (a)B(a)

is inevitable at each o e T'.

(iii) the distribution D is involutive on I'.

It is also noted that involutivity is not necessary to
achieve input-output pseudolinearization.*

The pseudo-normal form is not a linear time-invariant
system; therefore, a linear time-invariant controller
cannot be applied. When the pseudo-normal form is a
linear parameter-varying system, the gain scheduling
controllers (Appendix) are generally effective for
stabilizing the system.

3. MAIN RESULTS

In this section we shall show the proposed method to
transform and stabilize the kinematic model of a
nonholonomic mobile robot with two independently
driven wheels. The mobile robot as shown in Figure 1 is
located on a 2-dimensional plane in which a global
Catesian coordinate system is defined. The reference
point of the robot is located at the center of the driving
wheels. The robot processes three degrees of freedom in
its positioning by (x;, x,, 8), where the heading angle 8
is measured counterclockwise from the x;-axis. The
physical parameters of the mobile robot are listed below:

g1, q»: angles of the driving wheels

uy, uy: speed of the two independently driven wheels

r: radius of the driving wheels

w: half of the distance between the two centers of the
driving wheels

Fig. 1. The kinematic model of a mobile robot with two
independently driven wheels and one free front wheel.
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: linear velocity of the robot
: rotational velocity of the robot.

S D

The kinematics model of a mobile robot with two
independently driven wheels can be represented by

) lcos@ lcos @
X1 1 .. 1 -
5sin 6 5sin 6
o =" u+|° . 8)
o 1
2w 2w

The stabilization of a mobile robot to a target position
is a two-input and three-state problem as represented in
(8), which one cannot obtain the normal form by using
only state space exact linearization.'®" For simplicity,
the target position will be set at the origin in this
analysis. It is known that involutivity is not necessary for
input-output pseudolinearization. Therefore, the pseudo-
normal form can be obtained by applying Theorem 1. To
attempt transforming equation (8) to pseudo-normal
form, two output variables need to be defined,

O, = kyxy + kyx,,
02 = 9)
where k; and k, are constants.
The system of equation (8) has a family of constant

operating points conveniently parameterized by the first
and third components of the state vector yielding

(251

x(a)=1] 0 |, u=[8] and O(a)=[

as

“el )

as

where «; =x; and a3;= 6. The corresponding lineariza-
tion family is described by the parameterized coefficient
matrices

lcosa; Lcosas

00 0 2 >
5 S1In 5 S1In
A(@)=]|0 0 0], B(a)= 251“3 28 1“3 (10)
00 0 — =
2w 2w
and
ki k, o]
Clay=|
@=19 o 1

From equation (9), we can obtain rank(dx(a)/da)(a) =
2 and dim[B(a) Nx(a)] = 1. Thus, the basic requirement
of Theorem 1 is satisfied. Moreover, conditions (i)—(ii) of
Theorem 1 can be obtained by the following:

k
c,A%a)B(a) = [51 oS a3

k k k
+ Ezsin a5 ;cos as+ 52 sin a3] , (11)

c,A%(a)B(a) = [i - i] .

The pointwise relative degree is then

o1 p]=[1 1], (12)
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and M matrix becomes

[c;A%(@)B(a)
M = 0
Le,A%(a)B(ar)
[ 1 2 . k] kz .
—COSaz;t+-——Sinas; ——COSaz+—SInas
|2 2 2 (13)

1 1 '
2w 2w

Because rank(dx/da)(a)=m holds from equation (9),
we obtain

M= !

o (ky cos as + kj sin as)

1 ki ks .

——— —|—=cosaszt+ —sinas
2w 2

X . (14)

1 k, Lk

- —Ccosazt+ - Ssina

2w 2 T2 ¥

The original control input u# and the new control input
are then related by

1 1
u=M "v=
1 .
—— (ky cos as + k; sin as)
2w
Uq <k1 ky . )
—— —|——cosaz+ —sinas|v,
2w 2 2
X (15)
-0 <*lcosa +@sina )v
2w 2 2 AR | P

where v is the control input for the system in the
pseudo-normal form. The state coordinate change
relation between x and z is also shown in equation (16):

Z Xy sin @ — x, cos 6
2 = klxl + k2x2 . (16)
23 0

Equation (8) can then be transformed to pseudo-linear
form by the control input in equation (15) and new state
variables in equation (16) as below:

. L% .
1= ; —2z1(kysin zz; — k, cos z3) + z
'k, cosz3+k251nz3( (s 20 3) ¥ 2)
2 = vy,

(17)
i3 = Vo,
01:Z2)
02:Z3.
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Equation (17) can be rewritten as two subsystems:

Subsystem 1 {Z3 — v
2= 3.
S(ubsystem 2
i - (k1 Sin 23— k2 COS Z3)U2 1%
[Z.l ] = ki cos z; + k, sin z5 ki cos z; + k, sin z;
% 0 0
{ 0
X [Zl]+[ ]vl, (18)
2 1

0,=[0 1][2]

It is obvious that the pseudo-normal form in equation
(18) can be conveniently transformed to a linear
parameter-varying system. Subsystem 2 is controllable as
long as v,#0 and k;coszz+ k,sinz;#0, and in this
case a continuous-time controller exists that stabilizes
Subsystem 2. That is, when Subsystem 1 chooses suitable
control v, to ensure that v, # 0 in a finite time period, we
can replace equation (18) with a linear parameter-
varying system. When Subsystem 1 with z3(0) =y uses
static state feedback, then we can obtain

6,
73 =ye F+ ;d (1—e*, v,=6,—k,zs, (19)

where 8, is the target angle, and k,, is the static feedback
gain. Consequently, equation (18) can be simplified as a
linear parameter-varying system by substituting equation
(19) into equation (18). The linear parameter-varying
system is then presented by

.
[ZZ]
(‘C Sl.Il 23 k2 COS ZS)(Gd ‘caZS) 6d KaZ3

= kqcos zz+ k,sin z3 kqcos z3+ k,sin z;
0 0

R K

zz=ye Ko + O (1 —e k),
ke

The solution of equation (20) can be obtanied by a
gain scheduling technique.”*** The gain scheduling
algorithm is given below:

Algorithm 1:** Computing the state feedback gain
matrices.

Step 1. Choose a matrix F e R™" such that
o(F)= 0, and that for all B el, o(A(B))No(F)=¢
(¢ denotes the empty set), where o(F) denotes all
eigenvalues of matrix F.

Step 2. Choose a matrix K € R"™" such that pair
(F, K) is observable.


https://doi.org/10.1017/S0263574797000660

Robot stabilization

Step 3. Obtain at a point 8 €/ the unique solution
matrix 7(8) € R"™" of the Lyapunov matrix equation

T(B)F — A(B)T(B) = —B(B)K. (1)

Step 4. If T(B) at B eI is nonsingular, then the gain
matrix is

K(B)=KT"'(B). (22)

If T(B) at B €I is singular, then choose a different K
in Step 2 and repeat the process.

Hence input v; of pseudo-normal form can be
represented as

v = _KI(Z3)Z1 - K2(Z3)Z2 + R) (23)

where R is the reference input. Moreover, from equation
(19), we know that input v, of pseudo-normal form is

Uy, = Bd - kaZ3. (24)

Therefore, the input u of a mobile robot can be obtained
as

u=M v (25)

4. COMPARISON WITH PREVIOUS
APPROACHES

Most of previous works on stabilizing mobile robots, are
based on the chained form or the power form below:

1= v
2=V, (26)
Z3= 71V,

Equation (26) is obtained by some transformable
techniques from equation (8)."'%* It is noted that
transformable techniques must use the Lie algebra and
exterior differential systems in order to transform
equation (8) into equation (26). Hence, complex
mathematical methods are applied to equation (8) in the
process of transformation. Moreover, previous works>”’
on stabilization of mobile robots directly use the system
with equation (26). These methods are discontinuous
time-invariant stabilization,” time-varying stabilization,’
and hybrid feedback laws. From equation (26), one can
obtain that the system is still a nonlinear driftless system.
Hence, complex methodologies are needed for stabiliza-
tion of a nonlinear driftless system in the design of a
stabilizable controller.

Firstly, consider the problem of stabilizing a system in
equation (26) by the discontinuous time-invariant
stabilization."> Define the feedback law

. {1%
vy = —z; + 2z58ign <Z3 - 172>
27)
. 2122
v, = =2, + 2z;5ign (Zs - 7);

where sign (.) denotes the signum function, the terms v,
and v, are obtained under the suitable Lyapunov
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equation. Hence, the convergent trajectory must depend
on a certain Lyapunov function. Secondly, consider the
problem of stabilizing a system in equation (26) by the
time-varying stabilization."® Define the feedback law

v, =(z5+z3)sint — (z; + (25 + z3) cos 1)
v, = —2(z; + (25 + z3) cos 1) (28)
(2123 + 22) cost — (2123 + 22),

the terms v, and v, are also obtained under a Lyapunov
function. Hence, this method also has a complex
convergent trajectory. Thirdly, consider the problem of
stabilizing a system in equation (26) by the hybrid
feedback stabilization."” Define the hybrid feedback law

v, =—z +afsing, 2mk =r=2mk +1) 29)
v,=—z,+|a¥cost 2mk =t =2m(k + 1),
where {a*:k=0,1,...} is a sequence of scalar

parameters. The feedback law construction depends on a
parameter-dependent family of a continuous T-periodic
control function. The parameter-dependent family of a
continuous T-periodic control function is «*sin¢ and
|a*|cost in equation (29). Hence, the convergent
trajectory is still complex.

The purpose of input-output pseudolinearization is an
extension of global linearization which consists of
transforming a nonlinear system into a linear system in
the whole state space. Thus, a broader class of systems
can be linearizable by the input-output pseudolineariza-
tion and this technique has much broader applications. In
this paper the guidance control problem of a mobile
robot as a two feedback loops structure is shown in
Figure 2. We first apply this technique to transform the
kinematic model of a mobile robot into a linear
parameter-varying system. Then the gain scheduling
controller is used to effectively stabilize the mobile robot.
The gain scheduling controller is easy to implement and
practical in many systems. In particular, the gain
scheduling controller can perform pole-assignment in the
control loop. By placing the closed loop poles in the
appropriate left half-plane, simpler convergent trajectory
can then be obtained. Therefore, we can get a simple
convergence trajectory for stabilization of mobile robots.
Finally, the stabilization of a mobile robot can be
guaranteed by Theorem 1 as well as assumptions
(A)-(A3). Comparison of the proposed approach with
previous approaches will be illustrated in the following
section.

Mobile
Robot

-l y= vl
v, x

Input-output pseudolinearization loop

Pole-placement loop

Gain Scheduling z=z(x)

Fig. 2. The structure of the proposed stabilization controller.
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5. ILLUSTRATED EXAMPLES

& In the first example, we consider controlling the mobile
robot to the origin (0.0, 0.0, 0.0) from initial points
(—1.0, 0.5, g) The output variables are set to
0, X o
~tan 22 =x,+x
A >>_an_?_rl_ 1 1 2
~ 02 = ed = 0’
Fig. 3. The condition for one control mode in terms of the ~ Where k; =1 and k, =1 in equation (20). The simplified
robot’s initial location and orientation. model can then be represented below as a linear
080 0.80
060 — “1 : heavy line 060 —
: u, : thin line 1
040 — 0.40 —
(<]
) (rad.)
020 — 020 — , .
0.00 — 0.00 — : :
020 ’ [ i 1 ' T 020 . , , ] T ]
0.00 2.00 . 4.00 6.00 0.00 2.00 4.00 6.00
Time (sec.) Time (sec.)

(a) (b)

1.8
x2
n.0 -
et
AL
-1.8
-1.8 8.8 1.8

x1

(c)
Fig. 4. The simulation results for example 1, where (a) is the speed response u, and u, of the mobile robots, (b) is the evolution of 8, and

(c) is the mobile robot trajectory which converges to the origin from the initial point <—1.0, 0.5, g)

https://doi.org/10.1017/50263574797000660 Published online by Cambridge University Press


https://doi.org/10.1017/S0263574797000660

Robot stabilization

3.00 0

1 control |

mode 1. control mode 2

%1 heavy line
: Uy : thin line

579

020

1 control'
mode 1

control mode 2

1.00 —
200 : }I ; ] ; ] . T ; -0.80 T T T T T T T T T
0.00 1.00 200 300 4.00 500 0.00 1.00 200 3.00 400 5.00
Time (sec.) Time (sec.)
(a) (b)
1.8 i T
Lo
uy
Ly
P
x2 \(;;’\
%
-\2\_
8.0 JE N
-1.0
-1.8 8.9 1.8
x1

(c)

Fig. 5. The simulation results for example 2, where (a) is the speed response u; and u, of the mobile robots, (b) is the evolution of
6, and (c) is the mobile robot trajectory which converges to the origin from the initial point (0.0, 1.0, 0.0).

parameter-varying system

2]

(sin z3 — cos z3)k, 23
coS 73 + sin z3

S EEH

_kaz3
COoS 75 + sin z3

zz=vye X' 0=t

where y=rm/4, and k,=1.89. Noted that the above
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system is uncontrollable when 6 is equal to —45° or 135°.
Let (X1initiar Xzinitiar Omiriar) denote the initial location and
orientation of a mobile robot. Because 6 is planned as an
exponential decreasing function, its initial value must
satisfy

X2initial

< |9initiall: (30)

’tan

Xlinitial
for reaching the origin (see Figure 3); otherwise, the
robot needs turn in place to satisfy the above condition.
In this example, the initial value of z; is not equal to zero
and Constraint (30) is satisfied; therefore, one control
mode is needed to stabilize the mobile robot at the
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origin. Figure 4(a) shows the speed response u, and u, of
mobile robots, Figure 4(b) show the evolution of 8, and
Figure 4(c) displays the resulting motion trajectory of the
mobile robot which converges to the origin from the

initial point (—1.0, 0.5, E)

In the second example, we consider controlling the
mobile robot to the origin (0.0, 0.0, 0.0) from the initial
point (0.0, 1.0, 0.0). Because the mobile robot is located
at x,-axis and z3(0)=0, it is required that 6, =2 for
only one control mode. In that case, the 6 will pass
through uncontrollable points; therefore, two control
modes are needed in this example. The control mode one
is to choose a temporary goal orientation 8,7 0, such
that z3 = (6,/k,)(1 — e ") and Algorithm 1 can then be
used. If the initial value of x, is positive, then k; =1 and
k, = —1 are chosen, and the robot moves to a temporary
goal location in the 4th quadrant such that Constraint
(30) is satisfied. Similarly, if the initial value of x, is
negative, then k; =1 and k,=1 are chosen, and the
robot moves to a temporary location in the 1st quadrant.
After, we use control mode one to change the location
and the orientation of the mobile robot, the control
mode two is then used to stabilize the mobile robot to
the origin. In the first time interval the output variables
are set to

O,=x,—x,

02 = 9,1 = - 7T/2
Thus, the simplified model can be represented below as a
linear parameter-varying system

. T
(—sin z; — cos z3)<—5—kaz3> ———koz3

m

e 2
2 a €Os zz — sin z3 COSs 73 — sin z3
0 0

o SEH

0,=[0 1][Zl],

22

— U —kot
<3 Zku (1 e )’

where the time interval 1.0 seconds and k, =1.85 are
selected such that the Constraint (30) can be satisfied at
the beginning of the control mode two. In the second

time interval the output variables are set to

0=r=1,

O,=x1—x,
02 = Gd =0.
The simplified model can then be represented below as a
linear parameter-varying system
(sin z3 + cos z3)k 423 —ko23
[z’l] B COS 73 — Sin Z3 COS 73 — Sin 23
22 0 0

SR

0,=[0 1][21],
22
—ka(t—1)

3 ="ye 1<y,
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120 ( | 1 1 1

080 —

Xy 040 —

000 —

0.40

Fig. 6. The mobile robot converges to the origin from the
initial point (0.0, 1.0, 0.0) under the discontinuous time-
invariant feedback law in equation (27).

where y=2z3(1) and k,=3.5. Figure 5(a) shows the
speed response u; and u, of mobile robots, Figure 5(b)
shows the evolution of 6, and Figure 5(c) displays the
resulting motion trajectory of the mobile robots which
converges to the origin from initial point (0.0, 1.0, 0.0).
Figure 6 displays the trajectories of the mobile robot
converging to the origin from (0.0, 1.0, 0.0) under the
discontinuous time-invariant feedback law in equation
(27) for system equation (26). Figure 7 displays the
trajectories of the mobile robot converging to the origin
from (0.0, 1.0, 0.0) under time-varying feedback law in
equation (28) for system equation (26). Figure 8 displays
the trajectories of the mobile robots converging to the
origin from (0.0, 1.0, 0.0) under the hybrid feedback law

000

I

1

.

f
£.80 0.40 0.00 040 0.80
X

Fig. 7. The mobile robot converges to the origin from the
initial point (0.0, 1.0, 0.0) under the time-varying feedback law
in equation (28).
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Fig. 8. The mobile robot converges to the origin from the
initial point (0.0, 1.0, 0.0) under the hybrid feedback law in
equation (29).

in equation (29) for system (26). Compared to these
results, the mobile robots in Example 2 did not go
through the jagged-like, pendulum motion that robots
from other works wen through in order to move to the
target position point. In fact, the motion of the mobile
robot to the target point by applying the proposed
method was much simpler as seen in Figure 5(c).
Moreover, the proposed controller is discontinuous and
time-varying when using two control modes.

6. CONCLUSIONS

A two feedback control-loop structure for stabilization of
the mobile robot with two independently driven wheels
has been studied by using the input-output pseudo-
linearization and gain scheduling technique. From the
simulation results it is shown that the proposed
stabilization method is very effective, and a much
smoother trajectory of the mobile robot can be obtained.
Moreover, based on the characteristic of input-output
pseudolinearization,'® gain scheduling techniques® and
results of this paper, the proposed method has the
potential to control other nonlinear systems than existing
linearization methods do.
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APPENDIX: GAIN SCHEDULING TECHNIQUE
FOR A LINEAR PARAMETER-VARYING
SYSTEM

The linear MIMO parameter-varying system can be
represented for all =0 by

xX(t) = A(B)x(t) + B(B)u(r),
y(6) = C(B)x(1), (1)
B=B(),

x(0) = xo,
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where state x(¢f) e R", input u(t) e R™, and output
y(t) € R"™; where parameter B = B(t) e [Bo B.]=I<R;
coefficient matrices A(B)=[a;(B)] € R"™", B(B)=
[6;(B)] € R™™ ", and C(B)=[c;(B)] € R"™*"; and where
the number of inputs n, <n and matrix B(B) are of full
column rank. Here it is assumed that

(A1) The elements of the coefficient matrices A, B,
and C are analytic functions of .

(A2) The parameter b is a continuous and bounded
function of ¢, differentiable almost everywhere with a
bounded derivative, and is measured for all ¢t =0.
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(A3) The linear parameter-varying system is com-
pletely controllable for all 8 € I.

The gain-scheduling state feedback controller u(¢) for
the system in (31) is the form

u(t) = —K(B0)x(t) + u,(1), (32)

where K(B) € R"™" is the state feedback gain matrix and
u,(t) € R™ is the reference input. The state feedback gain
matrices K(B(¢)) can be obtained in references 20 and
21.
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